Coding partitions

Abstract : Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD), we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ''unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguous component and other (if any) totally ambiguous components. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (2), pp.227--239
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00966522
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 26 mars 2014 - 17:01:19
Dernière modification le : mercredi 29 novembre 2017 - 10:26:23
Document(s) archivé(s) le : jeudi 26 juin 2014 - 11:58:03

Fichier

666-2368-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00966522, version 1

Collections

Citation

Fabio Burderi, Antonio Restivo. Coding partitions. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2007, 9 (2), pp.227--239. 〈hal-00966522〉

Partager

Métriques

Consultations de la notice

44

Téléchargements de fichiers

80