E. H. Bachoore and H. L. Bodlaender, New Upper Bound Heuristics for Treewidth, 4th InternationalWorkshop on Experimental and Efficient Algorithms (WEA), pp.216-227, 2005.
DOI : 10.1007/11427186_20

T. C. Biedl, T. Bläsius, B. Niedermann, M. Nöllenburg, R. Prutkin et al., Using ILP/SAT to Determine Pathwidth, Visibility Representations, and other Grid-Based Graph Drawings, Graph Drawing, pp.460-471, 2013.
DOI : 10.1007/978-3-319-03841-4_40

H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer Science, vol.209, issue.1-2, pp.1-45, 1998.
DOI : 10.1016/S0304-3975(97)00228-4

H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin, On problems without polynomial kernels, Journal of Computer and System Sciences, vol.75, issue.8, pp.75423-434, 2009.
DOI : 10.1016/j.jcss.2009.04.001

H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov et al., An o(c k n) 5-approximation algorithm for treewidth, 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.499-508, 2013.
DOI : 10.1109/focs.2013.60

URL : http://arxiv.org/abs/1304.6321

H. L. Bodlaender, F. V. Fomin, A. M. Koster, D. Kratsch, and D. M. Thilikos, A Note on Exact Algorithms for Vertex Ordering Problems on Graphs, Theory of Computing Systems, vol.42, issue.3, pp.420-432, 2012.
DOI : 10.1007/s00224-011-9312-0

H. L. Bodlaender, B. M. Jansen, and S. Kratsch, Kernel Bounds for Structural Parameterizations of Pathwidth, 13th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp.352-363, 2012.
DOI : 10.1007/978-3-642-31155-0_31

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou, The complexity of searching a graph, Journal of the ACM, vol.35, issue.1, pp.18-44, 1988.
DOI : 10.1145/42267.42268

B. Monien and I. H. Sudborough, Min cut is NP-complete for edge weighted trees, Theoretical Computer Science, vol.58, issue.1-3, pp.209-229, 1988.
DOI : 10.1016/0304-3975(88)90028-X

J. Mycielski, Sur le coloriage des graphes, Colloquium Mathematicum, vol.3, pp.161-162, 1955.

T. D. Parsons, Pursuit-evasion in a graph, Theory and applications of graphs, pp.426-441, 1978.
DOI : 10.1007/BFb0070400

B. A. Reed, Finding approximate separators and computing tree width quickly, Proceedings of the twenty-fourth annual ACM symposium on Theory of computing , STOC '92, pp.221-228, 1992.
DOI : 10.1145/129712.129734

N. Robertson and P. D. Seymour, Graph minors. I. Excluding a forest, Journal of Combinatorial Theory, Series B, vol.35, issue.1, pp.39-61, 1983.
DOI : 10.1016/0095-8956(83)90079-5

N. Robertson and P. D. Seymour, Graph minors. III. Planar tree-width, Journal of Combinatorial Theory, Series B, vol.36, issue.1, pp.49-64, 1984.
DOI : 10.1016/0095-8956(84)90013-3

P. Scheffler, A Linear Algorithm for the Pathwidth of Trees, Topics in Combinatorics and Graph Theory, pp.613-620, 1990.
DOI : 10.1007/978-3-642-46908-4_70

P. D. Seymour and R. Thomas, Call routing and the ratcatcher, Combinatorica, vol.32, issue.2, pp.217-241, 1994.
DOI : 10.1007/BF01215352

F. Solano and M. Pióro, Lightpath Reconfiguration in WDM Networks, Journal of Optical Communications and Networking, vol.2, issue.12, pp.1010-1021, 2010.
DOI : 10.1364/JOCN.2.001010

W. Stein, The Sage Development Team, Sage Mathematics Software, 2013.

J. Van-den-broek and H. Bodlaender, TreewidthLIB, a benchmark for algorithms for treewidth and related graph problems