T. Biedl, T. Chan, Y. Ganjali, M. T. Hajiaghayi, and D. R. Wood, Balanced vertex-orderings of graphs, Discrete Applied Mathematics, vol.148, issue.1, pp.27-48, 2005.
DOI : 10.1016/j.dam.2004.12.001

T. Biedl and G. Kant, A better heuristic for orthogonal graph drawings, Computational Geometry, vol.9, issue.3, pp.159-180, 1998.
DOI : 10.1016/S0925-7721(97)00026-6

G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, vol.46, issue.1, pp.4-32, 1996.
DOI : 10.1007/BF02086606

G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems, Theoretical Computer Science, vol.172, issue.1-2, pp.175-193, 1997.
DOI : 10.1016/S0304-3975(95)00257-X

J. Kára, J. Kratochvíl, and D. R. Wood, On the Complexity of the Balanced Vertex Ordering Problem, Proc. of 11th Annual International Computing and Combinatorics Conference (COCOON 2005), pp.849-858, 2005.
DOI : 10.1007/11533719_86

A. Papakostas and I. G. Tollis, Algorithms for area-efficient orthogonal drawings, Computational Geometry, vol.9, issue.1-2, pp.83-110, 1998.
DOI : 10.1016/S0925-7721(97)00017-5

T. J. Schaefer, The complexity of satisfiability problems, Proceedings of the tenth annual ACM symposium on Theory of computing , STOC '78, pp.216-226, 1978.
DOI : 10.1145/800133.804350

R. David and . Wood, Minimizing the number of bends and volume in three-dimensional orthogonal graph drawings with a diagonal vertex layout, Algorithmica, vol.39, pp.235-253, 2004.

R. David and . Wood, Optimal three-dimensional orthogonal graph drawing in the general position model, Theoretical Computer Science, vol.29913, pp.151-178, 2003.