N

N

When Model Driven Engineering meets Virtual Reality:
Feedback from Application to the Collaviz Framework

Thierry Duval, Arnaud Blouin, Jean-Marc Jézéquel

» To cite this version:

Thierry Duval, Arnaud Blouin, Jean-Marc Jézéquel. When Model Driven Engineering meets Vir-
tual Reality: Feedback from Application to the Collaviz Framework. Software Engineering and Ar-
chitectures for Realtime Interactive Systems Working Group, Mar 2014, Minnesota, United States.
hal-00969072

HAL Id: hal-00969072
https://inria.hal.science/hal-00969072

Submitted on 2 Apr 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00969072
https://hal.archives-ouvertes.fr

To appear in SEARIS 2014

When Model Driven Engineering meets Virtual Reality:
Feedback from Application to the Collaviz Framework

Thierry Duval*
Université Rennes 1
IRISA — UMR CNRS 6074

ABSTRACT

Despite the increasing use of 3D Collaborative Virtual Environ-
ments (3D CVE), their development is still a cuambersome task. The
various concerns to consider (distributed system, 3D graphics, efc.)
complexify the development as well as the evolution of CVEs. Soft-
ware engineering recently proposed methods and tools to ease the
development process of complex software systems. Among them,
Model-Driven Engineering (MDE) considers models as first-class
entities. A model is an abstraction of a specific aspect of the system
under study for a specific purpose. MDE thus breaks down a com-
plex system into as many models for different purposes, such as:
generating code from models; building domain specific program-
ming/modeling languages (DSL); generating tools such as graphi-
cal or textual editors. In this paper we leverage MDE for develop-
ing 3D CVEs. We show how the Collaviz framework took benefits
from a DSL we built. The benefits are multiple: 3D CVE designers
can focus on the behavior of their virtual objects without bothering
with distributed and graphics features; configuring the content of
3D CVE:s and their deployment on various software and hardware
platforms can be automated through code generation. We detail
the development process we propose and the experiments we con-
ducted on Collaviz .

Keywords: Virtual Reality, Collaborative Virtual Environments,
Frameworks, Software Engineering, Model Driven Engineering

Index Terms: H.5.2 [Information Interfaces and Presentation
(e.g., HCI)]: User Interfaces—Theory and methods; H.5.3 [In-
formation Interfaces and Presentation (e.g., HCI)]: Group and
Organization Interfaces—Computer-supported cooperative work
(CSCW); 1.3.7Computer Graphics3-Dimensional Graphics and Re-
alismVirtual reality; D.2.11 [Software Engineering]: Software
Architectures—Patterns; 1.3.6 [Computer Graphics]: Methodology
and Techniques—Interaction techniques, Device independence

1 INTRODUCTION

3D Collaborative Virtual Environments (CVE) are now widely used
since the broadening of high bandwidth networks and 3D graphics
on any kind of devices. Examples of devices are the CAVE immer-
sive systems [5], powerful workstations, laptops, or even mobile
devices such as tablets or smartphones. Yet 3D CVEs are still diffi-
cult to develop since they mix difficulties coming from two different
areas: 3D graphics and networking, as well as multiple roles, from
system programming to virtual object and virtual environment (VE,
the game play) designers.

We can identify 3 current issues hindering the development of
3D CVEs. First, the design of 3D CVEs merges the design of in-
teractive 3D applications and distributed collaborative applications.

*e-mail: thierry.duval @irisa.fr
Te-mail: arnaud.blouin @irisa.fr
fe-mail: jean-marc.jezequel @irisa.fr

Arnaud Blouin'
INSA Rennes
IRISA — UMR CNRS 6074

Jean-Marc Jézéquel*
Université Rennes 1
IRISA — UMR CNRS 6074

This task is complex since it must address 3D interaction and im-
mersion issues as well as collaborative ones dealing with distribu-
tion, synchronization, and consistency maintenance of the shared
VE. This is why CVE frameworks should provide users with facil-
ities allowing them to focus on the behavior of the shared virtual
objects of CVEs rather than having to manage 3D graphics or dis-
tribution and synchronization issues.

Second, CVE frameworks should also allow CVE designers to
describe the content of their shared universes, making the shared
virtual objects they designed easier to instantiate and configure.

Last, the configuration (adaptation to the hardware deployment
systems) of CVEs is complex since it must address various net-
work characteristics (from high bandwidth on professional or ex-
perimental networks to low bandwidth on personal networks) as
well as various displays and 3D interaction devices (from 6-face
Cave-like systems to simple workstations or even to simple interac-
tive tablets). All these configurations can even be used at the same
time in a single deployment. For instance, that would permit to
perform asymmetric collaboration between remote users using dif-
ferent input and output devices. So, CVE frameworks should also
provide users with facilities allowing them to easily configure how
a CVE would be deployed on the rendering devices that would be
available at run-time.

To tackle these 3 current limitations, CVE frameworks should
provide different tools at different conception stages to help the vir-
tual object designers, the VE designers, and the staff in charge of the
deployment of VEs on specific hardwares. These tools are: dedi-
cated editors for editing virtual objects and environments; code gen-
erators for alleviating cumbersome code development tasks, thus
helping designers to focus on their core concerns.

Model-Driven Engineering (MDE) [19] is a paradigm that con-
siders models as first-class entities. Models represent reality for the
given purpose. MDE permits to deal with systems in a simplified
manner by breaking down a complex system into as many models
as needed. Then, models can be used for various purposes such as
code generation, verification, interoperability between tools. In this
paper we show how MDE can be leveraged for the development of
CVEs by proposing an MDE-based development toolchain. We val-
idate our proposal with an experiment we conducted on the Collaviz
framework.

The paper is organized as follows. Section 2 presents the con-
text of our work: the need to design CVEs with various distribu-
tion models and 3D graphics API at different levels (virtual objects,
shared environment, adaptation to hardware). Section 3 presents the
Open Source Collaviz CVE framework, how it deals with distribu-
tion modes and 3D graphics API, and how it can be used at these
3 levels. Section 4 introduces a motivating example illustrating our
problematic. Section 5 gives some background on Model-Driven
Engineering (MDE). Section 6 presents the interest of MDE for the
design of CVEs. Section 7 details an experiment we conducted
consisting of applying an MDE process within the toolchain of the
Collaviz framework.

To appear in SEARIS 2014

2 RELATED WORK

In [20] Steed shows that within the virtual environments commu-
nity there is a large cost of maintaining software demonstrations
and applications whilst hardware and low-level software changes.
He gives the example of his own lab, where, over a period of 15
years, people developed software using at least 40 VE software
systems. Then, he gives important cues about how to write Vir-
tual Reality (VR) systems that could remain operational over the
years, such as: loosely-coupling virtual objects together (preferring
sending events and messages rather than invoking methods); decou-
pling interface from application; making high level abstractions for
the users, the navigation model, or the network. The DIVE frame-
work [10] follows these requirements and already demonstrated its
capability to develop VR software systems for more than 10 years.
Similar to DIVE, the VR-DECK Toolkit [2] is a development en-
vironment consisting of C++ class libraries for module construc-
tion, interprocess communication, device support, and hierarchical
object-oriented graphics. It allows its users to create virtual envi-
ronments using a mixed object-oriented and event-based paradigm
for defining system behavior. Modules represent entities in the
world such as objects, operations, functions, or users. Modules
communicate with each other by producing and consuming events.
They are also defined at a high-level using rules written in C++
that determine how events are handled. The run-time environment
includes: a 2D user interface for dynamically constructing worlds
from a collection of modules, allocating processes among hosts,
editing modules, and monitoring operation; a library of ready-to-
use modules for various devices and common operations. Making
such high-level abstraction and separating concerns between graph-
ics and behaviors (such as recommended by the MVC [17][11] and
the PAC [4] models) have demonstrated their efficiency for 3D in-
teraction design [3]. However, this kind of approach is still too
strongly coupled to a programming language.

The Virtual Reality Modeling Language (VRML) [12] and its
successor X3D! aim at providing a high-level description of a 3D
VEs. They do not make any assumption about the hardware de-
vices that would be used at run-time neither for the rendering of
the VE nor for the interactions. These approaches mainly focus on
the geometrical organization of a VE, its animation through inter-
polators, and provide very little interaction facilities with dedicated
sensors. Providing advanced behaviors for virtual objects and for
interactions must be done using Javascript or Java additional code
linked with VRML nodes, which can make its evolution difficult,
especially for using dedicated input devices. Some authoring tools
such as BS Content Studio® enable VE designers to quickly develop
VE described with VRML or X3D. These tools also offer facilities
to edit the features of VRML or X3D nodes and events, including
the expression of ROUTESs between VRML outputs and inputs for
animation and interaction. Nevertheless, this approach mostly con-
cerns Web3D application deployment, without considering neither
collaborative features nor adaptation to specific hardware devices.

MiddleVR? is a generic immersive VR framework. It does not
focus on the creation of VR contents or 3D interactions but on the
configuration of VR systems. It proposes a graphical configuration
tool to setup a VR system by handling hardware input and output
devices. It relies on VRPN [21] for the integration of some input
devices, or on direct integration of other device SDKs. This inter-
esting approach is complementary to usual tools dedicated to the
design of VEs.

CONTIGRA (Component OrieNted Three-dimensional Interac-
tive GRaphical Applications) [6] is a declarative XML approach
that allows to describe 3D components implementation (defining

"http://www.web3d.org/x3d/
2http://www.bitmanagement.com/
3http://www.iminfvr.com/middlevr/

new component classes), configuration (instantiating components),
and composition (assembling and linking components) through 3D
editors (component builders and scene builder tools). The Inter-
action Techniques Markup Language (IntML) [8] is designed for
non-programmers who plug VR objects, devices, and 3D interac-
tion techniques together, by binding outputs to inputs, to design a
new application only by XML coding. Then IntML files can be
compiled toward core frameworks or API such as Java3D or VR-
Juggler if the IntML binding exists with them. Both approaches
focus mainly on the creation of XML files, and do not cover neither
the design of virtual objects complex 3D behavior nor distribution
and networking features.

The Scene Structure and Integration Modeling Language
(SSIML) [22] proposes a model-driven approach that uses the
SSIML model as a contract between three kinds of developers: the
software designer, the 3D content developer, and the programmer
of a VR application. The software designer creates the SSIML
model and uses two code generators. The first one produces the 3D
scene code, that a 3D content developer has to complete with a 3D
authoring tool. The second one produces program and behavior
code, that a programmer has to complete with a programming
tool.” The same approach has been adapted to the development
of Web3D applications using SSIML, X3D and Javascript [15].
This interesting distribution of tasks among different actors with
different skills can be adapted to our own design process but must
be extended to take into account hardware and network features of
CVEs.

The MASCARET framework [1] aims at developing Intelligent
VEs. This framework 4provides an extension of the Unified Model-
ing Language (UML)" to support several CVE concerns. Thanks
to this extension, domain experts can define structural (class dia-
gram) and behavioral (e.g. state machine) concerns of a VE. Then,
3D designers can import these definitions into a 3D modeler thanks
to a dedicated plug-in to construct objects. While this approach is
conceptually close to ours, several differences remain. First, the
core idea of our proposal is to help CVE developers in their coding
tasks. We thus generate editors and code in this purpose. On the
contrary, MASCARET extends existing languages and tools for the
design of semantic VR environments. Second, one feature of our
approach is the generation of editors dedicated to a specific VE,
while MASCARET extends existing tools. This difference implies
pros and cons for each approach. For instance editors generated
using our approach are more tailored to the domain at hands than
MASCARET editors. However, these generated editors may have
some specific features missing.

3 THE COLLAVIZ FRAMEWORK

For this study we chose the open-source Collaviz framework> in-
troduced in this section.

3.1 Roles
The Collaviz framework involves 4 different complementary roles:

1. concept creators design virtual objects

2. world instantiators (scene designers) use these virtual objects
to create virtual worlds

3. physical world connectors map virtual world with physical de-
vices to allow users to interact with the designed CVE

4. users interact with virtual worlds for various purposes (e.g.
playing games, architecting an apartment)

In this work we focus on roles that involve some development
tasks, i.e. the 3 first ones as detailed in the following sub-sections.

‘http://www.uml.org/
3Collaviz is publicly available at www.collaviz.org

http://www.web3d.org/x3d/
http://www.bitmanagement.com/
http://www.imin-vr.com/middlevr/
http://www.uml.org/
www.collaviz.org

To appear in SEARIS 2014

3.2 Designing new virtual objects

When designing shared virtual objects, the Collaviz framework
uses a PAC-C3D [7] architecture to ensure an efficient separation
between the behavior of these objects and their network (distribu-
tion and synchronization) and 3D graphics features.

control

presentation

oop |
.
\\0..1 distributionPolicy

‘PDP % —q DP

Figure 1: The PAC-C3D architectural model for CVE

When designing new virtual objects according to this software
architectural model, a designer must create at least 7 new Java
classes and interfaces: IA, A, IP, P, A, ClientC, and ServerC. These
two different kinds of controllers are needed because of the Collaviz
network architecture [9] that uses a central public server to en-
sure that every client can connect to a shared VE. As only the
machine that hosts this server has to be known by the other ma-
chines, Collaviz uses different controllers for virtual object accord-
ing to their network location, independently of their role (referent or
proxy), and their distribution policy that are provided and managed
by the framework.

Nevertheless, this allows a designer to focus on the behavior of
virtual objects through the A component. It also makes him create a
lot of other components that he is not really interested in. Moreover,
even this behavior can be difficult to code because of the patterns
that the designer must use according to declare and access the pa-
rameters of these virtual objects:

3.3 Designing new shared virtual environments

Once virtual objects available, the Collaviz framework allows VE
designers to describe the content of their VEs through instantia-
tions of these virtual object classes. This description is achieved in
several XML files, which contain all the details (parameter values)
needed to instantiate properly these virtual objects. VE designers
can be someone other than virtual objects designers, their role is
similar to the role of a gameplay designer for a 3D video game.

So, the description of the content of a VE is possible without
any java programming. Nevertheless, VE designers must know the
types and ranges of values that must be provided for a proper in-
stantiation of each type of virtual object.

3.4 Deploying collaborative applications

The last description step that must be achieved to obtain a CVE is
the hardware setup. This step consists in associating physical input
devices to logical interaction tools. Indeed, the Collaviz framework
makes it possible to describe 3D interactions with a high level of ab-
straction. It is possible by programming these interactions through
the use of high-level interaction events described in the abstraction
layer. That can be done independently from the physical input de-
vices that will be used at run-time to drive these logical interaction
tools, assuming that drivers exists to dialog with these hardware in-
put devices. Here again, these associations are described in several
XML files. Each participant who will join a CVE will need such
files dedicated to adapt his interaction possibilities to his available
input devices. These descriptions files can be filled by yet another

kind of designer in charge of the adaptation of the interactions to the
available hardware. Once again, these designers do not need to pro-
gram, but they must know some precise details about the drivers of
the hardware input devices and about how to associate their outputs
to some logical interaction events.

3.5 The next step

So, designing a CVE framework following an architecture as PAC-
C3D is only the first step to allow a developer to focus only on
the application aspects of his CVE. A CVE framework should also
provide tools and processes to limit the need of coding 3D graph-
ics (the P components) or network aspects of virtual objects (the
ClientC and ServerC components). Similarly, VE designers should
be guided while describing virtual objects in XML files to avoid
some errors when setting parameters or values. Last, similar guid-
ing should be provided when other designers describe how end-
users’ hardware devices must be associated to higher-level interac-
tion descriptors such as logical input events.

4 MOTIVATED EXAMPLE

In this section, we detail a VE example to motivate the current lim-
itations in the development process of CVEs. We will consider the
design of a kind of compass that can aim at a target that it should
be possible to change. Nearly all the code samples that are pre-
sented in the section will be automatically generated with the tools
obtained through the MDE approach detailed in section 6. Only the
compute method presented at the end of subsection 4.1.1, and the
update method presented at the end of subsection 4.1.3 must be
coded manually. These code samples appear boldface to make
it easy to distinguish them from the code that can be generated
through the MDE approach.

4.1 Designing the virtual object

The first step of the development process consists of designing the
virtual objects. A compass virtual object can be inherited from the
Collaviz Tool existing class, an interactive object a user can grab to
place at a particular position.

4.1.1 Designing the compass abstraction

First, we must declare a new IA_Compass interface that describes
the features of our compass: these features are those inherited from
the IA_Tool interface plus one new method.

package org.collaviz.iivc.abstraction ;
import ... ;

public interface IA_Compass extends IA_Tool {
void setNorth (String target);
}

Then, we have to implement the A_Compass class that will in-
herit from the A_Tool class. As acompass must recompute its orien-
tation each time it, its support or its target move, it must be declared
as an object that observes its target (the observation of its support is
ensured in the A_Tool class). This class must:

e declare a String for the name of its target, and a Transform to
have an efficient access to the Transform of its target;

e implement a constructor according to some Collaviz con-
straints that registers the parameters used for its configuration
and the new methods in order to be reached through its con-
troller over the network;

e override some methods dedicated to the proper initialization,
modification, and update of its instances;

To appear in SEARIS 2014

e override other Collaviz methods to observe the modifications
of the position of its target, and call the computation of the
orientation if needed;

e implement a new method that computes the new orientation
of the compass.

The declaration of a parameter and the new methods is written
this way:

package org.collaviz.iivc.abstraction ;
import ... ;

public class A_Compass extends A_Tool implements
IA_Compass {
protected String northId ;
protected IA_SupportedObject north;
protected Transform targetTransform = null ;

public A_Compass (String objectType, String objectName
, IC_ObjectManager objectManager) {
super (objectType, objectName, objectManager) ;
parameters.put ("North",northId);

registerModificationCallback ("setNorth",
new ICallbackHandler () {
QOverride
public void callback (Object [] args) {

setNorth ((String)args|[0]);
}
1) i
}

The definition of a dependency to another Collaviz object must
be done through a declaration in a parameters hashmap and through
its registration as an observer of the other object:

@Override
public void setNorth (String target) {
northId = target ;

parameters.put ("North", northId) ;

north = (IA_SupportedObject)objectManager.getObject
(northId) ;

targetTransform = north.getTransform () ;

north.registerDelayedObserver (id) ;

}

The update and the modification of parameters are standardized
in order to be automatically communicated to controller and pre-
sentation components:

@Override
protected void processUpdate (Map<String, Object>
params) {
super.processUpdate (params) ;
final String _north = (String)params.get ("North");
if (_north != null) {
this.northId =_north ;
parameters.put ("North",this.northId) ;

QOverride
protected void processModify (Map<String, Object>
params) {
super.processModify (params) ;
final String _north = (String)params.get ("North");
if (_north != null)

setNorth (_north) ;
}

The observation of another Collaviz is made systematically
through a dedicated method able to get the modifications and to
inform the object (with a boolean) that modifications occurred:

protected boolean needToCompute = false ;

@QOverride

public void delayedObservedPropertiesChanged (
String obsName, Map<String, Object> chang) ({
super.delayedObservedPropertiesChanged (obsName,

chang) ;
if (supportObject != null &&
supportObject.getId ().equals (obsName)) {

final HashMap<String, Double> parentTransformMap
= (HashMap<String, Double>)chang.get ("
Transform")
if (parentTransformMap !'= null) {
needToCompute = true ;

}
IA_SupportedObject tmpObj =
(IA_SupportedObject)objectManager.getObject (

northId);
if (tmpObj != null && tmpObj.getId ().equals (
obsName)) {

final HashMap<String, Double> tmpObjTransformMap
= (HashMap<String, Double>)chang.get ("

Transform") ;
if (tmpObjTransformMap != null) {
needToCompute = true ;

}

The functional behavior of the object- must be executed when
one of the observed objects changed: here the orientation of the
compass should be computed each time the support of the compass
moved or the target of the compass moved:

@Override
public synchronized void execute () {
super.execute () ;
if (needToCompute) {
compute () ;
modified () ;
needToCompute = false ;

}

Last, we must code the behavior of the object: the effective com-
putation of its orientation:

private void compute () {
Vector3dd posCompass = new Vector3dd () ;
Vector3d posTarget = new Vector3dd () ;
Vector3dd direction = new Vector3d () ;
transform. getTranslation (posCompass) ;
targetTransform. getTranslation (posTarget) ;
direction.sub (posTarget, posCompass) ;
Quat4d orientation = new Quatdd () ;
Transform. getRotationBetween2Vectors (new
Vector3dd (0, 1, 0), direction, orientation) ;
transform.setRotation (orientation) ;
Map<String , Object> params = new HashMap<> () ;
modifications.put ("Transform", transform.
getMapForm ()) ;

4.1.2 Designing the compass control

In this part, we must declare a new IC_Compass interface that de-
scribes the features of our compass: these features are those inher-
ited from the IA_Compass and the IC_Tool interfaces.

package org.collaviz.iivc.control ;

To appear in SEARIS 2014

import ... ;
public interface IC_Compass extends IA_Compass, IC_Tool({}

Then, we must declare a new CService_Compass class that in-
herits from the C_Tool class and that implements the new method
of the compass, ensuring to redirect it to its associated abstraction.

package org.collaviz.iivc.control.service ;
import... ;

public class CService_Compass extends CService_Tool
implements IC_Compass {
public CService_Compass (IA_SharedObject abstraction,
boolean referentProxyArchi, int accessLevel,
CService_ObjectManager objectManager) {
super (abstraction, referentProxyArchi,
accessLevel, objectManager) ;
}
QOverride public void setNorth () {
callModificationMethod ("setNorth");

A very similar CClient_Compass must be defined. The only dif-
ference with the CService_Compass lays in one of its ancestors that
propagates the messages on the network in a different way than the
ancestor of the CService_Compass.

4.1.3 Designing the compass presentation

Last, we have to couple our compass with as many 3D graphics
representations than 3D APIs usually used for the rendering of our
VE. In this paper we will focus only on how to provide a 3D repre-
sentation of the compass with Java3D.

Here we must describe the IP_Compass interface, which is inde-
pendent from any 3D graphics API.

package org.collaviz.clientJava3D.pJdava3D ;

public interface IP_Compass extends IP_Tool,
ISceneGraphObject {

Then, we must implement the PJava3D_Compass class, which
will update the transformation node of presentation component
when its position or orientation are modified.

package org.collaviz.clientJava3D.pJdava3D ;
import ... ;

public class PJava3D_Compass extends PJava3D_Tool
implements IP_Compass {
public PJava3D_Compass (IC_SharedObject ctr,
Vector3d translation, Quat4d rotation, Vector3d

scale,
PJava3D_ObjectManager presObjManager, String
geometry) {
super (ctr, translation, rotation, scale, geometry,
presObjManager) ;

@Override
public void update (String userId, Map<String, Object>
params, IC_SharedObject source) {
super .update (userld, params, source) ;
Map<String , Double> transformMap =
(Map<String , Double>) params.get ("Transform") ;
if (transformMap != null) {
transform = new Transform (transformMap) ;
updateTransform (transform) ;

4.2 Instantiating the virtual objects

Here we instantiated 3 objects in our VE: one compass, another
virtual object that will act as its support, and a third virtual object
that will be used as its target. We will alsoneed a 3D cursor (which
is an interaction tool) to select and move the compass, its support,
or its target.

<virtualObject id="compassl" type="Compass">
<owners>All</owners>
<accessLevel>3</accessLevel>
<refProxy>true</refProxy>
<becomeReferent>true</becomeReferent>
<becomeOwner>true</becomeOwner>
<param name="Transform" type="Transform">
0.0 0.0 0.0 0.0 0.0 0.0</param>
<param name="Support" type="String">support</param>
<param name="north" type="String">north</param>
</virtualObject>

<virtualObject id="support" type="Tool">
<owners>All</owners>
<accessLevel>3</accessLevel>
<refProxy>true</refProxy>
<becomeReferent>true</becomeReferent>
<becomeOwner>true</becomeOwner>
<param name="Transform" type="Transform">

0.0 0.0 0.0 0.0 0.0 0.0</param>
</virtualObject>

<virtualObject id="north"stype="SupportedObject">
<owners>All</owners>
<accessLevel>3</accessLevel>
<refProxy>true</refProxy>
<becomeReferent>true</becomeReferent>
<becomeOwner>true</becomeOwner>
<param name="Transform" type="Transform">
0.0 10.0 0.0 0.0 0.0 0.0</param>
</virtualObject>

<virtualObject id="Handl Userl" type="Cursor3D">
<owners>All</owners>
<accessLevel>3</accessLevel>
<refProxy>true</refProxy>
<becomeReferent>true</becomeReferent>
<becomeOwner>true</becomeOwner>
<param name="Offset" type="Transform">
00000O0O0O0.030.030.03</param>
<param name="Color" type="Color">1.0 0.0 0.0</param>
<param name="Geometry" type="String">cube</param>
</virtualObject>

4.3 Deploying a collaborative application

This part consists of placing these objects in the right description
files, associated to either the server or some clients of the VE. When
one object is declared on both the server and one client description
files, the referent for this object migrates on the client.

Then, on each client, we must describe how the interaction tools,
such as our 3D cursor, will be driven by an input device at run-time.

<input tool="Handl_Userl">
<interactor id="mousel">
<event id="click" value="buttonl" action="pick" />
<event id="unclick" value="buttonl" action="unpick" />
<event id="moved" action="translate-world" />
<event id="dragged" value="buttonl" action="translate"/>
<event id="dragged" value="button2" action="translate"/>

To appear in SEARIS 2014

<event id="dragged" value="button3" action="translate"/>
<event id="wheel" action="translate-z" />

</interactor>

</input>

4.4 Limitations of this development process

As explained in this section, the Java classes to develop mix both
the definition of the concept and some technical concerns manda-
tory for an integration in Collaviz. Collaviz experts noted that these
classes are conceptually the same from one concept to another one.
We highlighted 2 limitations of such a process:

L the concept creator should focus on the design of concepts
only;

L, the manual development of such Java classes is cumbersome
and error-prone.

Moreover, the development task of world instantiators involve
the creation of XML files corresponding to virtual worlds using the
designed virtual concepts. We also highlighted 2 limitations of such
a process:

L3 the XML files must conform the concepts but no verification
process exists for checking the conformance of XML files
against the corresponding Java classes;

L, XML files are intrinsically verbose and not easy to read hin-
dering their manual editing.

The following sections detail the benefits of using MDE for the
development of CVEs.

5 MoODEL DRIVEN ENGINEERING

The traditional way scientists use to master complexity is to re-
sort to modeling. According to Jeff Rothenberg, "Modeling, in
the broadest sense, is the cost-effective use of something in place
of something else for some cognitive purpose. It allows us to use
something that is simpler, safer or cheaper than reality instead of
reality for some purpose. A model represents reality for the given
purpose; the model is an abstraction of reality in the sense that it
cannot represent all aspects of reality. This allows us to deal with
the world in a simplified manner, avoiding the complexity, danger
and irreversibility of reality" [18]. So modeling is not just about ex-
pressing a solution at a higher abstraction level than code. Modeling
is indeed one of the touchstones of any scientific activity. In engi-
neering, one wants to break down a complex system into as many
models as needed in order to address all the relevant concerns in
such a way that they become understandable enough [13].

The fundamental idea of Model-Driven Engineering (MDE) [19]
is to consider models as first-class entities. The traditional organi-
zation followed in MDE is depicted in Figure 2. Each model con-
forms to a well-defined metamodel that describes the concepts and
relationships of a given domain. Each metamodel conforms to a
meta-metamodel, a self-described language for defining metamod-
els. A metamodel is the central part of a Domain-Specific Language
(DSL). It defines the abstract syntax of the DSL. The Eclipse plat-
form has become the de-facto back-end for defining and tooling
DSL, notably through its modeling framework EMF®. Both open
source and commercial tools leverage this support for developing
tools dedicated to the development of DSLs and their editors. Sir-
ius’ is one of these tools that permits the generation of graphical
editors using a metamodel and a model describing the graphical
representation of the metamodel elements. Once the metamodel
and some tools of a DSL created, models produced by using the
DSL can be manipulated and transformed for various purposes us-

ing:

Shttp://www.eclipse.org/modeling/
Thttp://www.eclipse.org/sirius/

Mogg,
amunmdm&J

Figure 2: MDE organization

e Model to Model transformations (M2M): A M2M transforma-
tion is a program that transforms an input model in an output
model. The input and output models can have the same meta-
model or different metamodels. There exist several model
transformation languages, such as Kermeta [14].

e Model to Text transformations (M2T): A M2T transformation
is a program that transforms an input model in text (usually
source code). It is possible to use any model transformation
language to generate text.

6 MDE PROCESS FOR DEVELOPING CVESs

MDE relies on 2 core concepts that tackle the limitations L; and L:
the definition of domain specific languages (DSL) and model trans-
formations (more precisely in our case: code generation). Instead
of using Java for designing concepts, Collaviz experts would now
define a DSL dedicated for this purpose. The benefits would be:

B; focusing on the definition of concepts only;

B, automatically generating the Java classes corresponding to the
concept thanks to a model transformation.

Another core MDE principle is that models (virtual worlds in our
case) produced using a DSL conform to it by construction, provid-
ing the following benefit:

B3 no manual verification process is required to assure such a
conformance, tackling therefore the limitation L3.

The limitations L, and L4 both concern a problem of usability
in the editing process. Some MDE tools are dedicated to the cre-
ation of editing tools for DSLs. These tools use the metamodel
of the DSL and a description of the wanted editor for generating,
for instance, Eclipse plug-ins. Such editors can either be textual or
graphical depending on the nature of the DSL. The benefit of such
editors would be:

B4 providing concept creators and world instantiators with dedi-
cated editing tools.

In the next section, we detail how we technically used an MDE
process for developing CVEs.

7 LEVERAGING MDE FOR THE COLLAVIZ FRAMEWORK: A
FIRST EXPERIMENT

In this section, the MDE process applied to the Collaviz framework
is described. Then, the benefits of the proposed process are dis-
cussed.

http://www.eclipse.org/modeling/
http://www.eclipse.org/sirius/

To appear in SEARIS 2014

|El NamedElement|
7 name : String

Ay

H TypedElement
7 lowerBound : int

7 upperBound : int

T

type

1,IH GenericType

genericTypes

superType 0.1

H CollavizObject

parameters [[Parameter

[Operation

7 abstract : boolean
7 javaCode : boolean

B S\m@n&‘

Bwe '

type

0..* | operations

O..*I attributes

type |1

[GenericAttribute

|

0.*

superinterfaces

H ExistClass

Q_.

E Dependency
7 delayed : boolean

0..* attributes

E Attribute

|

0..* attributes

Figure 3: The Collaviz metamodel

7.1 Description of the applied MDE process

We applied an MDE process, depicted by Figure 4, for the Collaviz
framework. This process tackles the limitations of the former pro-
cess by leveraging MDE principles as detailed in the previous sec-
tion. In opposite to the previous process, the proposed one smoothly
combines the different actors of the framework.

The first column of Figure 4 focuses on tools for concept design-
ers. As previously motivated, a DSL has been defined for helping
concept creators in designing virtual concepts. The Eclipse Mod-
eling Framework (EMF) provides tools for this purpose. The first
step consists of defining a metamodel, depicted by Figure 3, that
identifies Collaviz concepts and their relations. Such concepts are
for examples a Collaviz object (class CollavizObject) that can have
operations, attributes, a super type, and implement interfaces. A
type (class Type) defines virtual objects that are not Collaviz ones.
Both Collaviz and Type objects inherits from GenericType that de-
fines the concept of an object type. A Collaviz model (class Collav-
izModel) is composed of GenericType instances. This metamodel
conforms to the Ecore meta-metamodel, a metamodel for defining
metamodels. The metamodel has been precised with constraints
that check some structural properties.

Using this metamodel, an editor has been automatically gener-
ated as an Eclipse plug-in. Such an editor allows concept designers
to create models of the Collaviz metamodel (a‘model being the set
of concepts wanted by the designer). For instance, Figure 5 is a
screen-shot of this editor during the definition of a Collaviz model.
This model defines the previously introduced concept of compass.
One can see that Compass is an instance of the class CollavizOb-
Jject defined in the Collaviz metamodel (Figure 3). This Compass is
composed of an operation setNorth and an attribute of type Depen-
dency called north. The definition of the metamodel and its use to
create models correspond to the benefits B; and B3 (see Section 6)
stating that: MDE permits developers to focus on the concepts of
the domain under study; the conformance of a model is automati-
cally checked against its metamodel.

From such a model is generated Java code dedicated to the
Collaviz platform. This code generation is performed by a model
transformation compiling model elements in Java code. The model-

Ecore meta-metamodel

/

Collaviz metamodel

!

Domain metamodel

-
-
-
-

T~

Virtual to physical
metamodel

f

-
Collaviz model

-
-
-

Domain model

Virtual to physical

: : model

1 [H

v v v
Java Code XML Code XML Code

Concept Designer World Instanciator Physical World Connector

<4—— Conforms to

<« —— Generation

Figure 4: Process description

oriented programming language Kermeta has been used to develop
this transformation within Eclipse. This step highlights the benefit
B; on the use of model transformations to generate code and thus
alleviate the coding effort.

At this point, concept designers have tools for editing virtual
concepts and generating their Java code. These concepts must now
be used by world instantiators to create virtual worlds. For instance
following the example of Figure 5, one may want to design a virtual
world including one compass supported the hand of a user and tar-
geting a landmark. To do so, a Collaviz model designed by concept
designers must be reified as a domain language to be used by world
instantiators. Another model transformation has been developed in
Kermeta to automatically transform a Collaviz model in a domain
metamodel.

To appear in SEARIS 2014

[compass.collaviz 22
o Resource Set
¥ & platform:/resource/compass/compass.collaviz
¥ 4 Model
¥ 4 Collaviz Object Compass
¥ 4 OperationsetNorth
< Parameter target
4 Dependency north

Figure 5: A Collaviz model, instance of the Collaviz metamodel
depicted in Figure 3

{£] compass.odesign 2
€ Viewpoint Specification Editor
¥ i) platform:/resource/compass.design/description/compass.odesign
¥ & compass
¥ & compass
¥ & compass editor
v [l compass
% Lozenge Node Description gray
» #) platform:/resource/compass.design/description/compass.ecore

Figure 6: Defining the graphical representation with Sirius

Building scenes is a graphical job that needs a 2D or 3D graph-
ical editor. Sirius is a model-driven tool dedicated to the creation
of 2D graphical model editors. It requires the domain metamodel
and a description of how the elements of this metamodel must be
graphically represented. Figure 6 is a screenshot of the Sirius en-
vironment while defining a graphical representation. Each concept
of the metamodel is mapped to a graphical representation. In our
example, a compass is represented by a triangle (Lozenge). The
graphical editors can also be customized. For instance, the node
Section defines an editing toolbar.-Once this last defined with Sir-
ius by the concept designers, a 2D graphical editor can be generated
as an Eclipse plug-in. This editor can be used by world instantia-
tors to create virtual scenes (domain models) in a 2D environment,
as illustrated in Figure 7. A third model transformation has been
developed for generating the XML code, describing virtual scenes,
that can read the Collaviz platform. The definition and generation
of editors highlights the benefit B4 on providing concept creators
and world instantiators with dedicated editing tools.

Compass.collavizinstance 52

{75 Resource Set
¥ & platform:/resource/compass/Compass.collavizinstance
¥ 4 Collaviz Model Instance compass
¥ < Collaviz Object Instance compass1
4 Dependency Instance north
¢ Transform Euler Angles true
¥ < Collaviz Object Instance support
¢ Transform Euler Angles false
¥ < Collaviz Object Instance north
% Transform Euler Angles false
¥ < Collaviz Object Instance Hand1_User1
% Transform Euler Angles false
¥ [platform:/resource/compass/Compass.collaviz
* 4 Model Compass

Figure 7: An example of Collaviz models instanciations

Finally, the physical world connector can bind the VE with some
physical devices (the third column in Figure 4). Another metamodel
has been defined for this purpose. Also, a fourth model transfor-
mation has been developed generating the XML code dedicated to
configure these bindings.

7.2 Discussion about the benefits
7.2.1 Designing virtual objects

Concerning our small example with the compass, our solution gen-
erates a little bit more than 89% of the Java source code: it repre-
sents here a total of 186 lines from which 166 have been generated
by our model transformations. It entirely generates the 3 interfaces,
the 2 controller classes, and the main structure of the abstraction
class (only the content of the compute method, listed boldface in
section 4.1.1, has to be coded manually) and of the presentation
class (only the content of the update method, listed boldface in
section 4.1.3, has to be coded manually, and in practice here this
step could have been avoided since already coded in one ancestor
of this class).

The application described in [16], which deals with communica-
tion between an end-user and an ergonomist in order to enhance the
design of an industrial workstation, has been built using the tools
described in this paper. This is a "real" example of a new 3D appli-
cation, with the addition to the Collaviz framework of 38 new Java
interfaces and 48 new Java classes, which represents 8873 lines of
Java code. In such a case our MDE approach generates 5338 lines
of Java code, which represents 60% of the total amount of code.

Moreover, the designer can focus only on domain specific coding
tasks (for the example, computing the orientation of the compass)
without any concern neither for how to subscribe to the modifica-
tions of its support and target, nor for how to make it work on the
network. The only other thing to be considered is how to update
a presentation component using a specific 3D API, and this task
could be given to another designer specialized in 3D graphics pro-
gramming.

7.2.2 Instantiating virtual objects

Our solution generates the whole XML code describing the instan-
tiations of our virtual objects. Moreover, it can check if this de-
scription is syntactically correct. For now these descriptions must
be added manually in the main XML file describing a VE of in sec-
ondary XML files describing each user’s own VE.

7.2.3 Deploying collaborative applications

This part has not been addressed yet, but here again, in a short fu-
ture, we should be able to generate a great part of our configuration
files for the setup of our CVE.

8 CONCLUSION

In this paper we explained the benefits of using MDE in the devel-
opment process of CVEs. We illustrated our tooled proposal with
a concrete use case. This use case shown how existing MDE tools
can be used to create languages and their associated tools such as
graphical editors. Such graphical editors are currently limited to 2D
representations. Future work may focus on the generation of 3D ed-
itors thanks to dedicated frameworks such as GEF3D3. Besides, we
applied our MDE process to the Collaviz framework. Adapting our
approach to another VR or CVE framework is possible by develop-
ing new code generators but the process remains the same. Future
work may focus on that to strengthen the validation.

ACKNOWLEDGMENT

We wish to thank Yorick Perret for his useful work on this project.

8http://www.eclipse.org/gef3d/

http://www.eclipse.org/gef3d/

To appear in SEARIS 2014

REFERENCES

[1]

[2

—

[6]

[7

—

[8]

[9

—

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]
[19]
[20]

[21]

[22]

P. Chevaillier, T.-H. Trinh, M. Barange, P. De Loor, F. Devillers,
J. Soler, and R. Querrec. Semantic modeling of virtual environments
using mascaret. In Software Engineering and Architectures for Real-
time Interactive Systems (SEARIS), 2011 4th Workshop on, pages 1-8,
2011.

C. Codella, R. Jalili, L. Koved, and J. Lewis. A toolkit for developing
multi-user, distributed virtual environments. In IEEE Virtual Reality
Annual International Symposium, 1993.

D. Conner, S. Snibbe, K. Herndon, D. Robbins, R. Zeleznik, and
A. van Dam. Three-dimensional widgets. In SIGGRAPH : Sympo-
sium on Interactive Graphics, pages 187-193, 1992.

J. Coutaz. PAC: An Object Oriented Model for Implementing User
Interfaces. SIGCHI Bull., 19(2):37-41, 1987.

C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti. Surround-screen
projection-based virtual reality: the design and implementation of the
cave. In Proceedings of SIGGRAPH’93, pages 135-142, New York,
NY, USA, 1993. ACM.

R. Dachselt, M. Hinz, and K. Meissner. Contigra: An xml-based
architecture for component-oriented 3d applications. In Proceed-
ings of the Seventh International Conference on 3D Web Technology,
Web3D’02, pages 155-163, New York, NY, USA, 2002. ACM.

T. Duval and C. Fleury. PAC-C3D: A New Software Architectural
Model for Designing 3D Collaborative Virtual Environments. In ICAT
2011, pages 53-60, Osaka, Japan, Nov. 2011. VRSJ.

P. Figueroa, M. Green, and H. J. Hoover. Intml: A description lan-
guage for vr applications. In Proceedings of the Seventh International
Conference on 3D Web Technology, Web3D *02, pages 53-58, New
York, NY, USA, 2002. ACM.

C. Fleury, T. Duval, V. Gouranton, and B. Arnaldi. A New Adaptive
Data Distribution Model for Consistency Maintenance in Collabora-
tive Virtual Environments. In JVRC 2010 (2010 Joint Virtual Reality
Conference of EuroVR - EGVE - VEC), pages 29-36, Fellbach, Ger-
many, Sept. 2010.

E. Frécon and M. Stenius. “DIVE : A scaleable network architecture
for distributed virtual environments”. Distributed Systems Engineer-
ing, 5:91-100, 1998.

A. Goldberg. Information models, views, and controllers. Dr. Dobb’s
J., 15:54-61, May 1990.

J. Hartman and J. Wernecke. The VRML 2.0 Handbook : Building
Moving Worlds on the Web. Addison-Wesley Publishing Company,
1996.

J.-M. Jézéquel. Model Driven Design and Aspect Weaving. Journal
of Software and Systems Modeling (SoSyM), 7(2):209-218, 2008.
J.-M. Jézéquel, B. Combemale, O. Barais, M. Monperrus, and F. Fou-
quet. Mashup of Meta-Languages and its Implementation in the Ker-
meta Language Workbench. Software and Systems Modeling, 2013.
M. Lenk, A. Vitzthum, and B. Jung. Model-driven Iterative Develop-
ment of 3D Web-applications Using SSIML, X3D and JavaScript. In
Proceedings of the 17th International Conference on 3D Web Technol-
0gy, Web3D *12, pages 161-169. ACM, 2012.

C. Pontonnier, T. Duval, and G. Dumont. Sharing and bridging in-
formation in a collaborative virtual environment: application to er-
gonomics. In IEEE international conference on cognitive infocommu-
nication, pages 121-126, Budapest, Hungary, Dec. 2013.

T. Reenskaug. The original MVC reports.
http://heim.ifi.uio.no/"trygver/2007/MVC_Originals.pdf, 1979.

J. Rothenberg. The nature of modeling, volume 3027. 1989.

D. C. Schmidt. Guest editor’s introduction: Model-driven engineer-
ing. Computer, 39(2):0025-31, 2006.

A. Steed. “Some Useful Abstractions for Re-Usable Virtual Envi-
ronment Platforms". In Software Engineering and Architectures for
Realtime Interactive Systems - SEARIS, 2008.

R. M. Taylor, II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano, and
A.T. Helser. VRPN: A Device-independent, Network-transparent VR
Peripheral System. In Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, VRST *01, pages 55-61, New York,
NY, USA, 2001. ACM.

A. Vitzthum and B. Jung. Iterative Model Driven VR and AR De-

velopment with Round-Trip Engineering. In SEARIS 2010 (IEEE VR
2010 Workshop on Software Engineering and Architectures for Real-
time Interactive Systems), pages 3-8, Waltham, United States, Mar.
2010. Shaker-Verlag.

	Introduction
	Related Work
	The Collaviz framework
	Roles
	Designing new virtual objects
	Designing new shared virtual environments
	Deploying collaborative applications
	The next step

	Motivated example
	Designing the virtual object
	Designing the compass abstraction
	Designing the compass control
	Designing the compass presentation

	Instantiating the virtual objects
	Deploying a collaborative application
	Limitations of this development process

	Model Driven Engineering
	MDE process for developing CVEs
	Leveraging MDE for the Collaviz framework: a first experiment
	Description of the applied MDE process
	Discussion about the benefits

	Conclusion

