P. Berman and V. Ramaiyer, Improved Approximations for the Steiner Tree Problem, Journal of Algorithms, vol.17, issue.3, pp.381-408, 1994.
DOI : 10.1006/jagm.1994.1041

J. Bondy and U. Murty, Graph Theory with Applications, 1976.
DOI : 10.1007/978-1-349-03521-2

A. Borchers and D. Du, The k-Steiner ratio in graphs, Proceedings of the twenty-seventh annual ACM symposium on Theory of computing , STOC '95, pp.857-869, 1997.
DOI : 10.1145/225058.225282

G. , C. Fernandes, U. Finkler, and H. Karloff, A better approximation algorithm for finding planar subgraphs, Journal of Algorithms, vol.27, issue.2, pp.269-302, 1998.

G. , C. Fernandes, H. Karloff, and A. Zelikovski, A new approximation algorithm for finding heavy planar subgraphs, Algorithmica, vol.36, issue.2, pp.179-205, 2003.

P. Camerini, G. Galbiati, and F. Maffioli, Random pseudo-polynomial algorithms for exact matroid problems, Journal of Algorithms, vol.13, issue.2, pp.258-273, 1992.
DOI : 10.1016/0196-6774(92)90018-8

T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms, 2001.

D. Du, Y. Zhang, and Q. Feng, On better heuristic for Euclidean Steiner minimum trees, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science, pp.431-439, 1991.
DOI : 10.1109/SFCS.1991.185402

M. Dyer, L. Foulds, and A. Frieze, Analysis of heuristics for finding a maximum weight planar subgraph, European Journal of Operational Research, vol.20, issue.1, pp.102-114, 1985.
DOI : 10.1016/0377-2217(85)90288-7

H. Gabow and M. Stallmann, Efficient algorithms for graphic matroid intersection and parity, 12th Colloq. on Automata, Language and Programming, pp.210-220, 1985.
DOI : 10.1007/BFb0015746

D. Gonçalves, Edge partition of planar sraphs into two outerplanar graphs, Proceedings of the thirty-seventh annual ACM symposium on Theory of computing , STOC '05, pp.504-512, 2005.
DOI : 10.1145/1060590.1060666

F. Harary, Graph theory, 1972.

P. Liu and R. Geldmacher, On the deletion of nonplanar edges of a graph, 10th Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp.727-738, 1977.

L. Lovász and M. Plummer, Matching Theory, 1986.
DOI : 10.1090/chel/367

H. Promel and A. Steger, A New Approximation Algorithm for the Steiner Tree Problem with Performance Ratio 5/3, Journal of Algorithms, vol.36, issue.1, pp.89-101, 2000.
DOI : 10.1006/jagm.2000.1086

G. Robins and A. Zelikovsky, Improved Steiner tree approximation in graphs, ACM-SIAM Symposium on Discrete Algorithms, pp.770-779, 2000.

Z. Szigeti, On the graphic matroid parity problem, Journal of Combinatorial Theory, Series B, vol.88, issue.2, pp.247-260, 2003.
DOI : 10.1016/S0095-8956(02)00045-X

M. Yannakakis, Node-and edge-deletion NP-complete problems, Proceedings of the tenth annual ACM symposium on Theory of computing , STOC '78, pp.253-264, 1978.
DOI : 10.1145/800133.804355

A. Zelikovsky, An 11/6-approximation algorithm for the network steiner problem, Algorithmica, vol.17, issue.5, pp.463-470, 1993.
DOI : 10.1007/BF01187035

A. Zelikovsky, Better approximation bounds for the network and Euclidean Steiner tree problems, 1996.