L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 2008.

A. Blanchet, V. Calvez, and J. A. Carrillo, Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak???Keller???Segel Model, SIAM Journal on Numerical Analysis, vol.46, issue.2, pp.691-721, 2008.
DOI : 10.1137/070683337

A. Blanchet, J. Dolbeault, and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, vol.32, issue.44, p.pp, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00113519

J. A. Carrillo and J. S. Moll, Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms, SIAM Journal on Scientific Computing, vol.31, issue.6, pp.4305-4329, 2009.
DOI : 10.1137/080739574

S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis [7] A. Devys. Modélisation, analyse mathématique et simulation numérique deprobì emes issus de la biologie, Math. Biosci, vol.56, issue.1, pp.3-4217, 1981.

J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up. Discrete Contin, Dyn. Syst, vol.25, issue.1, pp.109-121, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00158767

F. Filbet, A finite volume scheme for the Patlak???Keller???Segel chemotaxis model, Numerische Mathematik, vol.146, issue.N 37(4, pp.457-488, 2006.
DOI : 10.1007/s00211-006-0024-3

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Communications on Pure and Applied Mathematics, vol.38, issue.3, pp.297-319, 1985.
DOI : 10.1002/cpa.3160380304

L. Gosse and G. Toscani, Lagrangian Numerical Approximations to One???Dimensional Convolution???Diffusion Equations, SIAM Journal on Scientific Computing, vol.28, issue.4, pp.1203-1227, 2006.
DOI : 10.1137/050628015

URL : https://hal.archives-ouvertes.fr/hal-00426881

J. Ha?kovec and C. Schmeiser, Stochastic Particle Approximation for Measure Valued Solutions of the 2D Keller-Segel System, Journal of Statistical Physics, vol.206, issue.4, pp.133-151, 2009.
DOI : 10.1007/s10955-009-9717-1

J. Ha?kovec and C. Schmeiser, Convergence of a Stochastic Particle Approximation for Measure Solutions of the 2D Keller-Segel System, Communications in Partial Differential Equations, vol.9, issue.6, pp.940-960, 2011.
DOI : 10.1016/j.jde.2004.05.013

M. A. Herrero and J. J. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci, vol.24, issue.44, pp.633-683, 1997.

R. Jordan, D. Kinderlehrer, and F. Otto, The Variational Formulation of the Fokker--Planck Equation, SIAM Journal on Mathematical Analysis, vol.29, issue.1, pp.1-17, 1998.
DOI : 10.1137/S0036141096303359

N. I. Kavallaris and P. Souplet, Grow-Up Rate and Refined Asymptotics for a Two-Dimensional Patlak???Keller???Segel Model in a Disk, SIAM Journal on Mathematical Analysis, vol.40, issue.5, pp.1852-188109, 2008.
DOI : 10.1137/080722229

S. Luckhaus, Y. Sugiyama, and J. J. Velázquez, Measure Valued Solutions of the 2D Keller???Segel System, Archive for Rational Mechanics and Analysis, vol.64, issue.4, pp.31-80, 2012.
DOI : 10.1007/s00205-012-0549-9

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type ut = ?u + |u| p?1 u. Duke Math, J, vol.86, issue.1, pp.143-195, 1997.

F. Merle and H. O. Zaag, type behavior of blow-up solutions of nonlinear heat equations, Discrete Contin. Dyn. Syst, vol.8, issue.2, pp.435-450, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00096462

F. Otto, THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION, Communications in Partial Differential Equations, vol.4, issue.1-2, pp.101-174, 2001.
DOI : 10.1007/BF00535689

P. Raphaël and R. Schweyer, On the stability of critical chemotactic aggregation, Mathematische Annalen, vol.16, issue.5
DOI : 10.1007/s00208-013-1002-6

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, vol.6, issue.1, pp.21-50, 2001.

T. Suzuki, Free energy and self-interacting particles Progress in Nonlinear Differential Equations and their Applications, 2005.

J. J. Velázquez, Stability of Some Mechanisms of Chemotactic Aggregation, SIAM Journal on Applied Mathematics, vol.62, issue.5, pp.1581-1633, 2002.
DOI : 10.1137/S0036139900380049

J. J. Velázquez, Point Dynamics in a Singular Limit of the Keller--Segel Model 1: Motion of the Concentration Regions, SIAM Journal on Applied Mathematics, vol.64, issue.4, pp.1198-1223, 2004.
DOI : 10.1137/S0036139903433888

J. J. Velázquez, Point Dynamics in a Singular Limit of the Keller--Segel Model 2: Formation of the Concentration Regions, SIAM Journal on Applied Mathematics, vol.64, issue.4, pp.1224-1248, 2004.
DOI : 10.1137/S003613990343389X

C. Villani, Optimal transport. Old and new, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00974787