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Abstract

This paper proposes a query expansion technique for image search that is faster and more precise than the existing ones. An enriched
representation of the query is obtained by exploiting the binary representation offered by the Hamming Embedding image matching
approach: The initial local descriptors are re�ned by aggregating those of the database, while new descriptors are produced from
the images that are deemed relevant.

The technique has two computational advantages over other query expansion techniques. First, the size of the enriched repre-
sentation is comparable to that of the initial query. Second, the technique is effective even without using any geometry, in which
case searching a database comprising 105k images typically takes 79 ms on a desktop machine. Overall, our technique signi�cantly
outperforms the visual query expansion state of the art on popular benchmarks. It is also the �rst query expansion technique shown
effective on the UKB benchmark, which has few relevant images per query.

Keywords: image retrieval, query expansion, hamming embedding

1. Introduction

This paper considers the problem of image and object re-
trieval in image databases comprising up to millions of images.
The goal is to retrieve the images describing the same visual
object(s) as the query. In many applications, the query image is
submitted by a user and must be processed in interactive time.

Most of the state-of-the-art approaches derive from the sem-
inal Video-Google technique [1]. It describes an image by a
bag-of-visual-words (BOVW) representation, in the spirit of the
bag-of-words frequency histograms used in text information re-
trieval. This approach bene�ts from both the powerful local
descriptors [2, 3] such as the SIFT, and from indexing tech-
niques inherited from text information retrieval such as inverted
�les [ 4, 5]. Exploiting the sparsity of the representation, BOVW
is especially effective for large visual vocabularies [6, 7].

This analogy with text representation is a long-lasting source
of inspiration in visual matching systems, and many image search
techniques based on BOVW have their counterparts in text re-
trieval. For instance, some statistical phenomenons such as
burstiness or co-occurrences appear both in texts [8, 9] and im-
ages [10, 11, 12] and are addressed in similar ways.

One of the most successful techniques in information re-
trieval is the query expansion (QE) principle [13], which is a
kind of automatic relevance feedback. The general idea is to
exploit the reliable results returned by an initial query to pro-
duce an enriched representation, which is re-submitted in turn
to the search engine. If the initial set of results is large and ac-
curate enough, the new query retrieves some additional relevant
elements that were not present in the �rst set of results, which
dramatically increases the recall.

Query expansion has been introduced to the visual domain
by Chum et al. [14], who proposed a technique implementing
the QE principle and speci�cally adapted to visual search. Sev-
eral extensions have been proposed to improve this initial QE
scheme [15, 16, 17]. Although these variants have improved
the accuracy, they suffer from two inherent drawbacks which
severely affect the overall complexity and quality of the search:

� First, they require a costly geometrical veri�cation step,
which provides the automatic annotation of the relevant
set and is typically performed on hundreds of images.

� Second, the augmented query representation contains sig-
ni�cantly more non-zero components than the original
one, which severely slows down the search. It is re-
ported [17] that typically ten times more components are
non-zeros. Since querying the inverted �le has linear
complexity in the number of features contained in the
query vector, the second query is therefore one order of
magnitude slower than the �rst.

Expansion methods that do not use any costly geometri-
cal veri�cation are typically based on an off-line stage with
quadratic complexity in the number of database images [18, 19,
20]. They are thus limited to collections of small and �xed size.

In another line of research, several techniques address the
loss in quantization underpinning BOVW, such as the use of
multiple assignment [21] or soft quantization [22]. In a comple-
mentary manner, the Hamming Embedding (HE) technique [23]
dramatically improves the matching quality by re�ning the de-
scriptors with binary signatures. HE is not compatible with ex-
isting QE techniques because these assume a vector representa-
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Figure 1: Query image (left) and the features selected (yellow+cyan) from the retrieved images to re�ne the original query. The features in red are discarded. Cyan
features correspond to visual words that appear in the query image, and yellow ones to visual words that were not present in it. The selection of the depicted images
and features has not involved any geometrical information.

tion of the images. A noticeable exception is the transitive QE,
which does not explicitly exploit the underlying image repre-
sentation. However, this variant is not satisfactory with respect
to query time and performance.

This paper, for the �rst time, proposes a novel way to ex-
ploit the QE principle in a system that individually matches the
local descriptors, namely the HE technique. The new query ex-
pansion technique is both ef�cient and precise, thanks to the
following two contributions:

� First, we modify the selection rule for the set of relevant
images so that it does not involve any spatial veri�cation.
The images deemed relevant provide additional descrip-
tors that are employed to improve the original query rep-
resentation. Unlike other QE methods, it is doneon a
per-descriptor basisand not on the global BOVW vector.
Figure1 depicts an example of images and features that
are selected by our method to re�ne the original query.

� The second key property of our method is that the set of
local features is aggregated to produce new binary vec-
tors de�ning the new query image representation. This
step drastically reduces the number of individual features
to be considered when submitting the enriched query.

To our knowledge, it is the �rst time that a visual QE is
successful without any geometrical information: The only vi-
sual QE technique [14] that we are aware of performs poorly
compared with other variants such as the average query expan-
sion (AQE). In contrast, our technique used without geometry
reaches or outperforms the state of the art. Interestingly, it is
effective even when a query has few corresponding images in
the database, as shown by our results on the UKB image recog-
nition benchmark [6]. Incorporating geometrical information
in the pipeline further improves the accuracy. As a result, we
report a large improvement compared to the state of the art. We
further demonstrate the superiority of our method compared to
a simple combination of HE with QE: The property of feature
aggregation not only reduces the expanded query complexity,
but further improves performance.

The paper is organized as follows. Section3 introduces our
core image system and Section7 a post-processing technique

for SIFT descriptors that is shown useful to improve the ef�-
ciency of the search. Section4 introduces our Hamming Query
Expansion (HQE) method and Section5 describes our key ag-
gregation strategy of local features. Section6 describes how
to exploit geometrical information with HQE. The experimen-
tal results presented in Section8 demonstrate the superiority of
our approach over concurrent visual QE approaches, with re-
spect to both complexity and search quality, on the Oxford5k,
Oxford105k and Paris benchmarks.

2. Related work

Chum and colleagues [14] were the �rst to translate the
query expansion principle to the visual domain. Most of the
variants they propose rely on a spatial veri�cation method, which
�lters out the images that are not geometrically consistent with
the query. The authors investigate several methods to build
a new query from the images deemed relevant. The average
query expansion is of particular interest and usually consid-
ered as a baseline, as it is the most ef�cient variant [14] and
provides excellent results. It is conceptually simple: A new
term-frequency inverse document frequency(TFIDF) vector is
obtained as the average of the results assumed correct and spa-
tially back-projected to the original image.

Following this �rst work, a number of QE variants and ex-
tensions have been proposed [15, 16, 17]. Using incremental
spatial re-ranking, the query representation is updated by each
spatially veri�ed image and extended out of the initial query
region [16]. Another extension is to learn, on-the-�y, a dis-
criminative linear classi�er [17] to de�ne the new query instead
of the average in AQE.

Other kinds of expansion have been proposed for �xed im-
age collections [17, 24]. They rely on the off-line pairwise
matching of all images pairs and aim at identifying the features
coming from the same object using spatial veri�cation, which
is rather costly as the complexity is quadratic in the number of
images. They also assume that the image collection is �xed:
The selection depends on a given set of images. These methods
are also related to other methods exploiting the neighborhood
of the images within a given collection [21, 18], in particular
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by updating the comparison metric or by employing recipro-
cal nearest neighbors as a �ltering rule. For instance, Qinet
al. [18] constructs a graph that links related images, and uses
k-reciprocal nearest neighbors at query time to de�ne a new
similarity function that re-orders the images. Again, the cost of
constructing and storing the graph in memory is impracticable
for large datasets. In a similar spirit, Shenet al. [19] exploit
the ranked lists of independent queries issued with top-ranked
images. Query time increases signi�cantly as it is linear to the
number of those queries. A recent graph-based method com-
bines multiple similarity measures to perform re-ranking [20].
The cost of such an of�ine procedure can be undertaken only
for small collections. In the work of Chum and Matas [25], the
quadratic cost is addressed by starting from seed query images,
yet their method requires a costly spatial veri�cation stage.

The query expansion method of Kuoet al. [26] is also re-
lated to our work. They also use a set of binary vectors for an
image representation and try to identify database image regions
which are similar to the query. The initial representation is not
enhanced, but new independent queries are rather issued and
a �nal fusion is performed on the ranked lists. Liet al. [27]
straightforwardly use binary descriptors but only to select the
relevant matches. As in other QE methods, their method relies
on geometry and produces a larger set of features.

3. The core image system

This section describes the image search system based on
Hamming Embedding upon which our query expansion tech-
niques are built. This baseline method follows the guideline of
the existing HE technique [23], which proceeds as follows. An
image is represented by a setP of local SIFT descriptors [3]
extracted with the Hessian-Af�ne detector [28].

BOVW and Hamming Embedding. The descriptors are quan-
tized using a �atk-means quantizer, wherek determines the vi-
sual vocabulary size. A descriptorp 2 P is then represented by
a quantization index, called a visual wordv(p). Computing and
normalizing the histogram of visual words produces the BOVW
representation. It can also be seen as a voting system in which
all descriptors assigned to a speci�c visual word are considered
as matching with a weight related to the inverse document fre-
quency [1, 23].

In order to re�ne the quality of the matches and to provide
more reliable weights to the votes, the HE technique [23] fur-
ther re�nes each descriptorp by a binary signatureb(p), pro-
viding a better localization of the descriptor by subdividing the
quantization cellv(p). HE compares two local descriptorsq
andp that are assigned to the same visual wordv(p) = v(q)
by computing the Hamming distanceh(q; p) = kb(q) � b(p)k1

between their binary signatures. If the Hamming distance is
above a prede�ned thresholdht, the descriptors are considered
as non matching and zero similarity is attached. A signi�cant
bene�t [23, 10] in accuracy is obtained by weighting the vote as
a decreasing function of the Hamming distance. In this paper,
we adopt the Gaussian function used in [10] with � equal to one
fourth of the binary signature size.

The burstiness phenomenonin images was �rst revealed and
tackled by Jegouet al. [10]. It takes into account descrip-
tors that individually trigger multiple matches between speci�c
pairs of images, which is often the case because of repetitive
structures, or features which are abnormally common across all
database images. Several normalizations have been proposed,
from which we adopt the one that down-weights a given match
score by the square root of the number of matches associated
with the corresponding query descriptor [10]. This strategy is
similar to the successful component-wise power-law normaliza-
tion later proposed for BOVW or Fisher Kernels [29], but here
applied to a voting technique.

Multiple assignment (MA). BOVW and HE handles descrip-
tors assigned to the same visual word. However quantization
losses are introduced when truly matching descriptors are as-
signed to different visual words. This has been addressed by
assigning multiple visual words to each descriptor [21, 22]. We
apply MA on the query side only in order to keep memory re-
quirements unchanged [23]. In the rest of the paper, the initial
method that assigns a descriptor a single visual word is denoted
by SA (single assignment) to distinguish it with MA.

Figure 2: Matching features using BOVW (top), HE withht = 24 (middle)
and HE withht = 16 (bottom).

3



Figure 3: Examples of query images (left) and the corresponding top ranked lists by the baseline retrieval system. Images (not) selected as reliable are marked with
(gray) green border.

4. HE with query expansion

This section de�nes a query expansion technique based on
HE and not involving any geometrical information. We revisit
the different stages involved in the QE principle. We �rst de-
scribe how reliable images are selected from the initial result
set. Then we detail the way an enriched query is produced from
the images deemed relevant. The key subsequent aggregation
step and the use of geometry will be introduced later in Sec-
tions5 and6, respectively.

4.1. Selection of reliable images

As in all query expansion methods [14, 15, 16, 17], the core
image search system processes an initial query. The resulting
set is analyzed to identify a subset of reliable images that are
likely to depict the query object, and therefore to provide ad-
ditional features that will be subsequently exploited in the aug-
mentation stage.

In the following, we will denote the local features of the
query image byQ, and those of a given database image byP,
respectively. As a criterion to determine the relevant images, we
count the numberC(Q; P) of “strict” feature correspondences
between the query and images in the short-list. It is given by

C(Q; P) = jf (q; p) 2 Q � P : h(q; p) � h?
t gj ; (1)

where the thresholdh?
t is lower than the Hamming embed-

ding thresholdht used for initial ranking. Such a lower thresh-
old allows for a higher true positive to false positive ratio of
matches [23]. It provides a strict way to count correspondences
in a manner that resembles the number of RANSAC inliers
commonly used to verify the images [7]. It is less precise than
RANSAC, yet it has the advantage of not using any geometry.
It is therefore much faster.

Figure2 illustrates, for a pair of images, the matching fea-
tures obtained using BOVW and HE. We consider two differ-
ent thresholds for HE to show the impact of the strict threshold
h?

t = 16 on selected features. Observe that HE matching �l-
ters out many false matches compared to BOVW. With a lower
threshold value, the �ltering is not far in quality from that of a
spatial matching method.

An image is declared reliable if at leastct correspondences
are satis�ed, which formally leads to de�ne the set ofreliable
imagesas

L Q = fP : C(Q; P) � ctg: (2)

In practice, only the images short-listed in the initial search
are considered as candidates for the set of reliable images. In
our experiments, we count the number of correspondences with
Equation1 only for the top100images. Figure3 shows exam-
ples of queries and the corresponding reliable images. Although
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Figure 4: Sample reliable images and features assigned to reliable visual words, when geometry is not used.Left: Query image.Top: Features assigned to reliable
visual words that appear in the query image.Bottom:Features in the set of augmented visual words. Note: we only show a subsample of the actual reliable visual
words. Each color represents a distinct visual word.

some negative images are selected and some positive ones are
not, the result is not far from what spatial veri�cation would
produce. This suggests that selecting reliable images with HE
and a low threshold is suf�cient for the purpose of QE, as pro-
posed in this section. The proposed procedure for detecting reli-
able images gives a rate of92:4%true positive instances inL Q .
Note, this is achieved without any geometry information.

4.2. Feature set expansion
First, let us recall that a feature descriptor is described by

both a visual word and a binary signature. Our augmentation
strategy,i.e., how we introduce new local features in the repre-
sentation, is partly based on the selection of visual words that
are not present in the original query.

Since a large proportion of the reliable images depicts the
same object, the visual words frequently occurring in the im-
ages of the reliable setL Q are likely to depict the query object
rather than the background. Our selection strategy is simple and
consists in selecting the most frequent visual words occurring
in L Q . More precisely, we sort the visual words contained in
the images ofL Q by the number of reliable images in which
they appear. The top ranked words are selected and de�ne the
set ofreliable visual wordsV, which may include both visual
words that are present or absent in the query image. The latter
are referred to as theaugmented visual words. Their count is
controlled by a parameter� to ensure that the number of reli-
able visual words in the new query is proportional to that of the
original query, as

jV n VQ j = � � jVQ j; (3)

whereVQ is the set of visual words occurring in the query. A
typical value of parameter� is 0:5 (see Section8).

The initial query set is enriched with the features of the re-
liable images assigned to the reliable visual words. De�ne as

G = f p 2 P : P 2 L Q ^ v(p) 2 Vg (4)

the union of all features of reliable images assigned to some
reliable words. It de�nes the set of database features used to
augment the initial query. In other terms, this set is merged with
the initial query feature set to construct the augmented query as

QE = Q [ G : (5)

Figure4depicts some features from reliable images assigned
to reliable visual words. Observe that, even without any spa-
tial information, selected visual words are detected on the fore-
ground object. Moreover, each visual word corresponds not
only to similar image patches, but often to the exact same patch
of the object, as if spatial matching was used. This appears to
be the case for either visual words which appear (top) or miss
(bottom) in the query.

A simple way to construct an enriched query is to use the
expanded set of features as the new image representation. How-
ever, similar to existing QE strategies, such an approach leads to
a high complexity because the number of features explodes. We
observe that it is typically multiplied by a factor ranging from
10 to 20 for typical values of� , as analyzed in the experimen-
tal section8. This drawback is shared by other effective tech-
niques on query expansion [17], for which this problem leads to
produce a BOVW vector having 10 times more non-zero com-
ponents than the initial one. In the next section, we address
this issue by proposing an aggregation strategy that drastically
reduces the number of features.
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5. QE with feature aggregation

The average query expansion technique [14] averages BOVW
vectors to produce the new query. In this section, we explain
how local descriptors areindividually re�ned or created from
binary signatures of the set of reliable features. At this stage,
the augmented set contains multiple instances representing the
same visual patches, either in the initial query or not. Descrip-
tors associated to the same patch are expected to have similar
binary signatures. The strategy presented below implicitly ex-
ploits this underlying property to produce the new set of query
descriptors which is less redundant.

First, note that the selection strategies for images and fea-
tures presented in the previous subsections introduce a few false
positives in the augmented feature set. This is the cost to pay
for not performing the selection with a stringent spatial match-
ing technique: Our inliers are not selected as reliably as in other
query expansion methods. The aggregation operation proposed
hereafter comes as a complement on our selection method, as it
is robust enough to false positives. In contrast, averaging over
normalized TFIDF vectors of similar images [14], as done in
AQE, is sensitive to background and noisy features.

Our aggregation scheme is inspired by methods [30, 31]
such as the VLAD technique, which aggregates the descrip-
tors per visual word to produce a vector representation of an
image. In our method, we aggregate the features ofQE that
are assigned to the same visual word. Therefore, our technique
produces exactly one binary signature per visual word occur-
ring in QE . Our motivation is that the true matching patches
are likely to overrule the false positives. This actually happens
in practice because the true correspondences are more numer-
ous and are associated with more consistent binary signatures.

Our aggregation scheme is related to the recent work of To-
lias et al. [32], where descriptors are aggregated per visual
word for query and database images individually. A selectiv-
ity function is employed to appropriately weight the similarity
scores. Our approach differs in that we rather aggregate de-
scriptors collected from many images instead of a single one. In
their work, aggregation consistently improves the performance
in all cases. It is attributed to the way burstiness is handled. As
a result, the voting scheme ensures that at most one correspon-
dence is established for each visual word, and therefore at most
one for each descriptor.

For each visual wordv appearing inQE , a new binary sig-
natureb(v) is obtained by computing the median values over
all the bit vectors occurring inQE and assigned tov. If the
numbers of0 and1 are equal for a particular bit component, the
tie is arbitrarily resolved by assigning either0 or 1 with equal
probabilities. This new set of descriptors comprises exactly one
binary signature per visual word and serves as the new query,
which is then submitted to the system.

In the remainder of this paper, we refer to the method de-
scribed in this section as Hamming Query Expansion (HQE).

Remark. HQE differs from a simple combination of HE with
QE. Firstly, our QE scheme is the �rst not to use any geometri-
cal information in order to identify relevant images. Secondly,
only the most frequent visual words appearing among relevant

images are collected, avoiding the inclusion of false matches to
the expanded query. Finally, the proposed feature aggregation,
in addition to drastically reduce the expanded query size, fur-
ther improves the performance. As shown in our experiments.

6. Geometrical information

This section proposes a variant of our method to further
eliminate some incorrect matches by including some spatial in-
formation in the loop. For this reason and as shown later in
the experimental section, it is not as fast as the HQE strategy
proposed in Sections4 and5. However, this approach further
improves the performance and is therefore interesting in some
situations where one would trade an interactive time against any
improvement in accuracy.

It proceeds as follows. The matches are collected with the
regular HE technique,i.e., they are returned by the �rst query.
Instead of calculating the number of correspondences with Equa-
tion 1, we rely on the numberCg(Q; P) of inliers found with a
spatial matching technique. For this purpose, we have used the
spatial veri�cation procedure proposed by Philbinet al. [7].
Similar to other QE techniques, this procedure is applied on the
top ranked images only. An image is declared reliable if the
number of inliers is above a pre-de�ned threshold. The esti-
mation of the af�ne transformation is then further exploited to
�lter the expanded feature set. As �rst suggested by Chumet
al. [14], the matching features associated with the reliable im-
ages are projected back to the query image plane. Those falling
out of the query image borders are �ltered out.

The remaining steps of this variant then become similar to
the HQE method of Sections4 and5. The only difference is
that the input set of reliable features is different. Therefore, we
�rst select the reliable visual words and perform the feature set
expansion. The aggregation is similarly applied to produce one
binary vector per visual word. Note that, the reliable images, as
detected by spatial matching, are ranked in top positions.

Figure5 depicts the descriptors selected for the HQE ex-
panded set with and without geometry. Notice that even with-
out geometry, most of the selected features are localized on the
target object. The geometry effectively �lters out the remaining
features that do not lie on the query object.

7. Implementation details

In this section we introduce a new post-processing stage for
SIFT descriptors, which interest is evaluated in different setups.

Root-SIFT. It was recently shown [17, 33] that square root-
ing the components of SIFT descriptors improves the search
performance. This is done either byL 1-normalizing the SIFT
descriptor [17] prior to the square-rooting operation or, equiva-
lently, by [33] square-rooting the components and normalizing
the resulting vector in turn with respect toL 2. This operation
amounts to computing the Hellinger distance instead of the Eu-
clidean one. The impact of this scheme is evaluated in Table1
on the Oxford5k building benchmark [7] for both BOVW and
HE, without the burstiness processing. Following the standard
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