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Ré-exécution déterministe partielle pour le débogage de
MPSoC

Résumé :
Ce rapport présente une méthodologie de débogage pour les systèmes MPSoC basée sur

l'enregistrement et la ré-exécution déterministe de traces d'exécution. Ce travail propose un
modèle général des systèmes MPSoC, identi�e les principales sources de non-déterminisme et
propose l'application d'algorithmes adaptés pour l'enregistrement et la ré-exécution d'erreurs
non-déterministes. L'originalité du travail réside dans la dé�nition d'un cycle de débogage per-
mettant de cibler la recherche des erreurs en appliquant des critères de sélection spatiale et
temporelle. La sélection spatiale consiste à ne considérer qu'une partie de l'application en exé-
cution. La sélection temporelle permet de ne considérer qu'un intervalle spéci�que d'exécution.
Les mécanismes sont connectées à l'outil de débogage standard GDB tout en fournissant une
représentation visuelle de la portion de trace considérée. L'approche est validée sur deux types
de plateformes et avec deux applications multimédia.

Mots-clés : MPSoC, non-déterminisme, ré-exécution déterministe, débogage, méthodologie
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1 Introduction

Recent years have witnesses a tremendous development of embedded systems [?, ?, ?, ?]. They
�nd their place in numerous domains in our everyday life like transports, domotics and telecom-
munications. This omni-presence has called for new design methods targeting more complex
applications, more e�ciency and yet shorter time to market.

Multi-Processor Systems on Chip (MPSoC) architectures have been proposed to meet these
new requirements [?, ?]. They follow the "multi-core trend" and propose an increasing number
of components allowing for bigger computational power at a lower energetic cost. The hardware
design includes general purpose processors, specialized accelerators, shared as well as distributed
memory, numerous peripherals and Network-on-Chip (NoC) interconnections [?, ?, ?, ?, ?, ?].

The increasing hardware complexity of MPSoC brings new challenges to the process of soft-
ware development and validation. Indeed, the possibility to execute multiple treatments in
parallel and to have concurrent data accesses makes software executionnon deterministic. As a
consequence, software validation is faced with the problem of detecting and rooting the causes
of non deterministic errors which are hard to observe and reproduce. The problem is even more
emphasized by the important number of components (threads, tasks, processes) taking part in
an execution and their possible interactions.

In this report we describe our approach to debugging non deterministic embedded software.
Our work is at the intersection of the two classical validation techniques of interactive debugging
[ref] and execution trace analysis [ref]. We propose a record-replay mechanism [ref] in which
non deterministic errors are �rst captured in recorded execution traces and then tracked through
debugging a deterministic replay of the recorded traces. The main contribution of this work is a
debugging methodology allowing for zooming into suspicious software parts by applying spatial
and temporal selection criteria. The methodology is designed to be scalable, i.e. support MPSoC
with a great number of components, and e�cient, i.e induce minimal execution overhead.

The proposed debugging methodology is based on the following basic bricks:

ˆ Target Sources for Non Determinism
Modern MPSoC software include parallel, distributed and time-constrained interactions.
As a consequence, they need to face the global set of non deterministic execution situations
identi�ed in other computation domains. Namely, MPSoC non deterministic executions
may be due to concurrent data accesses, to I/O activities, to message-oriented commu-
nication or to scheduling. Our methodology proposes a trade-o� between precision and
intrusion by targeting not all but a set of non deterministic phenomena.

ˆ Algorithms for Deterministic Record-Replay
After a study of the state of the art, we have selected a set of algorithms for record-
ing and reproducing non deterministic phenomena in MPSoC. The choice is based on the
algorithms' performance characteristics and their compatibility with the e�ciency require-
ments in MPSoC. Typically proposed in the parallel systems domain, our work explores
their applicability to MPsOC.

ˆ General Architectural Model for MPSoC
Considering architectural trends in modern MPSoC, we abstract from heterogeneity and
propose a general model representing major architecture principles. This model allows
for de�ning a general software API 1 used in the de�nition of the deterministic partial
record-replay mechanism.

1Application Programming Interface

RR n° 8515



4 Georgiev & al.

ˆ Software Partitioning using Spatial and Temporal Criteria
Even with the most e�cient mechanisms for deterministic record replay, the number of
MPSoC interacting components makes global debugging a daunting task. To reduce the
error search space, our methodology allows for considering only a part of the MPSoC soft-
ware (spatial reduction) during a speci�c execution interval (temporal reduction). Spatial
reduction exploits our architectural MPSoC model, while temporal reduction is based on
the recorded traces timeline.

ˆ Debugging Cycle with Partial Replay
Our methodology de�nes an iterative debugging cycle during which the developer may
replay di�erent parts of the recorded software execution. During the replay, it is possible
to capture additional execution information to zoom in and analyze it more in detail.

The rest of the report is organized as follows. Section?? presents the state of the art
concerning record-replay techniques. Section?? introduces the general concepts behind our
proposal. It details the debugging cycle phases, presents the proposed MPSoC model and sketches
the used record-replay algorithms. The implementation of these features in our prototype system
ReDSoC2 is detailed in Section??. Section?? describes our experiences with RedSoC debugging
on two execution platforms and two multimedia applications. Finally, Section ?? concludes and
gives future perspectives.

2 Record-Replay of Non Deterministic Phenomena

There are numerous deterministic record-replay solutions that focus and limit themselves on
di�erent sources of non determinism. In a shared memory setting, projects reproduce scheduling
decisions only [?] or consider data races. The latter consider all shared data accesses [?, ?, ?, ?]
or the accesses to synchronization structures [?]. Alternative approaches relax the exact replay
of data accesses and focus on application outputs [?, ?]. Others eliminate non determinism by
using an adapted execution support [?]. In a distributed setting, record-replay solutions focus
on the data exchanges among nodes [?, ?, ?]. To apply to realistic embedded platforms, ReDSoC
considers all sources of non determinism and combines record-replay techniques from both shared
and distributed memory settings.

In the domain of embedded systems, record-replay mechanisms for multi-tasking embedded
systems mainly focus on the reproduction of context switches [?, ?, ?, ?]. The works investigate
the unique identi�cation of context switches, needed for a precise replay, as well as various
algorithms for e�cient computing of the system state �ngerprint. This approach can be used in
hard real-time embedded systems but does not apply to multi-core concurrent executions which
are considered in ReDSoC.

Record-replay mechanisms strive for a trade-o� between cost of implementation, precision and
generality. Indeed, hardware-based mechanisms [Scribe] impose minimal intrusion on the traced
system but require costly non commodity hardware. Virtual machine mechanisms [?, ?] provide
for a comparable level of detail but rarely consider multi-processor platforms. In addition, their
cost is prohibitive for embedded systems. System mechanisms [?] provide for transparent record-
replay which does not require application modi�cation. Their are, however, tightly coupled with
the speci�c operating system they consider. ReDSoC is at the level of application and library
mechanisms [?, ?] which impose some modi�cation (instrumentation, recompilation) of the target
application but provide for better portability.

2Re cord-Replay for D eterministic SoC Debugging
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Deterministic and Partial Replay for MPSoC Debugging 5

Partial replay has been considered in parallel and distributed systems which exhibit too
much components and interactions for a total record-replay. Recent works [?, ?] on many-
core High Performance Computing (HPC) architectures reproduce selected groups of processes.
However, as their mechanisms are based on their programming models API, they cannot be
applied to embedded system environments. As for distributed systems [?, ?], existing partial
replay solutions limit themselves to considering a single node.

3 ReDSoC Overview

In this section, we present RedSoC, our prototype system for deterministic partial record-replay
of MPSoC. We �rst describe the proposed debugging methodology, enumerate its di�erent steps
and explicitly point out our contributions (Section ??). Before presenting the logic for our partial
replay mechanism (Section??), we introduce our general MPSoC model (Section??). Section??
gives details about the chosen record-replay algorithms.

3.1 Debugging Cycle

The proposed debugging methodology is represented in the Figure??. It is composed of the
following steps:

ˆ Step 1: Recording a Reference Execution Trace
During this step, the execution of the whole MPSoC software is recorded to produce refer-
ence execution traces. The data captured in these traces has been de�ned in close relation
with the non deterministic phenomena we have decided to target, as well as with the replay
techniques we have chosen. The design aims at recording minimal but su�cient data. It
limits the volume of recorded data to minimize the tracing overhead during execution. Yet,
the recorded data is su�cient for a deterministic replay. The choice of target non determin-
istic phenomena to debug and the identi�cation of adapted replay algorithms represents
our �rst contribution.

ˆ Step 2: Trace Analysis
The step is performed by the developer who debugs the MPSoC software. Using di�erent
available tools but mainly his/her experience, the developer analyses the trace in in search
of abnormal behavior.

ˆ Step 3: Error Detection
At this step, the developer decides whether a problem has been recorded and should be
investigated, in which case the cycle continues with Step 4. Otherwise, typically if a
targeted non deterministic error has not yet been recorded, the cycle may restart with
Step1.

ˆ Step 4: Spatial and Temporal Reduction of the Search Space
During this step, the developer decides to focus on a particular part of the software execu-
tion thus reducing the search space. to do so, the developer may apply a spatial and/or a
temporal selection criteria. The de�nition of these criteria represents our second contribu-
tion.

ˆ Step 5: Deterministic Replay and Recording Partial Traces
During this step, the reference trace is deterministically replayed to capture additional data
re�ecting the execution of the software part, selected in Step 4.

RR n° 8515
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Figure 1: Debugging Cycle

ˆ Step 6: Deterministic Partial Replay and Debugging
During this step, only the selected software part is considered and the corresponding trace
deterministically replayed. The replay mechanism is connected to a debugging tool, so the
developer may debug the execution of the selected part in a standard way.

ˆ Step 7: Error Identi�cation
If the error source is not identi�ed after Step 6, the developer goes back to Step 4. If the
developer want to focus on a di�erent software part, the cycle goes through Step 5. If the
developer considers the same software part but during a di�erent time interval, there is no
need for additional trace collection and the cycle continues directly with Step 6.

3.2 MPSoC Model

Our work is based on the generic hardware model showed in Figure??.
The di�erent components are include processors, memory blocs, peripherals and a communi-

cation network.

ˆ Processors

Inria
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Figure 2: MPSoC Hardware Architecture

Processors3 are organized in a two-level hierarchy. There may be heterogenous processors
but homogenous processors form groups we call nodes. Thus there may be a node with
audio processing unit and another specialized in video decoding.

ˆ Memory Blocs
In a node, processors have access and communicate through to a shared memory bloc.
Memory is distributed among nodes and a processor from one node cannot access the
memory of another node without passing through inter-node network connexions.

ˆ Peripherals
Peripherals are the devices ensuring data exchange between the MPSoC and the external
environment. Peripherals may include sensors, keyboards, screens, microphones, etc. The
data they capture is communicated to the processors via the memory or the network.

ˆ Communication Network
The network connexions organize the other components in a hierarchical way.

As for MPSoC software, our assumptions are the following. The software execution is com-
posed of a set of execution �ows which is statically partitioned and scheduled on the MPSoC
nodes. The execution �ows scheduled on the same node communicate using the shared memory
bloc and via synchronization. The execution �ows scheduled on di�erent nodes communicate
using message-passing through the network. Data from peripherals is acquired either by poling,
or using interruptions.

3.3 Partial Replay

to partially replay MPSoC software execution, we apply two selection criteria concerning the
software architecture (space) and the execution duration (time).

The reduction of the search space concerning the software architecture is based on our model
of execution �ows deployed on MPSoC nodes. The idea is to isolate a set of nodes on which the

3We call processors all computational units including general purpose processors, cores or accelerators.
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Figure 3: Search Space Reduction

debugging can focus. The replay phase thus concerns only the execution �ows running on the
identi�ed set of nodes. We call the set of nodes to debugged, thesuspectedor the nodes. The
non suspected nodes are called thecorrect nodes.

to isolate suspected nodes from the correct nodes, the tracing phase needs to di�erentiate the
nodes and consider their message exchanges. Indeed, messages exchanged between correct nodes
are not to be recorded as these nodes would not participate in the replay. Messages exchanged
between suspected nodes do not need to be recorded either, as they will be executed during
replay. In the case of a message sent from a suspected node to a correct one, as the receive
operation has no relevance to the replay, the replay may skip the send operation. In the case of a
message sent by a correct node to a suspected one, the order and the content of the message need
to be traced. During replay, the trace is used to decide whether to execute a message exchange
operation and also to provide message values coming from the external/correct nodes.

The reduction of the search space concerning time is based on the time sequence of events
recorded in the trace. The developer needs to delimit the interval to consider during debugging.
This is done by choosing the interval limits which are two traced events. The choice is typically
facilitated by a visualization tools which represents the trace. During replay, reexecuted events
are compared to the chosen interval beginning. When this event is reached, a debugger is launched
and a standard debugging process may start. When the interval end is reached, the debugging
phase terminates.

3.4 Record-Replay Algorithms

In this section we brie�y present our motivation and the chosen algorithms for deterministic
replay for shared data accesses, network communications, I/O operations and scheduling.

3.4.1 Deterministic Replay for Shared Data Accesses

Given that recording all accesses to shared data implies a prohibitive execution overhead [?], our
record-replay mechanisms focuses on accesses to synchronization structures. Non-synchronized
shared data accesses are considered to be errors, to be detected and corrected.

We have chosen the algorithm proposed by Levrouw et al. in [?]. The algorithm uses Lamport
clocks to identify accesses to di�erent synchronization structures by di�erent execution �ows.
There is one scalar clock per synchronization structure (LC ss ) and one scalar clock per execution
�ow f (LC f ). When there is an access to a synchronization structureSS by an execution �ow
f , both clocks LC ss and LC f advance using the ruleLC f = LC ss = max(LC f ; LC ss ) + 1 . The

Inria
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trace of the execution �ow records the identi�er of the synchronization structure SS, as well as
the couple of the old and new values of theLC f clock.

During replay, the accesses to the synchronization structureSS are forced to follow the
recorded order. To this purpose, the replay mechanism considers the recordedLC f values. It
identi�es the next access to the synchronization structure by deciding of the next expected value
of the clock which is the smallest one. The execution �ows trying to access the structure while
not having the smallest LC f are blocked.

3.4.2 Deterministic Replay for Network Communications

Two network communication situations may be non deterministic. The �rst concerns the case
when multiple sources send messages to a single destination. The reception order may depend on
numerous factors like network protocols, connexion speed, routing, system load, etc. The second
situation concerns non blocking reception operations. In this case, the reception operation relies
on a veri�cation of the data availability ( probe) which is itself non deterministic.

to trace and deterministically replay network communications, we have used the solution
proposed in [?, ?]. This solution has minimal intrusion as it traces only race reception operations.

For blocking network communications, the detection of race reception primitives is based
on vector clocks. For a system ofN execution �ows, vector clocks haveN components. For
execution �ow E i the i -th component is its scalar clock and accounts for the number of local
operations. All other components account for the operations that happened within the other
execution �ows and that causally precede the current operation. Thus, if there are two receive
operations on the same execution �ow, one fromEa with timestamp Va and another from Eb

with vector stamp Vb, if the a-th component of Va is bigger than the a-th component of Vb,
the operations are independent i.e race receptions. For the purposes of deterministic replay, the
receiving execution �ow traces the identi�er of the sending �ow, as well as the number of current
receptions. During replay, if a message is received but its source does not correspond to the one
recorded, the reception is delayed.

For non blocking reception operations, there is a need to record the number of executed
probes, as well as their outcome (message available or not). For positive probes, the trace is to
contain the identi�er of the source execution �ow, as well as the size of the received data. During
replay, a receive operation is delayed, as long as the source identi�er does not match, or the data
is not available.

3.4.3 Deterministic Replay for Scheduling Operations

The scheduling mechanism is responsible for deciding which execution �ow is to be executed on
a given processor. The scheduling operation may be triggered either by a change of status of an
execution �ow (terminated or blocked), or by a timing mechanism (time-sharing or priorities).
If the �rst case is natural to record and replay, the timing mechanism is related to interruptions.
Given the interrupt frequency and the complexity of recording the exact context for an inter-
rupt [ ?], however, recording interrupts with an acceptable cost in a real MPSoC environment
is still a challenge. For this reason, we have decided to leave interrupt replay aside for future
investigation.

3.4.4 Deterministic Replay for I/O Operations

Output operations have no e�ect on replay techniques. Input operations, however, are important,
as they in�uence the execution path of MPSoC software.

RR n° 8515
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Input operations are based either on interrupts, or on busy waiting (polling). As we decide
to limit the intrusion of our mechanism by not recording interrupts, we consider only polling
requests. We suppose that the content of the input data is recorded by speci�c devices and take
care of recording its size in the reference execution trace (Step 1). During replay, the trace is
read to decide that there is an input operation which is in turn acquired by executing a polling
request to the speci�c recording device.

4 ReDSoC Implementation

The general architecture of our prototype is represented on Figure??.
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Figure 4: ReDSoC Architecture

We consider a standard con�guration in which part of the debugging operations are deported
on a host platform connected to the target MPSoC platform. This is necessary as in many cases
MPSoCs have limited resources and do not provide keyboard and screen peripherals.

ReDSoC is deployed both on the host machine and the target MPSoC machine. It is composed
of four tools, namely a trace visualization tool (Section??), a partial replay tool (Section ??),
a trace collection tool (Section ??) and a deterministic replay tool (Section ??). The Trace
Collection Tool, as well as the temporal selection criteria of the Partial Replay Tool are deployed
on the host machine. The other tools are deployed on the MPSoC, each MPSoC node having its
own ReDSoC instance. The deployment on a MPSoC node is guided using a con�guration �le,
provided by the developer. The �le indicates the node number, the debugging phase to consider
(Steps 1, 5 or 6 on Figure??), as well as the numbers of the suspected nodes.

The host machine is supposed to run a Linux-based system and have GDB for debugging.
The MPSoC runs a MPSoC kernel characterized by a MPSoC API (Section??).

4.1 MPSoC API

to explicitly address non deterministic behavior of MPSoC and respect the proposed MPSoC
architectural model (cf. Section ??), we have de�ned our own MPSoC API. Our API is inspired
by the the POSIX standard [?]. It includes basic functions for execution �ow management,
synchronization, network communications and I/O. The API is listed in Figure ??.
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/* Task Management */
int taskCreate(task_t *task,void *(*funct)(void *),void *args, int node);
int taskJoin(task_t *task);

/* Synchronization */
int synCreateMutex/synDestroyMutex(mutex_t *m);
int synCreateCond/synDestroyCond(cond_t *c);
int synLock(mutex_t *m);
int synUnlock(mutex_t *m);
int synWait(cond_t *c, mutex_t *m);
int synSignal(cond_t *c);

/* Communication */
int tcpCreate(tcp_socket_t s,int p, int type);
int tcpListen(tcp_socket_t s);
tcp_socket_t tcpAccept(tcp_socket_t s);
int tcpConnect(tcp_socket_t s,node_id num,int p);
int tcpClose(tcp_socket_t s);
int tcpSend(tcp_socket_t s, char *buff, int size);
int tcpRecv(tcp_socket_t s, char *buff, int size);

/* Input/Output */
int pOpen(const char *name);
int pClose(int fd);
int pRead(int fd, void *buf, size_t count);
int pWrite(int fd, void *buf, size_t count);

Figure 5: MPSoC API

ˆ Task Management
As in many embedded system kernels [?, ?], in our model, an MPSoC software is exe-
cuted by several execution �ows, called tasks. Our API provides two functions. The �rst
(taskCreate ) is used for task creation function, the parameters being the function to ex-
ecute, the arguments for that function and the node on which to launch the task. The
second function (taskJoin ) allows a function to wait for the termination of another task.

ˆ Synchronization
Synchronization functions are applied to tasks executing on the same node. They man-
age standard mutex and condition synchronization structures with their respective inter-
faces. The synchronization structures may be created (synCreate functions) and destroyed
(synDestroy functions). Mutexes are manipulated using thesynLock/synUnlock interface,
while conditions are used withsynWait/synSignal .

ˆ Communication
Communication functions provide for message passing usingsockets [?]. In our model,
a communication link is established between two tasks running on two di�erent nodes.
The communication protocol is TCP [?]. The connection establishment is done via the
tcpConnect , tcpListen and tcpAccept functions. It is closed using tcpClose . The
message sending and receiving functions are respectivelytcpSend and tcpRecv. The choice
between blocking or non blocking communication is done at the socket creating with the
tcpCreate function.

ˆ Input/Output
I/O functions follow the UNIX logic. They provide for reading of ( pRead) or non-blocking
writing ( pWrite ) to peripherals. Peripherals are addressed using the identi�er returned by
the pOpenfunction.
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4.2 Trace Collection Tool

Our trace collection tool is deployed on each node of the MPSoC platform. As its purpose is to
intercept the calls to the de�ned MPSoC API, it provides a simple interface of four functions
(cf. Figure ??).

int getNodeId();
int getTaskId();
unsigned int getTimestamp();
int trace(int type, char *traceData, int size, vect_t Vector);

Figure 6: Tracing API

The �rst three functions return respectively the identi�er of the current node, the identi�er
of the current task and the node timestamp. The timestamp information is used to the visual
representation of the collected traces using the trace visualization tool.

The trace function writes an entry in the trace. The type parameter is used to distinguish
between the di�erent types of entries corresponding to the di�erent non deterministic situations
traced. The bu�er traceData contains the data of sizesize to record. The Vector parameter
gives a mask indicating what is the structure of the trace entry. At most, the entry contains �ve
�elds including a timestamp, a node identi�er, a task identi�er, an entry type and the actual
data.

4.3 Deterministic Replay Tool

The tool for deterministic replay implements the algorithms presented in Section??. In the
following, we give the implementation details about the three target non-deterministic situations.
Shared data accesses are managed through tracking the synchronization operations of our MPSoC
API. Network communications are targeted using our message-based communication. Finally,
I/O are addresses by the MPSoC �le-oriented I/O operations .

4.3.1 Synchronization

In the case of synchronization, our tool records and replays the accesses to the shared syn-
chronization structures, namely the mutexes and the conditions. In the following, we focus on
mutexes, as the treatment for conditions is the same.

The access to mutexes and the output of thesynLock function is non deterministic as the
access to critical sections depends on the system scheduling which we cannot control. As a
consequence, our tool records and reproduces the access order to the critical section. To do so,
the synLock function is encapsulated in aRRsynLockfunction, as showed in Figure??.

During the record phase, the mutex is taken and the access order is recorded using
TraceMechanism function. The TraceMechanism creates an entry indicating that its type is
related to synchronization and containing the couple of old and new Lamport clock values. Dur-
ing the replay phase, the task is blocked until it is its turn according to the recorded trace. This
behavior is implemented in theWaitSynchVar function, given in Figure ??.

A task gains access to a mutex using thelowestSliceCounterValue function. The function
veri�es if the task counter ( SliceCounter[eFlowID] ) is the smallest among all recorded values
contained in the shared arraySliceCounter . When the access is replayed, the data structures
for tracking the access order are updated in theNextSliceCounterValue function.
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RRsynLock(mutex_t *m){
...

if RecordPhase() {
synLock(m);
TraceMechanism(m);

} else
WaitSynchVar();
synLock(m);
NextSliceCounterValue();

...
}

Figure 7: Interception of the synLock( ) function

void WaitSynchVar() {
...

while (!lowestSliceCounterValue()) {
blockedTasks++;
synCondition(&waitCond,&waitSynchVar);

}
for (i=0;i<blockedTasks;i++)

synSignal(&waitCond);
}

...
}

Figure 8: Respecting the recorded synchronization access order

//(firstTracedLC,lastTracedLC) is the current traced couple of Lamport clocks

void NextSliceCounterValue() {
...

if (SliceCounter[eFlowID] == firstTracedLC) {
SliceCounter[eFlowID] = lastTracedLC;
GetCoupleFromTrace(&firstTracedLC,&lastTracedLC);

}
else

SliceCounter[eFlowID]++;
}

...
}

Figure 9: Updating synchronization replay structures
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14 Georgiev & al.

4.3.2 Message Passing Communication

Non deterministic situations concerning multiple sends to a single destination, are re�ected
by the communication protocol implemented using tcpConnect and tcpAccept functions. In-
deed, tcpAccept creates the communication link (the socket) with the �rst task which executes
tcpConnect with the needed arguments. To reproduce deterministically these situations, we
record the (source, destination) couples by interceptingtcpConnect and tcpAccept and execut-
ing respectively the RRtcpConnect (Figure ??) and RRtcpAccept (Figure ??)functions.

1 int RRtcpConnect(tcp_socket_t s,node_id num,int p) {
2
3 ret = tcpConnect(s,num,p);
4 MessageProduction(num,buffer,&size);
5 tcpSend(s,buffer,size);
6 return ret;
7 }

Figure 10: Deterministic Replay for tcpConnect

The role of the RRtcpConnect is to send the node identi�er to the destination node to allow
the tracing of the established communication couple (sending node, receiving node). To do so,
the function sends an additional message (MessageProduction and tcpSend, lines 4 and 5)
containing the node identi�er.

1 int RRtcpAccept(int s) {
2 ...
3 if RecordPhase() {
4 ret = tcpAccept(s);
5 tcpRecv(s,buffer,size);
6 generateTcpAcceptTraceData(traceData,buffer);
7 trace(TcpAcceptTraceType,traceData,tcpAcceptVector);
8 } else if (!SearchTcpSocket(sock,&ret)) {
9 ret = tcpAccept(sock);
10 tcpRecv(sock,buffer,size);
11 while (!compare(getExpectedNodeid(),getRecvNodeid(buffer))) {
12 AddSocket(getRecvNodeid(buffer),sock,ret,getSocketsArray());
13 ret = tcpAccept(sock);
14 tcpRecv(sock,buffer,size);
15 }
16 }
17 return ret;
18 }

Figure 11: Deterministic Replay for tcpAccept

In a symmetric way, during the record phase, the tcpAccept function, received the
sending node identi�er, established the connection link and generates the trace entry
(generateTcpAcceptTraceData and trace calls on lines 6 and 7) containing the couple of iden-
ti�ers of the two communicating nodes. For the replay phase, the function manages a bu�er of
created sockets with the corresponding (sender, receiver) couples. When a connection demand ar-
rives, the function checks whether the socket is already created and available (SearchTcpSocket)
and returns it. Otherwise, it creates the socket. If the socket identi�ed by a couple (sender, re-
ceiver) does not conform to the trace recordings (line 11), the socket is stored in the sockets
array via (AddSocket).

For non blocking receptions, the trace records the identi�er of the receiving task, the number
of calls to tcpRecv receiving the same size of data, as well as the size itself. The replay executes
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a loop waiting for the data to be available.

4.3.3 I/O

Input functions are executed using thepReadfunction. The record phase registers the identi�er
of the task calling this function, as well the number of calls and the data size. The logic is
identical to the records of non blocking tcpRecv calls. During replay, the pOpenfunction call is
not executed as the input data is recorded and available in a separate trace.

4.4 Partial Replay Tool

to apply the space reduction criterium based on isolating suspected nodes, our partial replay tool
needs to monitor and record all communications between normal and suspected nodes. These
communications are based on the network communication primitives of our MPSoC API, namely
tcpConnect ,tcpAccept , tcpSend and tcpRecv. In the following, we explain the treatments for
tcpConnect and tcpRecv, the treatments for tcpAccept and tcpSend being identical.

During the establishment of a connection with a suspected node usingtcpAccept , the tool
veri�es if the sender node is a correct one (cf. Figure??). If this is the case, the trace mechanism
records the node identi�er and the respective socket. It also records a counter (CFC) which is
used to track the order of the communication functions on the suspected node.

1 int PartialRecordTcpConnect(tcp_socket_t s, node_id *num, int retTcpConnect) {

2 MessageProduction(num,buffers,&size);
3 tcpRecv(s,bufferr,size);
4 tcpSend(s,buffers,size);
5 if (CorrectNode(bufferr)) {
6 RegisterNodeSocket(bufferr,s);
7 GeneratePartialTcpConnectTraceData(traceData,CFC,retTcpConnect);
8 trace(PartialTcpConnectTraceType,traceData,tcpConnectVector);
9 }
10 CFC++;
11}

Figure 12: Tracing tcpConnect()

During communication, the function tcpRecv is encapsulated inPartialRecordtcpRecv . If
the reception is on a socket which indicates a connection to a normal node, the operation is
traced to record the return value, the received data and the communication operation number.

int PartialRecordTcpRecv(tcp_socket_t s, int retTcpRecv, char *buffer) {

if (registredSocket(s)) {
GeneratePartialTcpRecvTraceData(traceData,CFC,retTcpRecv,buffer);
trace(PartialTcpRecvTraceType,traceData,tcpRecvVector);

}
CFC++;

}

Figure 13: Tracing tcpRecv()

During replay, each communication operation is intercepted to decide whether a normal node
takes part in it or not. If yes, the operation is replayed by directly reading the needed values from
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the recorded trace. If the communication is between suspected nodes, the operation is normally
executed.

to apply the time reduction criterium, we have implemented an extension for GDB and
introduced a new type of breakpoint. We usereplay breakpoints corresponding to the limits of
the time interval that has been selected for debugging. Each replay breakpoint corresponds to
an event recorded in the trace and is identi�ed by a triple containing a node identi�er, a task
identi�er and a timestamp.

During replay, each call to the MPSoC API is followed by a call to the gdbNotify function.
This function is in charge of comparing the current API call to the limits of the selected time
interval. If it does not correspond to any of them, the execution is pursued. If the call corresponds
to the start of the time interval, the execution is suspended and the debugging starts. When
the end of the time interval is reached, the debugging stops and the developer may choose a
new time interval. If it is after the previous time interval, the execution continues. If not, it is
launched from the beginning.

4.5 Trace Visualization Tool

We have adapted the KPTrace Viewer of STMicroelectronics [?] to represent our recorded traces.
The viewer allows for representation of an event, characterized by a time, a timestamp, a process
identi�er and a number of arguments.

to visualize our traces, we have �rst provided for a tool formatting our traces according to
the Pajé [?, ?] format. Second, we have modi�ed the KPTrace viewer to allow Pajé format
visualization.

Pajé considers a trace as a sequence of events. It is a self-de�ning format as it allows for
de�nition of the event types and establishment of a type hierarchy. It introduces the concepts of
container, state, event, variable and link.

ˆ Container : A container represents an entity with dynamic behavior. It may represent,
for example, a processor, a network kink or a thread. It may reference other containers to
establish an hierarchy.

In our tool, the root container is the MPSoC software. This container has child containers
representing the nodes of the system. The third level of the hierarchy are the task containers
which are referenced by the node containers.

ˆ State : A state is a duration with explicit start and ending. A state models the fact that
a container has the same state during an interval of time. The de�nition of the semantics
of a state is left to the developer.

In our tool, we do not use states.

ˆ Event : Un event is a punctual phenomenon that happens at a given time (timestamp).

In our tool, events represent the input operations, as well as message receptions.

ˆ Variable : A variable follows the evolution of numerical values. It may represent the value
of a measured parameter or contain a calculated value.

In our tool, variables are not used.

ˆ Link : A link represent an interaction between two containers, characterized with a start
and an end timestamps. It is typically used for modeling communications.
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In our tool, links represent causal relations. On one hand, they are used to show the
successive accesses of tasks to shared synchronization structures. On the other hand, they
show the establishment of network connection by relating the calls totcpConnect and
tcpAccept .

An example of visualization is shown on Figure??. The x dimension gives the time pro-
gression. They dimension represent containers, in this case tasks. The links, represented using
arrows, show three successive accesses of the tasksT0, T2 and T1 to a shared synchronization
structure. The �ags show peripheral operations, their color being speci�c for each peripheral
device.

Figure 14: A fragment of trace visualization

5 Validation

We have validated our approach in two settings: the debugging of a real-time application on an
MPSoC platform (Section ??) and the debugging of a video-decoding application on a NUMA
platform (Section ??).

5.1 Debugging a Tetris Application on an MPSoC Platform

For this use case, we have used a Stagecoach expansion board having two OveroFE COM nodes
(computer-on-module) [?]. Each node has an ARM Cortex-A8 600Mhz processor with 256MB
of DDR RAM, 256MB of NAND �ash memory and a microSD port. The two nodes occupy the
�rst and the third slot of the board. They are connected through a 100Mb/s Ethernet link and
have distinct IP addresses. The RJ45 slot of the board is used to connect to an external network
card which gives IP access to both nodes.

We have implemented our MPSoC API using the POSIX and the libc interfaces. We have
installed the platform from scratch by creating a bootable MicroSD with the needed Linux
distribution. The system image includes the 2.6 Linux kernel, libc6, a �le system and the ssh
service. To deploy the platform, we have used the cross-compiler provided in the Sourcery
Codebench [?] to create a x86 executable. The executable contains the MPSoC application, the
ReDSoC tools, as well as a GDB server.

The debugged MPSoC application is the Tetris game for two players (cf. Figure??). The
application's size is about 0,7MB and contains about 15000 lines of code. It is executed by two
tasks run respectively on the two MPSoC nodes.

Both players see both Tetris boards. When a player succeeds in making disappear multiple
lines, the other player's game becomes harder. The player whose board �lls �rst loses the game.

The Tetris pieces movements are controlled through the keyboard and also using the clock
frequency. The keyboard is scanned for player commands, while the clock frequency is used to
advance the pieces downwards.
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Figure 15: Stagecoach board with two Overo FE COM nodes

Figure 16: Two Player Tetris.
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