Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann et al., Network Discovery and Verification, IEEE Journal on Selected Areas in Communications, vol.24, issue.12, pp.2168-2181, 2006.
DOI : 10.1109/JSAC.2006.884015

J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas et al., On the Metric Dimension of Cartesian Products of Graphs, SIAM Journal on Discrete Mathematics, vol.21, issue.2, pp.423-441, 2007.
DOI : 10.1137/050641867

G. G. Chappell, J. G. Gimbel, and C. Hartman, Bounds on the metric and partition dimensions of a graph, Ars Combin, vol.88, pp.349-366, 2008.

G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics, vol.105, issue.1-3, pp.99-113, 2000.
DOI : 10.1016/S0166-218X(00)00198-0

G. Chartrand, C. Poisson, and P. Zhang, Resolvability and the upper dimension of graphs, Computers & Mathematics with Applications, vol.39, issue.12, pp.19-28, 2000.
DOI : 10.1016/S0898-1221(00)00126-7

R. W. Floyd, Algorithm 97: Shortest path, Communications of the ACM, vol.5, issue.6, p.345, 1962.
DOI : 10.1145/367766.368168

D. Garijo, A. González, and A. Márquez, On the metric dimension, the upper dimension and the resolving number of graphs, Discrete Applied Mathematics, vol.161, issue.10-11, pp.1440-1447, 2013.
DOI : 10.1016/j.dam.2013.01.026

F. Harary and R. A. Melter, On the metric dimension of a graph, Ars Combin, vol.2, pp.191-195, 1976.

M. Hernando, I. M. Mora, C. Pelayo, D. R. Seara, and . Wood, Extremal Graph Theory for Metric Dimension and Diameter, Electronic Notes in Discrete Mathematics, vol.29, issue.1, p.30, 2010.
DOI : 10.1016/j.endm.2007.07.058

M. Jannesari and B. Omoomi, Characterization of randomly k-dimensional graphs

M. Jannesari and B. Omoomi, On randomly <mml:math altimg="si3.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>k</mml:mi></mml:math>-dimensional graphs, Applied Mathematics Letters, vol.24, issue.10, pp.1625-1629, 2011.
DOI : 10.1016/j.aml.2011.03.024

S. Khuller, B. Raghavachari, and A. Rosenfeld, Landmarks in graphs, Discrete Applied Mathematics, vol.70, issue.3, pp.217-229, 1996.
DOI : 10.1016/0166-218X(95)00106-2

R. A. Melter and I. Tomescu, Metric bases in digital geometry. Computer Vision Graphics and Image Processing, pp.113-121, 1984.

P. J. Slater, Leaves of trees, Congr. Numer, vol.14, pp.549-559, 1975.

I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Discrete Mathematics, vol.308, issue.22, pp.5026-5031, 2008.
DOI : 10.1016/j.disc.2007.08.089

S. V. Yushmanov, Estimates for the metric dimension of a graph in terms of the diameter and the number of vertices, Vestnik Moskov. Univ. Ser. I Mat. Mekh, vol.103, pp.68-70, 1987.