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Abstract

This paper proposes a query expansion technique for image search that is faster and more precise than the existing ones. An enriched

representation of the query is obtained by exploiting the binary representation offered by the Hamming Embedding image matching

approach: The initial local descriptors are refined by aggregating those of the database, while new descriptors are produced from

the images that are deemed relevant.

The technique has two computational advantages over other query expansion techniques. First, the size of the enriched repre-

sentation is comparable to that of the initial query. Second, the technique is effective even without using any geometry, in which

case searching a database comprising 105k images typically takes 79 ms on a desktop machine. Overall, our technique significantly

outperforms the visual query expansion state of the art on popular benchmarks. It is also the first query expansion technique shown

effective on the UKB benchmark, which has few relevant images per query.
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1. Introduction

This paper considers the problem of image and object re-

trieval in image databases comprising up to millions of images.

The goal is to retrieve the images describing the same visual

object(s) as the query. In many applications, the query image is

submitted by a user and must be processed in interactive time.

Most of the state-of-the-art approaches derive from the sem-

inal Video-Google technique [1]. It describes an image by a

bag-of-visual-words (BOVW) representation, in the spirit of the

bag-of-words frequency histograms used in text information re-

trieval. This approach benefits from both the powerful local

descriptors [2, 3] such as the SIFT, and from indexing tech-

niques inherited from text information retrieval such as inverted

files [4, 5]. Exploiting the sparsity of the representation, BOVW

is especially effective for large visual vocabularies [6, 7].

This analogy with text representation is a long-lasting source

of inspiration in visual matching systems, and many image search

techniques based on BOVW have their counterparts in text re-

trieval. For instance, some statistical phenomenons such as

burstiness or co-occurrences appear both in texts [8, 9] and im-

ages [10, 11, 12] and are addressed in similar ways.

One of the most successful techniques in information re-

trieval is the query expansion (QE) principle [13], which is a

kind of automatic relevance feedback. The general idea is to

exploit the reliable results returned by an initial query to pro-

duce an enriched representation, which is re-submitted in turn

to the search engine. If the initial set of results is large and ac-

curate enough, the new query retrieves some additional relevant

elements that were not present in the first set of results, which

dramatically increases the recall.

Query expansion has been introduced to the visual domain

by Chum et al. [14], who proposed a technique implementing

the QE principle and specifically adapted to visual search. Sev-

eral extensions have been proposed to improve this initial QE

scheme [15, 16, 17]. Although these variants have improved

the accuracy, they suffer from two inherent drawbacks which

severely affect the overall complexity and quality of the search:

• First, they require a costly geometrical verification step,

which provides the automatic annotation of the relevant

set and is typically performed on hundreds of images.

• Second, the augmented query representation contains sig-

nificantly more non-zero components than the original

one, which severely slows down the search. It is re-

ported [17] that typically ten times more components are

non-zeros. Since querying the inverted file has linear

complexity in the number of features contained in the

query vector, the second query is therefore one order of

magnitude slower than the first.

Expansion methods that do not use any costly geometri-

cal verification are typically based on an off-line stage with

quadratic complexity in the number of database images [18, 19,

20]. They are thus limited to collections of small and fixed size.

In another line of research, several techniques address the

loss in quantization underpinning BOVW, such as the use of

multiple assignment [21] or soft quantization [22]. In a comple-

mentary manner, the Hamming Embedding (HE) technique [23]

dramatically improves the matching quality by refining the de-

scriptors with binary signatures. HE is not compatible with ex-

isting QE techniques because these assume a vector representa-
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Figure 1: Query image (left) and the features selected (yellow+cyan) from the retrieved images to refine the original query. The features in red are discarded. Cyan

features correspond to visual words that appear in the query image, and yellow ones to visual words that were not present in it. The selection of the depicted images

and features has not involved any geometrical information.

tion of the images. A noticeable exception is the transitive QE,

which does not explicitly exploit the underlying image repre-

sentation. However, this variant is not satisfactory with respect

to query time and performance.

This paper, for the first time, proposes a novel way to ex-

ploit the QE principle in a system that individually matches the

local descriptors, namely the HE technique. The new query ex-

pansion technique is both efficient and precise, thanks to the

following two contributions:

• First, we modify the selection rule for the set of relevant

images so that it does not involve any spatial verification.

The images deemed relevant provide additional descrip-

tors that are employed to improve the original query rep-

resentation. Unlike other QE methods, it is done on a

per-descriptor basis and not on the global BOVW vector.

Figure 1 depicts an example of images and features that

are selected by our method to refine the original query.

• The second key property of our method is that the set of

local features is aggregated to produce new binary vec-

tors defining the new query image representation. This

step drastically reduces the number of individual features

to be considered when submitting the enriched query.

To our knowledge, it is the first time that a visual QE is

successful without any geometrical information: The only vi-

sual QE technique [14] that we are aware of performs poorly

compared with other variants such as the average query expan-

sion (AQE). In contrast, our technique used without geometry

reaches or outperforms the state of the art. Interestingly, it is

effective even when a query has few corresponding images in

the database, as shown by our results on the UKB image recog-

nition benchmark [6]. Incorporating geometrical information

in the pipeline further improves the accuracy. As a result, we

report a large improvement compared to the state of the art. We

further demonstrate the superiority of our method compared to

a simple combination of HE with QE: The property of feature

aggregation not only reduces the expanded query complexity,

but further improves performance.

The paper is organized as follows. Section 3 introduces our

core image system and Section 7 a post-processing technique

for SIFT descriptors that is shown useful to improve the effi-

ciency of the search. Section 4 introduces our Hamming Query

Expansion (HQE) method and Section 5 describes our key ag-

gregation strategy of local features. Section 6 describes how

to exploit geometrical information with HQE. The experimen-

tal results presented in Section 8 demonstrate the superiority of

our approach over concurrent visual QE approaches, with re-

spect to both complexity and search quality, on the Oxford5k,

Oxford105k and Paris benchmarks.

2. Related work

Chum and colleagues [14] were the first to translate the

query expansion principle to the visual domain. Most of the

variants they propose rely on a spatial verification method, which

filters out the images that are not geometrically consistent with

the query. The authors investigate several methods to build

a new query from the images deemed relevant. The average

query expansion is of particular interest and usually consid-

ered as a baseline, as it is the most efficient variant [14] and

provides excellent results. It is conceptually simple: A new

term-frequency inverse document frequency (TFIDF) vector is

obtained as the average of the results assumed correct and spa-

tially back-projected to the original image.

Following this first work, a number of QE variants and ex-

tensions have been proposed [15, 16, 17]. Using incremental

spatial re-ranking, the query representation is updated by each

spatially verified image and extended out of the initial query

region [16]. Another extension is to learn, on-the-fly, a dis-

criminative linear classifier [17] to define the new query instead

of the average in AQE.

Other kinds of expansion have been proposed for fixed im-

age collections [17, 24]. They rely on the off-line pairwise

matching of all images pairs and aim at identifying the features

coming from the same object using spatial verification, which

is rather costly as the complexity is quadratic in the number of

images. They also assume that the image collection is fixed:

The selection depends on a given set of images. These methods

are also related to other methods exploiting the neighborhood

of the images within a given collection [21, 18], in particular
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by updating the comparison metric or by employing recipro-

cal nearest neighbors as a filtering rule. For instance, Qin et

al. [18] constructs a graph that links related images, and uses

k-reciprocal nearest neighbors at query time to define a new

similarity function that re-orders the images. Again, the cost of

constructing and storing the graph in memory is impracticable

for large datasets. In a similar spirit, Shen et al. [19] exploit

the ranked lists of independent queries issued with top-ranked

images. Query time increases significantly as it is linear to the

number of those queries. A recent graph-based method com-

bines multiple similarity measures to perform re-ranking [20].

The cost of such an offline procedure can be undertaken only

for small collections. In the work of Chum and Matas [25], the

quadratic cost is addressed by starting from seed query images,

yet their method requires a costly spatial verification stage.

The query expansion method of Kuo et al. [26] is also re-

lated to our work. They also use a set of binary vectors for an

image representation and try to identify database image regions

which are similar to the query. The initial representation is not

enhanced, but new independent queries are rather issued and

a final fusion is performed on the ranked lists. Li et al. [27]

straightforwardly use binary descriptors but only to select the

relevant matches. As in other QE methods, their method relies

on geometry and produces a larger set of features.

3. The core image system

This section describes the image search system based on

Hamming Embedding upon which our query expansion tech-

niques are built. This baseline method follows the guideline of

the existing HE technique [23], which proceeds as follows. An

image is represented by a set P of local SIFT descriptors [3]

extracted with the Hessian-Affine detector [28].

BOVW and Hamming Embedding. The descriptors are quan-

tized using a flat k-means quantizer, where k determines the vi-

sual vocabulary size. A descriptor p ∈ P is then represented by

a quantization index, called a visual word v(p). Computing and

normalizing the histogram of visual words produces the BOVW

representation. It can also be seen as a voting system in which

all descriptors assigned to a specific visual word are considered

as matching with a weight related to the inverse document fre-

quency [1, 23].

In order to refine the quality of the matches and to provide

more reliable weights to the votes, the HE technique [23] fur-

ther refines each descriptor p by a binary signature b(p), pro-

viding a better localization of the descriptor by subdividing the

quantization cell v(p). HE compares two local descriptors q

and p that are assigned to the same visual word v(p) = v(q)
by computing the Hamming distance h(q, p) = ‖b(q)− b(p)‖1
between their binary signatures. If the Hamming distance is

above a predefined threshold ht, the descriptors are considered

as non matching and zero similarity is attached. A significant

benefit [23, 10] in accuracy is obtained by weighting the vote as

a decreasing function of the Hamming distance. In this paper,

we adopt the Gaussian function used in [10] with σ equal to one

fourth of the binary signature size.

The burstiness phenomenon in images was first revealed and

tackled by Jegou et al. [10]. It takes into account descrip-

tors that individually trigger multiple matches between specific

pairs of images, which is often the case because of repetitive

structures, or features which are abnormally common across all

database images. Several normalizations have been proposed,

from which we adopt the one that down-weights a given match

score by the square root of the number of matches associated

with the corresponding query descriptor [10]. This strategy is

similar to the successful component-wise power-law normaliza-

tion later proposed for BOVW or Fisher Kernels [29], but here

applied to a voting technique.

Multiple assignment (MA). BOVW and HE handles descrip-

tors assigned to the same visual word. However quantization

losses are introduced when truly matching descriptors are as-

signed to different visual words. This has been addressed by

assigning multiple visual words to each descriptor [21, 22]. We

apply MA on the query side only in order to keep memory re-

quirements unchanged [23]. In the rest of the paper, the initial

method that assigns a descriptor a single visual word is denoted

by SA (single assignment) to distinguish it with MA.

Figure 2: Matching features using BOVW (top), HE with ht = 24 (middle)

and HE with ht = 16 (bottom).
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Figure 3: Examples of query images (left) and the corresponding top ranked lists by the baseline retrieval system. Images (not) selected as reliable are marked with

(gray) green border.

4. HE with query expansion

This section defines a query expansion technique based on

HE and not involving any geometrical information. We revisit

the different stages involved in the QE principle. We first de-

scribe how reliable images are selected from the initial result

set. Then we detail the way an enriched query is produced from

the images deemed relevant. The key subsequent aggregation

step and the use of geometry will be introduced later in Sec-

tions 5 and 6, respectively.

4.1. Selection of reliable images

As in all query expansion methods [14, 15, 16, 17], the core

image search system processes an initial query. The resulting

set is analyzed to identify a subset of reliable images that are

likely to depict the query object, and therefore to provide ad-

ditional features that will be subsequently exploited in the aug-

mentation stage.

In the following, we will denote the local features of the

query image by Q, and those of a given database image by P ,

respectively. As a criterion to determine the relevant images, we

count the number C(Q,P) of “strict” feature correspondences

between the query and images in the short-list. It is given by

C(Q,P) = |{(q, p) ∈ Q× P : h(q, p) ≤ h⋆

t }| , (1)

where the threshold h⋆

t is lower than the Hamming embed-

ding threshold ht used for initial ranking. Such a lower thresh-

old allows for a higher true positive to false positive ratio of

matches [23]. It provides a strict way to count correspondences

in a manner that resembles the number of RANSAC inliers

commonly used to verify the images [7]. It is less precise than

RANSAC, yet it has the advantage of not using any geometry.

It is therefore much faster.

Figure 2 illustrates, for a pair of images, the matching fea-

tures obtained using BOVW and HE. We consider two differ-

ent thresholds for HE to show the impact of the strict threshold

h⋆

t = 16 on selected features. Observe that HE matching fil-

ters out many false matches compared to BOVW. With a lower

threshold value, the filtering is not far in quality from that of a

spatial matching method.

An image is declared reliable if at least ct correspondences

are satisfied, which formally leads to define the set of reliable

images as

LQ = {P : C(Q,P) ≥ ct}. (2)

In practice, only the images short-listed in the initial search

are considered as candidates for the set of reliable images. In

our experiments, we count the number of correspondences with

Equation 1 only for the top 100 images. Figure 3 shows exam-

ples of queries and the corresponding reliable images. Although
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Figure 4: Sample reliable images and features assigned to reliable visual words, when geometry is not used. Left: Query image. Top: Features assigned to reliable

visual words that appear in the query image. Bottom: Features in the set of augmented visual words. Note: we only show a subsample of the actual reliable visual

words. Each color represents a distinct visual word.

some negative images are selected and some positive ones are

not, the result is not far from what spatial verification would

produce. This suggests that selecting reliable images with HE

and a low threshold is sufficient for the purpose of QE, as pro-

posed in this section. The proposed procedure for detecting reli-

able images gives a rate of 92.4% true positive instances in LQ.

Note, this is achieved without any geometry information.

4.2. Feature set expansion

First, let us recall that a feature descriptor is described by

both a visual word and a binary signature. Our augmentation

strategy, i.e., how we introduce new local features in the repre-

sentation, is partly based on the selection of visual words that

are not present in the original query.

Since a large proportion of the reliable images depicts the

same object, the visual words frequently occurring in the im-

ages of the reliable set LQ are likely to depict the query object

rather than the background. Our selection strategy is simple and

consists in selecting the most frequent visual words occurring

in LQ. More precisely, we sort the visual words contained in

the images of LQ by the number of reliable images in which

they appear. The top ranked words are selected and define the

set of reliable visual words V , which may include both visual

words that are present or absent in the query image. The latter

are referred to as the augmented visual words. Their count is

controlled by a parameter α to ensure that the number of reli-

able visual words in the new query is proportional to that of the

original query, as

|V \ VQ| = α · |VQ|, (3)

where VQ is the set of visual words occurring in the query. A

typical value of parameter α is 0.5 (see Section 8).

The initial query set is enriched with the features of the re-

liable images assigned to the reliable visual words. Define as

G = {p ∈ P : P ∈ LQ ∧ v(p) ∈ V} (4)

the union of all features of reliable images assigned to some

reliable words. It defines the set of database features used to

augment the initial query. In other terms, this set is merged with

the initial query feature set to construct the augmented query as

QE = Q ∪ G. (5)

Figure 4 depicts some features from reliable images assigned

to reliable visual words. Observe that, even without any spa-

tial information, selected visual words are detected on the fore-

ground object. Moreover, each visual word corresponds not

only to similar image patches, but often to the exact same patch

of the object, as if spatial matching was used. This appears to

be the case for either visual words which appear (top) or miss

(bottom) in the query.

A simple way to construct an enriched query is to use the

expanded set of features as the new image representation. How-

ever, similar to existing QE strategies, such an approach leads to

a high complexity because the number of features explodes. We

observe that it is typically multiplied by a factor ranging from

10 to 20 for typical values of α, as analyzed in the experimen-

tal section 8. This drawback is shared by other effective tech-

niques on query expansion [17], for which this problem leads to

produce a BOVW vector having 10 times more non-zero com-

ponents than the initial one. In the next section, we address

this issue by proposing an aggregation strategy that drastically

reduces the number of features.
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5. QE with feature aggregation

The average query expansion technique [14] averages BOVW

vectors to produce the new query. In this section, we explain

how local descriptors are individually refined or created from

binary signatures of the set of reliable features. At this stage,

the augmented set contains multiple instances representing the

same visual patches, either in the initial query or not. Descrip-

tors associated to the same patch are expected to have similar

binary signatures. The strategy presented below implicitly ex-

ploits this underlying property to produce the new set of query

descriptors which is less redundant.

First, note that the selection strategies for images and fea-

tures presented in the previous subsections introduce a few false

positives in the augmented feature set. This is the cost to pay

for not performing the selection with a stringent spatial match-

ing technique: Our inliers are not selected as reliably as in other

query expansion methods. The aggregation operation proposed

hereafter comes as a complement on our selection method, as it

is robust enough to false positives. In contrast, averaging over

normalized TFIDF vectors of similar images [14], as done in

AQE, is sensitive to background and noisy features.

Our aggregation scheme is inspired by methods [30, 31]

such as the VLAD technique, which aggregates the descrip-

tors per visual word to produce a vector representation of an

image. In our method, we aggregate the features of QE that

are assigned to the same visual word. Therefore, our technique

produces exactly one binary signature per visual word occur-

ring in QE . Our motivation is that the true matching patches

are likely to overrule the false positives. This actually happens

in practice because the true correspondences are more numer-

ous and are associated with more consistent binary signatures.

Our aggregation scheme is related to the recent work of To-

lias et al. [32], where descriptors are aggregated per visual

word for query and database images individually. A selectiv-

ity function is employed to appropriately weight the similarity

scores. Our approach differs in that we rather aggregate de-

scriptors collected from many images instead of a single one. In

their work, aggregation consistently improves the performance

in all cases. It is attributed to the way burstiness is handled. As

a result, the voting scheme ensures that at most one correspon-

dence is established for each visual word, and therefore at most

one for each descriptor.

For each visual word v appearing in QE , a new binary sig-

nature b(v) is obtained by computing the median values over

all the bit vectors occurring in QE and assigned to v. If the

numbers of 0 and 1 are equal for a particular bit component, the

tie is arbitrarily resolved by assigning either 0 or 1 with equal

probabilities. This new set of descriptors comprises exactly one

binary signature per visual word and serves as the new query,

which is then submitted to the system.

In the remainder of this paper, we refer to the method de-

scribed in this section as Hamming Query Expansion (HQE).

Remark. HQE differs from a simple combination of HE with

QE. Firstly, our QE scheme is the first not to use any geometri-

cal information in order to identify relevant images. Secondly,

only the most frequent visual words appearing among relevant

images are collected, avoiding the inclusion of false matches to

the expanded query. Finally, the proposed feature aggregation,

in addition to drastically reduce the expanded query size, fur-

ther improves the performance. As shown in our experiments.

6. Geometrical information

This section proposes a variant of our method to further

eliminate some incorrect matches by including some spatial in-

formation in the loop. For this reason and as shown later in

the experimental section, it is not as fast as the HQE strategy

proposed in Sections 4 and 5. However, this approach further

improves the performance and is therefore interesting in some

situations where one would trade an interactive time against any

improvement in accuracy.

It proceeds as follows. The matches are collected with the

regular HE technique, i.e., they are returned by the first query.

Instead of calculating the number of correspondences with Equa-

tion 1, we rely on the number Cg(Q,P) of inliers found with a

spatial matching technique. For this purpose, we have used the

spatial verification procedure proposed by Philbin et al. [7].

Similar to other QE techniques, this procedure is applied on the

top ranked images only. An image is declared reliable if the

number of inliers is above a pre-defined threshold. The esti-

mation of the affine transformation is then further exploited to

filter the expanded feature set. As first suggested by Chum et

al. [14], the matching features associated with the reliable im-

ages are projected back to the query image plane. Those falling

out of the query image borders are filtered out.

The remaining steps of this variant then become similar to

the HQE method of Sections 4 and 5. The only difference is

that the input set of reliable features is different. Therefore, we

first select the reliable visual words and perform the feature set

expansion. The aggregation is similarly applied to produce one

binary vector per visual word. Note that, the reliable images, as

detected by spatial matching, are ranked in top positions.

Figure 5 depicts the descriptors selected for the HQE ex-

panded set with and without geometry. Notice that even with-

out geometry, most of the selected features are localized on the

target object. The geometry effectively filters out the remaining

features that do not lie on the query object.

7. Implementation details

In this section we introduce a new post-processing stage for

SIFT descriptors, which interest is evaluated in different setups.

Root-SIFT. It was recently shown [17, 33] that square root-

ing the components of SIFT descriptors improves the search

performance. This is done either by L1-normalizing the SIFT

descriptor [17] prior to the square-rooting operation or, equiva-

lently, by [33] square-rooting the components and normalizing

the resulting vector in turn with respect to L2. This operation

amounts to computing the Hellinger distance instead of the Eu-

clidean one. The impact of this scheme is evaluated in Table 1

on the Oxford5k building benchmark [7] for both BOVW and

HE, without the burstiness processing. Following the standard
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Figure 5: Features selected for the expanded set of a particular query image (left) without (middle) and with spatial matching (right). With spatial matching: features

back-projected out of the bounding box are rejected (red), while the rest (blue and green) are kept. Those assigned to reliable visual words are shown in green.

Without spatial matching: features assigned to reliable visual words are shown in cyan or yellow, with yellow being the ones assigned specifically to augmentation

visual words and cyan the ones assigned to visual words that appear in the query. Rejected are shown in red. Best viewed in color.

√ −µ mAP/BOVW mAP/HE IF

47.7 ±0.8 67.1 ±0.6 1.200 ±0.003

x 47.7 ±0.5 69.5 ±0.8 1.290 ±0.003

x x 48.1 ±0.7 69.6 ±0.8 1.238 ±0.003

Table 1: Evaluation with respect to mAP (performance) and IF (efficiency) of

several post-processing procedures for SIFT: RootSIFT [17, 33] (denoted by
√

)

and shifting (denoted by -µ). Post-processed descriptors are used to create the

codebook, perform assignment to visual words and create the binary signatures

used in HE. We have performed 10 independent experiments on Oxford5k with

distinct vocabularies (k=16k) to report mean performance and standard devia-

tions.

evaluation protocol, we measure the mean average precision

(mAP). In order to cope with the variability of the results due

to the sensitivity of k-means to the initial random seeds, we av-

erage the results over 10 runs with different vocabularies and

report the standard deviation. We observe an improvement pro-

vided by square-rooting the components, which is statistically

significant when used with HE.

However, as a side-effect of this processing, we observe that

Root-SIFT introduces an unexpected complexity overhead, re-

sulting from less balanced inverted lists. The undesirable im-

pact of uneven inverted lists was first noticed by Nister et al. [6]

and is commonly measured by the imbalance factor (IF) [23],

which is a multiplicative factor reflecting the deviation from

perfectly balanced lists. For instance, IF=2 means that, on aver-

age, two times more individual descriptor comparisons are per-

formed compared to the case where the lists have equal lengths.

Table 1 shows that this negative effect, which was not reported

for this RootSIFT variant [17, 33], is statistically significant.

Shift-SIFT. In order to reduce this undesirable effect, we intro-

duce another processing method for SIFT descriptors referred

to as shift-SIFT. It is inspired by the approach proposed for

BOVW vectors [34], which aims at handling “negative evi-

dences” by centering the descriptors and L2 normalizing them

in turn. It gives more importance in the comparison to the com-

ponents which are close to 0, and improves the performance in

the case of BOVW vectors.

Table 1 shows the interest of this shifting strategy applied to

SIFT descriptors. We have use SA and no burstiness normaliza-

tion in this experiment (conclusions are similar in other setups).

Performance is mainly unaffected. Yet, this approach provides

more balanced lists and therefore reduces the search complex-

ity by about 4% at no cost, as reflected by the IF measure. We

use this shifting strategy combined with L2 Root-SIFT [33] in

all our experiments.

8. Experiments

This experimental section first introduces the datasets, gives

details about the experimental setup, and evaluates the impact

of the parameters and variants. Our technique is then compared

with the state of the art on visual query expansion before a dis-

cussion on the complexity.
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Figure 6: Impact of ht on the performance of HE and HQE.

8.1. Datasets and experimental setup

Datasets and measures. Query expansion techniques are only

effective if the dataset consists of several relevant images for a

given query. We evaluate the proposed method on two publicly

available datasets of this kind, namely Oxford5k Buildings [7]

and Paris [22], but also on a dataset where queries have only few

corresponding images, that is UKB [6]. Following the standard

evaluation protocols, we report mean Average Precision (mAP)

for the two first and use the score definition associated with

UKB: the average number of correct images ranked in first 4

positions (from 0 to 4). As for other QE works, the large scale

experiments are carried out on the Oxford105k dataset, which

augments Oxford5k with 100k additional distractor images.

Features and experimental setup. For Oxford5k and Paris,

we used the modified Hessian-Affine detector proposed by Per-

doch et al. [35] to detect local features. The extracted SIFT de-

scriptors have been subsequently post-processed by using the

L2 Root-SIFT and shift-SIFT procedure, as described in Sec-

tion 3. For UKB, we have used the same features provided by

the authors of the papers [21, 18]. We follow the more realistic,

less biased approach, of learning the vocabulary on an indepen-

dent dataset. That is, when we use Oxford5k for evaluation,

the vocabulary is learned with features of Paris and vice versa.

Similarly, learning the medians of Hamming Embedding is car-

ried out on the independent dataset.

Unless otherwise stated, we use a visual vocabulary com-

prising k = 65, 536 visual words, binary signatures of 64 di-

mensions, and apply HE with weights and burstiness normal-

ization. In all our experiments, the reliable images for our ap-

proach, either without or with spatial matching, are selected

among top 100 ones returned by the baseline system. When us-

ing MA, it is applied on the query side using the 3 nearest visual

words to limit the computational overhead of using more.

MA produces more correspondences than single assignment

(SA), therefore the probability of finding a false positive match

is increased even with spatial matching and the matching pa-

rameters should be stricter [23]. We set the minimum number

of correspondences to ct = 4 with SA and to ct = 5 with MA.

Two factors introduce some randomness in the measure with

our approach: The random projection matrix (in HE) and the

random decision used to resolve ties when aggregating binary

signatures. Therfore, each experiment is performed 5 times us-

ing distinct and independent parameters. We report the average

performance and standard deviation to assess the significance

of our measurements.

8.2. Impact of the parameters

Thresholds. The strict threshold h⋆

t is constant and set to 16 in

all our experiments. Figure 6 shows the impact of the parame-

ter ht. The performance is not very sensitive around the optimal

values attained at ht = 22 or ht = 24, depending on the setup.

Note already that HQE gives a significant improvement com-

pared to the HE baseline. In the rest of our experiments, we

set ht = 24 in all cases, similar to most works based on HE.

We have fixed α = 0.5 for this preliminary experiment, which

implies that the size of the new query is at most 1.5 times larger

than the initial one. In practice, it is much smaller thanks to

the descriptors aggregation. See, for instance, Table 3 to com-

pare the average number of descriptors used in the original and

augmented queries.

The parameter α (see Section 4) controls the size of the aug-

mented query. Figure 7 presents its impact on the performance.

HQE without spatial matching rapidly attains its maximum in

performance and then decreases. This suggests that not too

many visual words should be selected because the additional

ones will introduce many outliers compared to inliers. In con-

trast, spatial matching filters out most of the outliers: Using

more descriptors is better because the added ones are inliers

in their majority. As a compromise between performance and

complexity, we set α = 0.5 and 1.0 without and with spatial

matching, respectively.

The vocabulary size k is critical in most methods based on

pure BOVW. Figure 8 that it is not the case with HE and our

techniques, which achieves excellent performance for all the

sizes. This confirms observations in prior work [23, 36].

Weights, burstiness and HQE. Table 2 summarizes the re-

spective contributions of the different elements of our search

engine. First note the large gain already achieved by weight-

ing the Hamming distances in HE, using MA and applying the
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Figure 7: Impact of α. Performance of HQE when varying the number of new visual words in the expanded query.
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Figure 8: Impact of the vocabulary size on the performance of HE, HQE and HQE with spatial matching.

W burst MA HQE SP Oxford5k Paris6k Oxford105k

66.9 65.7 55.5

× 70.4 68.4 59.6

× × 71.7 70.2 62.9

× × × 75.4 72.0 68.0

× × × × 83.0 80.6 79.0

× × × × × 86.8 81.5 82.6

BOVW 53.3 54.8 44.2

Table 2: Mean average precision for separate components comprising the pro-

posed method. Initial method is the original Hamming Embedding without

weights. W=weighting similarities. MA=multiple assignment.

burstiness procedure [10]. Note also the even larger improve-

ment obtained by using our HQE technique, either with or with-

out spatial matching.

Aggregation. Table 3 reveals the double benefit of the local

feature aggregation method proposed in Section 5 with respect

to performance and query efficiency. Merging the binary signa-

tures reduces the expanded query size and has a positive impact

on complexity, as quantitatively measured in Table 3: The ag-

gregation step reduces by about one order of magnitude the size

of the enriched query, which becomes comparable to that of the

initial query.

In addition, Table 3 also shows that this step significantly

and consistently improves the performance. To demonstrate

Dataset Method
mAP |Q|

SA MA SA MA

Oxford5k

HE 71.7 75.4 1,362 4,088

HQE/b.a. 79.0 82.0 11,937 27,345

HQE 80.7 83.0 1,810 5,030

Paris6k

HE 70.2 72.0 1,460 4,382

HQE/b.a. 76.6 77.3 35,982 66,665

HQE 80.2 80.6 1,843 5,045

Oxford105k

HE 62.9 68.0 1,362 4,088

HQE/b.a. 73.5 76.5 12,176 28,699

HQE 75.6 79.0 1,810 5,030

Table 3: Performance and average query size |Q| for the baseline HE, HQE

and the use of the same expanded query before aggregation (HQE/b.a.). Note

that the aggregation procedure is a key step: not only it significantly reduces

the complexity (number of features), but it also improves the performance.

this, we have compared HQE (i.e., with aggregation) to a method

which issues the expanded query defined by Equation 5, i.e.,

prior to aggregation. As already discussed in Section 5, our

interpretation is that aggregating binary signatures filters out

noisy features and removes the redundant features at the same

time. Merging the features derived from the reliable images can

also give rise to multiple matches per descriptor, yet those are

effectively handled by aggregation [32].
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Building GT
HE HQE HQE-SP

mAP |LQ| mAP |LQ| mAP

All Souls 183 78.2 47.0 94.6 44.8 97.3

Ashmolean 56 63.7 10.9 76.1 9.9 80.8

Balliol 30 72.7 15.8 81.0 8.0 82.1

Bodleian 54 66.4 33.4 94.5 19.8 86.9

Christ Church 211 74.9 39.5 75.7 45.1 90.7

Cornmarket 22 69.5 9.6 64.9 6.4 71.4

Hertford 55 87.7 41.5 95.0 43.5 98.3

Keble 18 93.0 9.5 96.5 7.6 99.5

Magdalen 157 29.9 15.6 36.5 8.8 48.6

Pitt Rivers 16 100.0 9.7 99.7 7.0 100.0

Radcliffe 569 93.9 97.1 98.5 96.0 98.7

Table 4: Oxford5k dataset: Summary of the number of ground truth images,

the number of reliable images and the performance for HE, HQE and HQE

with spatial matching. We report the average value of |LQ| per building, i.e.,

the number of automatically detected reliable images in the short-list of 100

top-ranked ones.

# features 12.53M 21.92M 27.59M

method MA mAP

BOVW 54.9 58.7 55.2

HE 74.2 78.6 78.3

HQE 81.0 84.8 84.4

HQE-SP 85.3 88.1 88.5

HQE-SP × 88.0 89.4 89.3

Table 5: More features: Performance comparison on Oxford5k using lower

detector threshold values, i.e., larger sets of local features. Binary signatures of

128 bits are used.

Detailed performance on Oxford5k. Table 4 presents some

detailed performances and statistics we have collected on Ox-

ford5k for HE and HQE. Our selection strategy for reliable im-

ages, even without spatial matching, does not suffer from the

variability of the number of true similar images in the database,

with an exception on Cornmarket, where HQE without spa-

tial matching selects a few false positives as reliable images.

Also observe that HQE notably outperforms HQE-SP for the

Bodleian queries. It is because HQE-SP is stricter and does

not select enough reliable images. This suggests that a weaker

spatial matching model [37] could offer a good compromise to

select these images.

More features. All our experiments are conducted with fea-

tures extracted using the default threshold for the Hessian-Affine

detector [35] to allow for a direct comparison with the literature.

Using a lower threshold for the ”cornerness” value produces a

larger set of features. It might be useful for image matching but

might also add noisy features and therefore arbitrary matches.

Table 5 investigates the impact of cornerness on both our

methods and existing BOVW and HE baselines. With the de-

fault threshold, the software produces a total number of 12.53M

features on Oxford5k. By using two smaller thresholds, we

produced two other sets of features comprising 21.92M and

27.59M features, respectively. Table 5 shows that BOVW’s

Method SP MA Oxford5k Paris6k Oxford105k

Perdoch [35] × 78.4 N/A 72.8

Perdoch [35] × × 82.2 N/A 77.2

Mikulik [38] × × 84.9 82.4 79.5

Chum [16] × 82.7 80.5 76.7

Arandjelovic [17] × 80.9 76.5 72.2

HQE 80.7±0.9 80.2±0.2 76.6±1.1

HQE-SP × 83.7±0.7 80.0±0.2 79.4±0.6

HQE × 83.0±0.9 80.6±0.2 79.0±1.0

HQE-SP × × 86.8±0.3 81.5±0.3 82.6±0.4

HQE 128bits 81.0±0.5 81.5±0.2 76.9±0.6

HQE-SP 128bits × 85.3±0.4 81.3±0.3 80.8±0.5

HQE 128bits × 83.8±0.3 82.8±0.1 80.4±0.5

HQE-SP 128bits × × 88.0±0.3 82.8±0.2 84.0±0.2

Table 6: Performance comparison with state-of-the-art methods on Oxford5k,

Paris6k and Oxford105k. The standard deviation is obtained from 5 measure-

ments.

performance increases with the medium-sized set, but its per-

formance drops with the larger one. In contrast, HE benefits

from having more features. The performance of the two larger

sets is comparable, which suggests that HE better handle noisy

matches in a better way and can use more features. As a con-

sequence, HQE performs in a similar way. The performance

increases up to mAP=89.4 for HQE with geometry and MA,

which is a large improvement over the state of the art.

8.3. Comparison with the state of the art

Oxford5k, Paris6k and Oxford105k. Table 6 compares the

QE proposed method with previously published results on the

same datasets. For a fair comparison, we have included the

scores of QE methods that use the same local feature detec-

tor [35] as input and learned the vocabulary on an independent

dataset. In this table, we also include the scores for our method

when using 128-bit signatures for HE, which are better at the

cost of higher memory usage and a slightly larger complexity.

Interestingly, even without spatial matching, our method

outperforms all methods in Oxford105k and Paris6k dataset.

HQE-SP outperforms them in all three datasets. All of the com-

pared methods rely on spatial matching to verify similar images

and expand the initial query. Moreover, the work of Mikulik et

al. [38] requires a costly off-line phase and assigns the descrip-

tors with a very large vocabulary of 16M, thereby impacting the

overall efficiency.

To our knowledge, the performance of our method is the

best reported to date on Oxford5k, Paris6k and Oxford105k,

when learning the vocabulary on an independent dataset (89.1

was reported [17] by learning it on the Oxford5k comprising

the relevant images). In addition, all these techniques are likely

to be complementary, as they consider orthogonal aspects to

improve the performance.

UKB [6] is a dataset with few corresponding images per query

(4, including the query image). QE techniques are therefore
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Jégou [10] Jégou [21] Qin [18] HE-MA HQE-MA

3.64 3.68 3.67 3.59 3.67

Table 7: UKB: comparison with state-of-the-art methods.

Method HE HQE HQE-SP

SA 30 ms 79 ms 731 ms

MA 76 ms 204 ms 955 ms

Table 8: Average query times for the HE baseline and our technique with

and without spatial matching, measured on Oxford105k when using a single

processor core. These timings do not include the description part (extracting

and quantizing the SIFT descriptors), which does not depend on database size.

not expected to perform well, and accordingly we are not aware

of any competitive result reported with a QE method on this

dataset. For this set only, we reduce the short-list of images se-

lected in the short-list to reflect the expected result set. Table 7

shows that HQE improves the performance significantly com-

pared to the HE baseline and is therefore effective even with

few relevant images. It performs similar to other state-of-the-

art techniques that perform well on this dataset. Note that these

best techniques all require to cross-match (off-line) the whole

image collection with itself, which may be infeasible on a large

scale (quadratic complexity).

8.4. Complexity: timings and query size

First, note that the initial query includes a binary signature

per local feature and several features can be assigned to the

same visual word for a given image, especially with MA. In ad-

dition, the expanded query set, as defined before aggregation, is

much larger as several images contribute to it with their reliable

features, as previously shown in Table 3. Thanks to HQE, only

one binary signature per visual word is kept. This favorably

impacts the complexity of the enriched query in terms of the

number of signatures. On average, the total number of features

increases only by a small factor after aggregation, to be com-

pared with queries which are one order of magnitude larger for

other QE techniques.

Table 8 reports the average search times when querying Ox-

ford105k. They have been measured on a single core desktop

machine (3.2 Ghz). The spatial matching has been estimated

by an external software and is included in the query time, un-

like the SIFT extraction and quantization times. As expected,

the search times are competitive for HQE without geometry,

even when MA is used. As a reference, best time reported for

QE with spatial matching [35] is 509ms on Oxford105k on a

4 × 3.0Ghz machine. In addition, the cost of assignment to

visual words is much smaller for our method with 65k visual

words compared to the one of their method which needs up to

1M visual words to obtain optimal performance.

9. Conclusion

This paper makes several contributions related to visual query

expansion. First, we introduce a query expansion method which

is effective without using any geometry. While the general be-

lief is that spatial verification is required to select the relevant

images used to build the augmented query, exploiting the Ham-

ming Embedding technique with a stringent selection rule and

an aggregation strategy, we already achieve state-of-the-art per-

formance. This method has a low complexity. We then show

that combining our Hamming query expansion with geometry

further improves the results and significantly outperform the

state of the art.

In future work, we will investigate how to incorporate weak

spatial matching models [37, 23] in our query expansion method,

in order to find a compromise between a costly spatial verifica-

tion or not using geometry at all.
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