On the size of induced acyclic subgraphs in random digraphs

Abstract : Let D ∈ D(n, p) denote a simple random digraph obtained by choosing each of the (n 2) undirected edges independently with probability 2p and then orienting each chosen edge independently in one of the two directions with equal probability 1/2. Let mas(D) denote the maximum size of an induced acyclic subgraph in D. We obtain tight concentration results on the size of mas(D). Precisely, we show that $mas(D) \le \frac{2}{ln(1-p)^-1} (ln np + 3e)$ almost surely, provided p ≥ W/n for some fixed constant W. This combined with known and new lower bounds shows that (for p satisfying p = ω(1/n) and p ≤ 0.5) $mas(D) = \frac{2(ln np)}{ln(1-p)^-1} (1± o(1))$. This proves a conjecture stated by Subramanian in 2003 for those p such that p = ω(1/n). Our results are also valid for the random digraph obtained by choosing each of the n(n − 1) directed edges independently with probability p.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2008, 10 (2), pp.47--54
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00972323
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : jeudi 3 avril 2014 - 16:11:32
Dernière modification le : mercredi 29 novembre 2017 - 10:26:22
Document(s) archivé(s) le : jeudi 3 juillet 2014 - 16:35:45

Fichier

453-3322-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00972323, version 1

Collections

Citation

Joel Spencer, C.R. Subramanian. On the size of induced acyclic subgraphs in random digraphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2008, 10 (2), pp.47--54. 〈hal-00972323〉

Partager

Métriques

Consultations de la notice

64

Téléchargements de fichiers

145