A. S. Asratian, T. R. Denley, and R. Häggkvist, Bipartite Graphs and Their Applications, 1998.
DOI : 10.1017/CBO9780511984068

K. Giaro, NP-hardness of compact scheduling in simplified open and flow shops, European Journal of Operational Research, vol.130, issue.1, pp.90-98, 2001.
DOI : 10.1016/S0377-2217(00)00022-9

K. Giaro, Task Scheduling Without 2-Sided Waiting Periods on Dedicated Processors (in Polish), Gda´nskGda´nsk, 1999.

K. Giaro, Interval Edge-Coloring of Graphs, Graph Colorings Contemporary Mathematics, pp.105-121, 2004.
DOI : 10.1090/conm/352/08

A. Hackmann and A. Kemnitz, The circular chromatic index, Discrete Math, pp.89-93, 2004.

A. Nadolski, Compact cyclic edge-coloring of graphs, Discrete Math, pp.2407-2417, 2008.

A. Nadolski, Chromatic Scheduling in Cyclic Manufacturing Systems (in Polish, Gda´nskGda´nsk, 2005.

M. Kubale and A. Nadolski, Chromatic scheduling in a cyclic open shop, European Journal of Operational Research, vol.164, issue.3, pp.585-591, 2005.
DOI : 10.1016/j.ejor.2003.06.047

S. V. Sevastyanov, Interval colorability of the edges of a bipartite graph (in Russian), Metody Diskret, Analiz, pp.50-61, 1990.

P. Solot and D. De-werra, Compact cylindrical scheduling, SIAM J. Discr. Math, vol.4, pp.528-534, 1991.

P. Solot and D. De-werra, Some graph-theoretical models for scheduling in automated production systems, Networks, vol.23, pp.651-660, 1993.