P. Hertling and C. Spandl, Computability theoretic properties of the entropy of gap shifts, Fundamenta Informaticae, vol.83, issue.12, pp.141-157, 2008.

M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type, Annals of Mathematics, vol.171, issue.3, 2007.
DOI : 10.4007/annals.2010.171.2011

L. Hurd, J. Kari, and K. Culik, The topological entropy of cellular automata is uncomputable. Ergodic Theory and Dynamical Systems, pp.255-265, 1992.

P. Koiran, The topological entropy of iterated piecewise affine maps is uncomputable, Discrete Mathematics and Theoretical Computer Science, vol.4, issue.2, pp.351-356, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00958966

D. Lind and B. Marcus, Symbolic Dynamics and Coding, 1995.

J. Milnor, Is entropy effectively computable? Remark, see http, 2002.

J. G. Simonsen, On Beta-Shifts Having Arithmetical Languages, Mathematical Foundations of Computer Science 2005, 30th International Symposium, MFCS 2005 Proceedings, pp.757-768, 2005.
DOI : 10.1007/11549345_65

J. G. Simonsen, On the computability of the topological entropy of subshifts, Discrete Mathematics and Theoretical Computer Science, vol.6, pp.83-96, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00961115

C. Spandl, Computing the topological entropy of shifts, MLQ, vol.8, issue.4-5, pp.493-510, 2007.
DOI : 10.1002/malq.200710014

K. Weihrauch, Computable Analysis, 2000.
DOI : 10.1007/978-3-642-56999-9

X. Zheng, Recursive Approximability of Real Numbers, MLQ, vol.48, issue.S1, pp.131-156, 2002.
DOI : 10.1002/1521-3870(200210)48:1+<131::AID-MALQ131>3.0.CO;2-#