M. [. Aigner and . Fromme, A game of cops and robbers, Discrete Applied Mathematics, vol.8, issue.1, pp.1-12, 1984.
DOI : 10.1016/0166-218X(84)90073-8

]. B. Als04 and . Alspach, Searching and sweeping graphs: a brief survey, Le Matematiche, pp.5-37, 2004.

T. Andreae, On a pursuit game played on graphs for which a minor is excluded, Journal of Combinatorial Theory, Series B, vol.41, issue.1, pp.37-47, 1986.
DOI : 10.1016/0095-8956(86)90026-2

E. [. Bonato, P. Chiniforooshan, and . Pralat, Cops and Robbers from a distance, Theoretical Computer Science, vol.411, issue.43, pp.3834-3844, 2010.
DOI : 10.1016/j.tcs.2010.07.003

J. Chalopin, V. Chepoi, N. Nisse, and Y. Vaxès, Cop and Robber Games When the Robber Can Hide and Ride, SIAM Journal on Discrete Mathematics, vol.25, issue.1, pp.333-359, 2011.
DOI : 10.1137/100784035

URL : https://hal.archives-ouvertes.fr/inria-00482117

. V. Fgg-+-10-]-f, S. Fomin, P. A. Gaspers, D. Golovach, S. Kratsch et al., Parameterized algorithm for eternal vertex cover, Inf. Proc. Lett, vol.110, issue.16, pp.702-706, 2010.

. V. Fgh-+-08-]-f, P. A. Fomin, A. Golovach, M. Hall, E. Mihalák et al., How to guard a graph?, 19th International Symposium on Algorithms and Computation (ISAAC), pp.318-329, 2008.

. V. Fgk-+-10-]-f, P. A. Fomin, J. Golovach, N. Kratochvíl, K. Nisse et al., Pursuing a fast robber on a graph, Theor. Comput. Sci, pp.411-418, 2010.

P. [. Fomin, D. Golovach, and . Lokshtanov, Guard games on graphs: Keep the intruder out!, 7th International Workshop on Approximation and Online Algorithms (WAOA), pp.147-158, 2009.

P. [. Fomin, D. Golovach, and . Lokshtanov, Cops and Robber Game without Recharging, 12th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), pp.273-284, 2010.
DOI : 10.1007/978-3-642-13731-0_26

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. P. Fra87 and . Frankl, Cops and robbers in graphs with large girth and cayley graphs, Discrete Applied Mathematics, vol.17, pp.301-305, 1987.

D. [. Fomin and . Thilikos, An annotated bibliography on guaranteed graph searching, Theoretical Computer Science, vol.399, issue.3, pp.236-245, 2008.
DOI : 10.1016/j.tcs.2008.02.040

URL : http://doi.org/10.1016/j.tcs.2008.02.040

V. [. Grigoras, M. Charvillat, and . Douze, Optimizing hypervideo navigation using a Markov decision process approach, Proceedings of the tenth ACM international conference on Multimedia , MULTIMEDIA '02, pp.39-48, 2002.
DOI : 10.1145/641007.641014

D. [. Garey and . Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness, 1990.

W. [. Goldwasser and . Klostermeyer, Tight bounds for eternal dominating sets in graphs, Discrete Mathematics, vol.308, issue.12, pp.2589-2593, 2008.
DOI : 10.1016/j.disc.2007.06.005

E. [. Goldstein and . Reingold, The complexity of pursuit on a graph, Theoretical Computer Science, vol.143, issue.1, pp.93-112, 1995.
DOI : 10.1016/0304-3975(95)80026-6

D. [. Joseph and . Grunwald, Prefetching using Markov predictors, ISCA, pp.252-263, 1997.
DOI : 10.1145/384286.264207

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Mehrabian, Lower Bounds for the Cop Number when the Robber is Fast, Combinatorics, Probability and Computing, vol.18, issue.04, pp.617-621, 2011.
DOI : 10.1016/0166-218X(87)90033-3

A. [. Morad and . Jean-marie, Optimisation en temps-réel du téléchargement de vidéos, Proc. of 11th Congress of the French Operations Research Soc, 2010.

P. [. Nowakowski and . Winkler, Vertex-to-vertex pursuit in a graph, Discrete Mathematics, vol.43, issue.2-3, pp.235-239, 1983.
DOI : 10.1016/0012-365X(83)90160-7

]. A. Qui83 and . Quilliot, Probì emes de jeux, de point fixe, de connectivité et de représentation sur des graphes, des ensembles ordonnés et des hypergraphes, Thèse de doctorat d'´ etat, 1983.

]. W. Sav70 and . Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. Syst. Sci, vol.4, issue.2, pp.177-192, 1970.

]. B. Sch01 and . Schröder, The copnumber of a graph is