Approximation and inapproximability results on balanced connected partitions of graphs

Abstract : Let G=(V,E) be a connected graph with a weight function w: V \to \mathbbZ₊, and let q ≥q 2 be a positive integer. For X⊆ V, let w(X) denote the sum of the weights of the vertices in X. We consider the following problem on G: find a q-partition P=(V₁,V₂, \ldots, V_q) of V such that G[V_i] is connected (1≤q i≤q q) and P maximizes \rm min\w(V_i): 1≤q i≤q q\. This problem is called \textitMax Balanced Connected q-Partition and is denoted by BCP_q. We show that for q≥q 2 the problem BCP_q is NP-hard in the strong sense, even on q-connected graphs, and therefore does not admit a FPTAS, unless \rm P=\rm NP. We also show another inapproximability result for BCP₂ on arbitrary graphs. On q-connected graphs, for q=2 the best result is a \frac43-approximation algorithm obtained by Chleb\'ıková; for q=3 and q=4 we present 2-approximation algorithms. When q is not fixed (it is part of the instance), the corresponding problem is called \textitMax Balanced Connected Partition, and denoted as BCP. We show that BCP does not admit an approximation algorithm with ratio smaller than 6/5, unless \rm P=\rm NP.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.177--192
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00966506
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 mars 2014 - 16:59:23
Dernière modification le : dimanche 17 décembre 2017 - 06:54:05
Document(s) archivé(s) le : jeudi 26 juin 2014 - 11:55:42

Fichier

656-2516-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00966506, version 1

Collections

Citation

Frédéric Chataigner, Liliane R. B. Salgado, Yoshiko Wakabayashi. Approximation and inapproximability results on balanced connected partitions of graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (1), pp.177--192. 〈hal-00966506〉

Partager

Métriques

Consultations de la notice

132

Téléchargements de fichiers

259