Total domination in K - and K -covered graphs

Odile Favaron, H. Karami, S. M. Sheikholeslami

To cite this version:

Odile Favaron, H. Karami, S. M. Sheikholeslami. Total domination in K - and K -covered graphs. Discrete Mathematics and Theoretical Computer Science, 2008, Vol. 10 no. 1 (1), pp.35-42. 10.46298/dmtcs. 433 . hal-00972309

HAL Id: hal-00972309
https://inria.hal.science/hal-00972309
Submitted on 3 Apr 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Total domination in K_{5} - and K_{6}-covered graphs

Odile Favaron ${ }^{1}$ and H. Karami ${ }^{2}$ and S. M. Sheikholeslami ${ }^{2}$
${ }^{1}$ L.R.I., UMR 8623, Université Paris-Sud, F-91405 Orsay, France
${ }^{2}$ Department of Mathematics, Azarbaijan University of Tarbiat Moallem, Tabriz, I.R. Iran

received March 31, 2006, revised Dec 20, 2007, accepted Jan 18, 2008.

A graph G is K_{r}-covered if each vertex of G is contained in a K_{r}-clique. Let $\gamma_{t}(G)$ denote the total domination number of G. It has been conjectured that every K_{r}-covered graph of order n with no K_{r}-component satisfies $\gamma_{t}(G) \leq \frac{2 n}{r+1}$. We prove that this conjecture is true for $r=5$ and 6 .

Keywords: total domination, clique cover

1 Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. We use [6] for terminology and notation which are not defined here. The open neighborhood $N_{G}(v)$ of a vertex $v \in V(G)$ is the set of all vertices adjacent to v. Its closed neighborhood is $N_{G}[v]=N_{G}(v) \cup\{v\}$. If S is a set of vertices of G, then $N(S)=\cup_{u \in S} N(u)$ and $N[S]=N(S) \cup S$. For the sake of simplicity we write $N(u, v)$ instead of $N(\{u, v\})$. For each nonempty set S of vertices, the subgraph induced by S is denoted by $G[S]$. For an integer $p \geq 3$, a multitriangle of order p is the graph consisting of $p-2$ triangles sharing one edge. A multitriangle of order 3 is thus a triangle.
A set $D \subseteq V$ is a total dominating set if every vertex in V is adjacent to a vertex of D. Obviously every graph without isolated vertices has a total dominating set. The total domination number, $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set. If G has q components G_{i}, then $\gamma_{t}(G)=\sum_{i=1}^{q} \gamma_{t}\left(G_{i}\right)$. As for the domination number, the determination of the total domination number of a graph is NP-hard and it is interesting to determine good upper bounds on $\gamma_{t}(G)$. Conditions on the density of the graph allow us to lower such bounds. Here we consider the condition that every vertex is contained in a sufficiently large clique.

A K_{r}-component of G is a component isomorphic to a clique K_{r}. A graph G is K_{r}-covered, $r \geq 2$, if every vertex of G is contained in a clique K_{r}, and minimally K_{r}-covered if it is K_{r}-covered but $G-e$ is not $K_{r}-$ covered for any edge of G. These properties were already considered by Henning and Swart in [5] under the terms "with no K_{r}-isolated vertex" or "Property $C(1, r)$ ", and "Property $C(2, r)$ ", respectively.

In a K_{r}-covered graph, a good vertex is a vertex of degree $r-1$ and a good clique is a clique K_{r} containing a good vertex. If z is a good vertex, we denote by \mathcal{C}_{z} the good clique containing it. The following results, independently proved in [3] and in [4], will be constantly used throughout the paper.

Theorem A [3] 4] Every edge of a minimally K_{r}-covered graph is contained in a good clique.
In 2004, Cockayne, Favaron and Mynhardt [1] conjectured that every K_{r}-covered graph G of order n with no K_{r}-component satisfies $\gamma_{t}(G) \leq \frac{2 n}{r+1}$. They proved this conjecture for $r=3$, 4. In this paper we prove it for $r=5$ and 6 .

2 Proof of the conjecture for $r=5$ and $r=6$

The proof uses a particular family \mathcal{F}_{r} of minimally K_{r}-covered graphs which was already considered in [1, 4]. Recall that the corona of a graph H is obtained from H by adding a pendant edge at each vertex of H and that the middle graph of H is the line graph of the corona of H (see for instance [2]).
Definition $1 \mathcal{F}_{r}$ is the family of middle graphs of $(r-1)$-regular graphs.
From this definition \mathcal{F}_{r} is the collection of graphs consisting of edge-disjoint cliques of order r, where each such clique contains exactly one vertex of degree $r-1$ and the remaining $r-1$ vertices have degree $2(r-1)$. Let \mathcal{S} be the set of these edge-disjoint cliques. Then each vertex of G of degree $r-1$ belongs to exactly one K_{r} in \mathcal{S} and each vertex of degree $2(r-1)$ belongs to exactly two K_{r} 's in \mathcal{S}.

The following result is proved in [1].
Theorem B (See [प]) For $r \geq 3$, every graph of order n of \mathcal{F}_{r} satisfies $\gamma_{t}(G)<\frac{2 n}{r+1}$.
We can now prove the conjecture for $r=5$ and $r=6$.
Theorem 1 For $r=5$ or 6 , every K_{r}-covered graph G of order n with no K_{r}-component satisfies $\gamma_{t}(G) \leq \frac{2 n}{r+1}$.

Proof: The proof is by induction on n and the first four claims are established for any value of $r \geq 5$. The statement is obviously true for the smallest possible order $r+1$ since then $\gamma_{t}(G)=2$. Suppose the theorem to be true for graphs of order less than n and let G be a K_{r}-covered graph with no K_{r}-component of order $n \geq r+2$. Let F be a minimally K_{r}-covered spanning subgraph of G. Since $\gamma_{t}(G) \leq \gamma_{t}(F)$, it is sufficient to prove $\gamma_{t}(F) \leq \frac{2 n}{r+1}$.

If F is not connected but has no K_{r}-component, then applying the induction hypothesis to each component of F gives the result.

The case where F is not connected and has some K_{r}-components has already been considered in [1]. The second part of the proof of Theorem 6 in [1] establishes by induction on n that a graph having a certain property $\mathcal{B}(r)$ satisfies $\gamma_{t}(G) \leq 2 n /(r+1)$. In the case where a minimal K_{r}-covered spanning subgraph F of G has K_{r} components, the result is proved without using the induction hypothesis $\mathcal{B}(r)$. Hence the same argument holds here. As the proof is rather long, we do not repeat it and refer the reader to [1].

So we suppose now that we are working in a connected minimal K_{r}-covered graph F of order $n \geq$ $r+2$. Since F is connected, every vertex of F belongs to an edge and thus has a good neighbor by Theorem A. For every pair of adjacent vertices u and v, let

$$
P(u, v)=\{x \in N(u, v) \backslash\{u, v\} \mid N(x) \subseteq N(u, v)\}
$$

Claim 1 If $|P(u, v)| \geq r-1$ for some pair of adjacent non-good vertices u and v, then $\gamma_{t}(F) \leq \frac{2 n}{r+1}$.

Proof: Let u^{\prime} be any good neighbor of u. By Theorem A, the edge $u u^{\prime}$ is contained in a good clique \mathcal{C}. The $r-2$ neighbors of u^{\prime} different from u are vertices of \mathcal{C} and thus are adjacent to u. So every good neighbor of u, and similarly every good neighbor of v, belongs to $P(u, v)$. Note also that if $z \in$ $N(u, v) \backslash(P(u, v) \cup\{u, v\})$, then z has a neighbor $z_{1} \notin N(u, v)$, and so z belongs to a good clique of the graph $F^{\prime}=F[V \backslash(P(u, v) \cup\{u, v\})]$. Hence F^{\prime} is K_{r}-covered.

Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s}$ be the K_{r}-components of F^{\prime} if any. Obviously $\left(N(w) \backslash V\left(\mathcal{C}_{i}\right)\right) \subseteq P(u, v) \cup\{u, v\}$ for each $w \in V\left(\mathcal{C}_{i}\right)$. Since F is connected, each clique \mathcal{C}_{i} contains at least one vertex w_{i} such that $\left(N\left(w_{i}\right) \backslash V\left(\mathcal{C}_{i}\right)\right) \cap(P(u, v) \cup\{u, v\}) \neq \emptyset$. From the definition of $P(u, v)$ we have $w_{i} \in N(u, v)$. Let $X=P(u, v) \cup\{u, v\} \cup\left(\cup_{i=1}^{s} V\left(\mathcal{C}_{i}\right)\right)$. The graph $F[V \backslash X]$ is still K_{r}-covered and has no K_{r}-component. By the induction hypothesis, $\gamma_{t}(F[V \backslash X]) \leq \frac{2|V \backslash X|}{r+1}$. Moreover $\left\{u, v, w_{1}, w_{2}, \cdots, w_{s}\right\}$, or $\{u, v\}$ if $s=0$, is a total dominating set of order $s+2$ of $F[X]$, and $|X|=|P(u, v)|+s r+2$ with $s \geq 0$. Hence if $|P(u, v)| \geq r-1$, then $\gamma_{t}(F[X]) \leq s+2 \leq \frac{2|X|}{r+1}$ and we are done.

We suppose henceforth $|P(u, v)| \leq r-2$ for every pair of adjacent non-good vertices of F. Recall that all the good neighbors of u or v belong to $P(u, v)$. If G consists of $p \geq 2$ cliques K_{r} sharing exactly one vertex, then $n=p(r-1)+1$ and $\gamma_{t}(G)=2 \leq 2 n /(r+1)$. We also suppose in what follows that G has not this structure, which means that every non-good vertex has at least one non-good neighbor.
Claim 2 Each good clique contains at most $r-4$ good vertices.
Proof: Suppose to the contrary that \mathcal{C} is a good clique ($\neq K_{r}$) with more than $r-4$ good vertices. Let $z_{1}, z_{2}, \cdots, z_{s}$ with $r-3 \leq s \leq r-1$ be the good vertices and u a non-good vertex of \mathcal{C}. If u has a non-good neighbor v not in \mathcal{C}, let \mathcal{C}^{\prime} be a good clique containing $u v$ and $z_{1}^{\prime}, \cdots, z_{t}^{\prime}(1 \leq t \leq r-2)$ the good vertices of \mathcal{C}^{\prime}. The vertex v belongs to a second good clique $\mathcal{C}^{\prime \prime} \neq \mathcal{C}$. Let $z^{\prime \prime}$ be a good vertex of $\mathcal{C}^{\prime \prime}$. Then $\left\{z_{1}, \cdots, z_{s}, z_{1}^{\prime}, \cdots, z_{t}^{\prime}, z^{\prime \prime}\right\}$ is a subset of $P(u, v)$ of order at least $s+2 \geq r-1$, a contradiction to $|P(u, v)| \leq r-2$. Therefore all the non-good neighbors of u belong to \mathcal{C}.
Let $u, u_{1}, \cdots, u_{r-s-1}$ be the non-good vertices of \mathcal{C} with $r-s \geq 2$. Let \mathcal{C}^{\prime} (\mathcal{C}_{1}^{\prime} respectively, possibly equal to \mathcal{C}^{\prime}) be a second good clique containing $u\left(u_{1}\right)$ and let $z^{\prime}\left(z_{1}^{\prime}\right)$ be a good vertex of $\mathcal{C}^{\prime}\left(\mathcal{C}_{1}^{\prime}\right)$. Then $\left\{z_{1}, \cdots, z_{s}, z^{\prime}, z_{1}^{\prime}\right\} \subseteq P\left(u, u_{1}\right)$. Since $\left|P\left(u, u_{1}\right)\right| \leq r-2, s=r-3, z^{\prime}=z_{1}^{\prime}$ and z^{\prime} is the unique good vertex of the clique $\mathcal{C}^{\prime}=\mathcal{C}_{1}^{\prime}$. Among the $r-1$ non-good vertices of \mathcal{C}^{\prime}, at most three are those of \mathcal{C} and thus at least one, say u_{2}, is not in \mathcal{C}. Let $\mathcal{C}^{\prime \prime}$ be a second good clique containing u_{2} and $z^{\prime \prime}$ a good vertex of $\mathcal{C}^{\prime \prime}$. Then $\left\{z_{1}, \cdots, z_{r-3}, z^{\prime}, z^{\prime \prime}\right\} \subseteq P\left(u, u_{2}\right)$, a contradiction which completes the proof.

Claim 3 No vertex can belong to $r-2$ good cliques K_{r}.
Proof: Assume, to the contrary, that a vertex u belongs to $r-2$ good cliques $\mathcal{C}_{1}, \ldots, \mathcal{C}_{r-2}$, and let x_{i} be a good vertex of \mathcal{C}_{i} for $1 \leq i \leq r-2$. Let w and t be two non-good vertices of $\mathcal{C}_{1} \backslash\left\{u, x_{1}\right\}$. Since $\left\{x_{1}, \cdots, x_{r-2}\right\} \subseteq P(u, t)$ and $|P(u, t)| \leq r-2$, we have $w \notin P(u, t)$ and w has a good neighbor w^{\prime} not in $N(u, t)$ and thus distinct from x_{1}, \cdots, x_{r-2}. But then $\left\{x_{1}, \cdots, x_{r-2}, w^{\prime}\right\} \subseteq P(u, w)$, which is a contradiction.

Claim $4 r-3$ good cliques K_{r} cannot share more than one vertex.

Proof: Assume, to the contrary, that $\mathcal{C}_{1}, \mathcal{C}_{2}, \cdots \mathcal{C}_{r-3}$ are $r-3$ good K_{r} 's all containing the (non-good) vertices u and v, and let x_{i} be a good vertex of \mathcal{C}_{i} for $1 \leq i \leq r-3$. From $\left|\cup_{i=1}^{r-3} V\left(\mathcal{C}_{i}\right)\right| \geq(r-1)+(r-$ $3)=2 r-4$, we get $\left|\cup_{i=1}^{r-3} V\left(\mathcal{C}_{i}\right) \backslash\left\{x_{1}, \cdots, x_{r-3}, u, v\right\}\right| \geq r-3 \geq 2$ while $\left|P(u, v) \backslash\left\{x_{1}, \cdots, x_{r-3}\right\}\right| \leq 1$. Therefore at least one vertex z of $\cup_{i=1}^{r-3} V\left(\mathcal{C}_{i}\right) \backslash\left\{x_{1}, \cdots, x_{r-3}, u, v\right\}$ is not in $P(u, v)$. Let z^{\prime} be a good neighbor of z not in $N(u, v)$. Since $\left\{x_{1}, \cdots, x_{r-3}, z^{\prime}\right\} \subseteq P(u, z)$ and $|P(u, z)| \leq r-2$, v is not in $P(u, z)$ and thus belongs to a $(r-2)$ th good clique. This contradicts Claim 3 .

End of the proof of Theorem 1 for $r=5$

By Claims 2, 3and 4, each good clique contains exactly one good vertex and four non-good ones, each non-good vertex is contained in exactly two good K_{5} 's, and two good K_{5} 's intersect in at most one vertex. Therefore the graph F belongs to the family \mathcal{F}_{5} described above and thus $\gamma_{t}(F)<\frac{2 n}{6}$. This completes the proof for $r=5$.

End of the proof of Theorem 1 for $r=6$

Henceforth, each good clique is a K_{6} containing at most two good vertices.
Claim 5 Let \mathcal{C}_{1} and \mathcal{C}_{2} be two good K_{6} 's such that $\left|V\left(\mathcal{C}_{1}\right) \cap V\left(\mathcal{C}_{2}\right)\right| \geq 2$. Then

1. $\left|V(\mathcal{C}) \cap V\left(\mathcal{C}_{i}\right)\right| \leq 1$ for each other good clique \mathcal{C} and $i=1,2$;
2. the clique \mathcal{C}_{i} contains exactly one good vertex for $i=1,2$;
3. each other good clique \mathcal{C} intersecting \mathcal{C}_{1} or \mathcal{C}_{2}, contains exactly one good vertex.

Proof:

(1) Let $u, v \in V\left(\mathcal{C}_{1}\right) \cap V\left(\mathcal{C}_{2}\right)$ and let \mathcal{C} be another good clique in G. Assume, to the contrary, $\mid V\left(\mathcal{C}_{1}\right) \cap$ $V(\mathcal{C}) \mid \geq 2$. Let x, x_{1}, x_{2} be good vertices of $\mathcal{C}, \mathcal{C}_{1}$ and \mathcal{C}_{2}, respectively. Suppose $u \in \mathcal{C}$. By Claim 4. $v \notin \mathcal{C}$. Let $w \in V(\mathcal{C}) \cap V\left(\mathcal{C}_{1}\right)$ and $w \neq u$. Since $\left\{x, x_{1}, x_{2}\right\} \subseteq P(u, v)$ and $|P(u, v)| \leq 4$, at least one vertex t of $V\left(\mathcal{C}_{1}\right) \backslash\left\{u, v, x_{1}, w\right\}$ is not in $P(u, v)$. Let t^{\prime} be a good neighbor of t not in $N(u, v)$. Now we have $\left\{x, x_{1}, x_{2}, t^{\prime}\right\} \subseteq P(u, t)$. Since $|P(u, t)| \leq 4, w$ is not in $P(u, t)$ and has a good neighbor w^{\prime} not in $N(u, t)$. Then $\left\{x, x_{1}, x_{2}, w^{\prime}\right\} \subseteq P(u, w)$. Thus v is not in $P(u, w)$ and has a good neighbor v^{\prime} not in $N(u, w)$. This implies $\left\{x, x_{1}, x_{2}, w^{\prime}, v^{\prime}\right\} \subseteq P(v, w)$ which is a contradiction. Thus $u, v \notin V(\mathcal{C})$. Let $w_{1}, w_{2} \in V(\mathcal{C}) \cap V\left(\mathcal{C}_{1}\right)$. Since $\left\{x, x_{1}, x_{2}\right\} \subseteq P\left(u, w_{1}\right)$ and $\left|P\left(u, w_{1}\right)\right| \leq 4, v \notin P\left(u, w_{1}\right)$ or $w_{2} \notin P\left(u, w_{1}\right)$.
First let $v \notin P\left(u, w_{1}\right)$. Let v^{\prime} be a good neighbor of v not in $N\left(u, w_{1}\right)$. Now we have $\left\{x, x_{1}, x_{2}, v^{\prime}\right\} \subseteq$ $P\left(v, w_{1}\right)$. Since $\left|P\left(v, w_{1}\right)\right| \leq 4, w_{2}$ is not in $P\left(v, w_{1}\right)$ and has a good neighbor $w_{2}^{\prime} \operatorname{not}$ in $N\left(v, w_{1}\right)$. Now we have $\left\{x, x_{1}, x_{2}, v^{\prime}, w_{2}^{\prime}\right\} \subseteq P\left(v, w_{2}\right)$ which is a contradiction.
Now let $w_{2} \notin P\left(u, w_{1}\right)$. Let w_{2}^{\prime} be a good neighbor of w_{2} not in $N\left(u, w_{1}\right)$. Now we have $\left\{x, x_{1}, x_{2}, w_{2}^{\prime}\right\} \subseteq P\left(u, w_{2}\right)$. Since $\left|P\left(u, w_{2}\right)\right| \leq 4, v$ is not in $P\left(u, w_{2}\right)$ and has a good neighbor v^{\prime} not in $N\left(u, w_{2}\right)$. This implies that $\left|P\left(v, w_{2}\right)\right| \geq 5$ which is a contradiction.
(2) Suppose \mathcal{C}_{1} contains two good vertices x_{1} and x_{1}^{\prime}. Since $|P(u, v)| \leq 4, V\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right) \backslash\{u, v\}$ has a non-good vertex, say w, not in $P(u, v)$. Let w^{\prime} be a good neighbor of w not in $N(u, v)$. Then $\left\{x_{1}, x_{1}^{\prime}, x_{2}, w^{\prime}\right\} \subseteq P(u, w)$. Hence v is not in $P(u, w)$ and has a good neighbor $v^{\prime} \notin N(u, w)$, which implies $|P(v, w)| \geq 5$, a contradiction.
(3) Suppose \mathcal{C} contains two good vertices y and y^{\prime}. If \mathcal{C} intersects $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ in u, then $\left\{x_{1}, x_{2}, y, y^{\prime}\right\} \subseteq$ $P(u, v)$ and there exists a vertex t of $V\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right) \backslash\{u, v\}$ with a good neighbor t^{\prime} not in $N(u, v)$. Then $\left\{x_{1}, x_{2}, y, y^{\prime}, t^{\prime}\right\} \subseteq P(u, t)$, a contradiction. If \mathcal{C} intersects $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ in w different from u and v, then, since $\left\{x_{1}, x_{2}, y, y^{\prime}\right\} \subseteq P(u, w)$, v has a good neighbor v^{\prime} not belonging to $N(u, w)$. Hence $\left\{x_{1}, x_{2}, y, y^{\prime}, v^{\prime}\right\} \subseteq P(v, w)$, a contradiction.

Claim 6 Let three good cliques $\mathcal{C}_{1}, \mathcal{C}_{2}$ and \mathcal{C}_{3} share one vertex u. Then

1. $\left|V(\mathcal{C}) \cap V\left(\mathcal{C}_{i}\right)\right| \leq 1$ for each other good clique \mathcal{C} and $i=1,2,3$;
2. for $i=1,2,3$, each non-good vertex of $\mathcal{C}_{i} \backslash\{u\}$ belongs to exactly two good cliques;
3. for $i=1,2,3$, each clique \mathcal{C}_{i} and each good clique \mathcal{C} intersecting one of the \mathcal{C}_{i} 's contains exactly one good vertex.

Proof:

(1) Suppose that \mathcal{C} is a good clique such that $\left|V(\mathcal{C}) \cap V\left(\mathcal{C}_{1}\right)\right| \geq 2$. By claim $3, u \notin V(\mathcal{C})$. Let $v, w \in V(\mathcal{C}) \cap V\left(\mathcal{C}_{1}\right)$. Let x, x_{1}, x_{2}, x_{3} be good vertices of $\mathcal{C}, \mathcal{C}_{1}, \mathcal{C}_{2}$ and \mathcal{C}_{3}, respectively. We have $\left\{x, x_{1}, x_{2}, x_{3}\right\} \subseteq P(u, v)$ and so w is not in $P(u, v)$ and has a good neighbor w^{\prime} not in $N(u, v)$. Then we have $|P(u, w)| \geq 5$ which is a contradiction.
(2) If a vertex $v \neq u$ of some \mathcal{C}_{i} belongs to two other good cliques, let v^{\prime} and $v^{\prime \prime}$ two good neighbors of v respectively belonging to these two cliques. Then $\left\{x_{1}, x_{2}, x_{3}, v^{\prime}, v^{\prime \prime}\right\} \subseteq P(u, v)$, a contradiction.
(3) If, say, \mathcal{C}_{1} has a second good vertex x_{1}^{\prime}, then \mathcal{C}_{2} and \mathcal{C}_{3} have one good vertex each, for otherwise $|P(u, v)| \geq 5$ for any neighbor v of u. Hence there exists at least one non-good vertex v belonging to exactly one of the \mathcal{C}_{i} 's. This vertex v has a good neighbor $v^{\prime} \notin\left\{x_{1}, x_{1}^{\prime}, x_{2}, x_{3}\right\}$ and $|P(u, v)| \geq$ 5 , a contradiction. If a good clique \mathcal{C} intersecting one of the \mathcal{C}_{i} 's in one vertex v (necessarily different from u) contains two good neighbors x and x^{\prime}, then $\left\{x_{1}, x_{2}, x_{3}, x, x^{\prime}\right\} \subseteq P(u, v)$, a contradiction.

Claim 7 Let \mathcal{C} be a good clique containing two good vertices z_{1}, z_{2}. Then

1. each good clique intersects \mathcal{C} in at most one vertex;
2. each non-good vertex of \mathcal{C} belongs to exactly two good cliques;
3. if \mathcal{C}^{\prime} is a good clique intersecting \mathcal{C} in u, then \mathcal{C}^{\prime} contains exactly one good vertex, each non-good vertex of \mathcal{C}^{\prime} belongs to exactly two good cliques, $\left|V\left(\mathcal{C}^{\prime}\right) \cap V\left(\mathcal{C}_{1}\right)\right| \leq 1$ for each good clique \mathcal{C}_{1} and if $\left|V\left(\mathcal{C}^{\prime}\right) \cap V\left(\mathcal{C}_{1}\right)\right|=1$, then \mathcal{C}_{1} contains exactly one good vertex.

Proof: (1) and (2) are consequences of Claim 5 (2) and 6(3).
(3) Let u^{\prime} be a good vertex of \mathcal{C}^{\prime}, w be a non-good vertex in $V\left(\mathcal{C}^{\prime}\right) \backslash\{u\}$ and w^{\prime} a good neighbor of w not in $N(u)$. If w has another good neighbor $w^{\prime \prime}$, which can be either a second good vertex of \mathcal{C}^{\prime} or of a second clique \mathcal{C}_{1} containing w, or a good vertex of a third good clique containing w, then $\left\{z_{1}, z_{2}, u^{\prime}, w^{\prime}, w^{\prime \prime}\right\} \subseteq P(u, w)$, a contradiction. If a good clique \mathcal{C}_{1} intersects \mathcal{C}^{\prime} in v and w (both different from u by (2)), then $v \notin P(u, w)$ since $\left\{z_{1}, z_{2}, u^{\prime}, w^{\prime}\right\} \subseteq P(u, w)$. Therefore v has another good neighbor $v^{\prime} \notin N(u, w)$ and $\left\{z_{1}, z_{2}, u^{\prime}, w^{\prime}, v^{\prime}\right\} \subseteq P(u, v)$, a contradiction.

Let $V_{i}=\{u \in V(F) \mid u$ belongs to exactly i good cliques $\}, \quad i=1,2,3$. By Claim $2, V_{1}, V_{2}, V_{3}$ partition $V(F)$. Obviously V_{1} consists of all good vertices of F. Let t be the number of good cliques that contain two good vertices. Counting the number of edges of F with one endpoint in V_{1} and another in $V_{2} \cup V_{3}$, implies by Claim 7 that

$$
5\left|V_{1}\right|-2 t=2\left|V_{2}\right|+4 t+3\left|V_{3}\right|
$$

On the other hand, we have

$$
2 n=2\left(\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{3}\right|\right)
$$

It follows from the last two equations

$$
\begin{equation*}
\left|V_{1}\right|=\frac{2 n}{7}+\frac{\left|V_{3}\right|+6 t}{7} \tag{1}
\end{equation*}
$$

The following claim gives the structure of the subgraph induced by V_{3} in F.
Claim $8 F\left[V_{3}\right]$ is a disjoint union of s cliques with $s \geq\left|V_{3}\right| / 5$.
Proof: Let u and v be two adjacent vertices in V_{3}. If the edge $u v$ belongs to only one good clique \mathcal{C}_{z}, let $\mathcal{C}_{u^{\prime}}$ and $\mathcal{C}_{u^{\prime \prime}}$ (respectively $\mathcal{C}_{v^{\prime}}$ and $\mathcal{C}_{v^{\prime \prime}}$) be the other two good cliques containing u (respectively v). Then $\left\{u^{\prime}, u^{\prime \prime}, v^{\prime}, v^{\prime \prime}, z\right\}$ is a set of five vertices contained in $P(u, v)$, a contradiction. Therefore every edge joining two vertices in V_{3} is contained in exactly (by Claim5) two good cliques. Let now uvw be a path of $F\left[V_{3}\right]$. Among the three good cliques containing v, two contain $u v$ and two contain $v w$. Hence one of them, say \mathcal{C}_{z}, contains $\{u, v, w\}$ and u and w are adjacent. Moreover, the second good cliques respectively containing $u v$ and $v w$ are the same by Claim5. This implies that $\{u, v, w\}$ is contained in exactly two good cliques \mathcal{C}_{z} and $\mathcal{C}_{z^{\prime}}$. The preceding arguments show that $F\left[V_{3}\right]$ is a disjoint union of s cliques Q_{i}. Each Q_{i} is a part of the intersection of two good cliques \mathcal{C}_{z} and $\mathcal{C}_{z^{\prime}}$, thus implying $\left|Q_{i}\right| \leq 5$, and each vertex u of Q_{i} belongs to a third clique intersecting \mathcal{C}_{z} and $\mathcal{C}_{z^{\prime}}$ exactly in u. Finally, since $\left|Q_{i}\right| \leq 5, s \geq\left|V_{3}\right| / 5$.

We define now the graph F^{*} with vertex set $\{z \in V(F) \mid z$ is a good vertex in F$\}$ and two vertices of F^{*} are adjacent if and only if they belong to the same clique or their corresponding good cliques have a common vertex. Since F is connected and each edge of F belongs to a good clique, the graph F^{*} is connected.

Three good vertices z_{1}, z_{2}, z_{3} form a triangle in F^{*} if and only if

1. the good cliques $\mathcal{C}_{z_{1}}, \mathcal{C}_{z_{2}}$ and $\mathcal{C}_{z_{3}}$ are different and share one vertex,
2. or, say, $\mathcal{C}_{z_{1}}=\mathcal{C}_{z_{2}}$ and $\mathcal{C}_{z_{1}} \cap \mathcal{C}_{z_{3}} \neq \emptyset$,
3. or the three cliques are pairwise intersecting but $\mathcal{C}_{z_{1}} \cap \mathcal{C}_{z_{2}} \cap \mathcal{C}_{z_{3}}=\emptyset$.

We only consider the triangles of the first two types and call them respectively 1-triangles and 2-triangles.
A 1-triangle of F^{*} comes from a vertex of V_{3}. From Claim6 2 , if two 1-triangles $z_{1} z_{2} z_{3}$ and $z_{1}^{\prime} z_{2}^{\prime} z_{3}^{\prime}$ are not disjoint, then they share one edge, say, $z_{1}=z_{1}^{\prime}$ and $z_{2}=z_{2}^{\prime}$. From Claim $8,\left|V\left(\mathcal{C}_{z_{1}}\right) \cap V\left(\mathcal{C}_{z_{2}}\right)\right| \geq 2$ and each good clique $\mathcal{C}_{z_{3}}$ and $\mathcal{C}_{z_{3}^{\prime}}$ shares one vertex with $\mathcal{C}_{z_{1}}$ and $\mathcal{C}_{z_{2}}$. Since $\left|V\left(\mathcal{C}_{z_{1}}\right) \cap V\left(\mathcal{C}_{z_{2}}\right)\right| \leq 5$, at most five 1-triangles share a common edge. Hence the 1-triangles of F^{*} form multitriangles MT_{i} of respective order p_{i} with $3 \leq p_{i} \leq 7$. We call them multitriangles of type 1 and we associate to each of them the clique $Q_{i} \subseteq V\left(\mathcal{C}_{z_{1}}\right) \cap V\left(\mathcal{C}_{z_{2}}\right)$ of order $p_{i}-2 \leq 5$ as described in Claim 8 Therefore there are $s \geq\left|V_{3}\right| / 5$ multitriangles of type 1 and all of them are disjoint.

A 2-triangle of F^{*} comes from a good clique \mathcal{C} of F with two good vertices z_{1} and z_{2}. By Claim 7 , the four other vertices of \mathcal{C} belong to exactly one other good clique and these four good cliques are different. Hence the edge $z_{1} z_{2}$ belongs to exactly four 2-triangles forming a multitriangle of order $p_{i}=6$, called multitriangle of type 2 . To each multitriangle MT_{i} of type 2 we associate the clique Q_{i} of order $p_{i}-2=4$ of F formed by the non-good vertices of \mathcal{C}. There are t multitriangles of type 2 , the number of good cliques with two good vertices. By Claim 7 , they are pairwise disjoint and disjoint from the multitriangles of type 1.
Let $F^{* *}$ be a spanning subgraph of F^{*} containing all the edges of the multitriangles but no other cycle (the edges of $F^{* *}$ not in multitriangles form a spanning tree of the graph of order $\left|V_{1}\right|-\sum_{i=1}^{s+t}\left(p_{i}-1\right)$ obtained from F^{*} by contracting each multitriangle into one vertex). We form a subset D of vertices of F as follows. For each multitriangle MT_{i} of order $p_{i}, 0 \leq i \leq s+t$, put in D the $p_{i}-2$ vertices of its associated clique Q_{i}. For each edge $z_{i} z_{j}$ of $F^{* *}$ not in a multitriangle, put in D one vertex of $\mathcal{C}_{z_{i}} \cap \mathcal{C}_{z_{j}}$. The induced subgraph $F[D]$ is connected since $F^{* *}$ is connected and can be seen as the graph representative of the 1 - and 2 -triangles and of the cutting edges of $F^{* *}$. The set D contains a vertex in each good clique and thus dominates F. Hence $\gamma_{t}(F) \leq|D|$. Since $F^{* *}$ contains $\left|V_{1}\right|-\sum_{i=1}^{s+t}\left(p_{i}-1\right)-1$ cutting edges,

$$
|D|=\sum_{i=1}^{s+t}\left(p_{i}-2\right)+\left|V_{1}\right|-\sum_{i=1}^{s+t}\left(p_{i}-1\right)-1=\left|V_{1}\right|-s-t-1
$$

with $s \geq\left|V_{3}\right| / 5$. By (1) we get

$$
|D| \leq \frac{2 n}{7}+\frac{\left|V_{3}\right|}{7}+\frac{6 t}{7}-\frac{\left|V_{3}\right|}{5}-t-1<\frac{2 n}{7}
$$

This completes the proof of Theorem 1 for $r=6$.

References

[1] E. J. Cockayne, O. Favaron, and C. M. Mynhardt, Total domination in K_{r}-covered graphs , Ars Combin. 71 (2004), 289-303.
[2] E. J. Cockayne, S. T. Hedetniemi, and D. J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21(4) (1978), 461-468.
[3] R. C. Entringer, W. Goddard and M. A. Henning, A note on cliques and independent sets, J. Graph Theory 24 (1997), 21-23.
[4] O. Favaron, H. Li and M. D. Plummer, Some results on K_{r}-covered graphs, Utilitas Math. 54 (1998), 33-44.
[5] M. A. Henning and H. C. Swart, Bounds on a generalized domination parameter, Questiones Math. 13 (1990), 237-253.
[6] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

