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Equipe CNRS "Arithmétique et Théorie de 1'Information”
C.LR.M. Luminy Case 916 - 13288 Marseille Cedex 9 - France.

Abstract

The classical generalized Reed-Muller codes introduced by Kasami, Lin and Peterson [5], and studied also
by Delsarte, Goethals and Mac Williams [2], are defined over the affine space An(Fq) over the finite field F
with q elements. Moreover Lachaud [6], following Manin and Vladut [7], has considered projective Reed-Muller
codes, i.e. defined over the projective space P"(F).
In this paper, the evaluation of the forms with coefficients in the finite field Fy is made on the points of a
projective algebraic variety V over the projective space Pn(Fq). Firstly, we consider the case where Visa
quadric hypersurface, singular or not, Parabolic, Hyperbolic or Elliptic. Some results about the number of points
in a (possibly degenerate) quadric and in the hyperplane sections are given, and also is given an upper bound of
the number of points in the intersection of two quadrics.

In application of these results, we obtain Reed-Muller codes of order 1 associated to quadrics with three
weights and we give their parameters, as well as Reed-Muller codes of order 2 with their parameters,

Secondly, we take V as a hypersurface, which is the union of hyperplanes containing a linear variety of
codimension 2 (these hypersurfaces reach the Serre bound). If V is of degree h, we give parameters of Reed-
Muller codes of order d < h, associated to V.

1. Construction of the Projective Reed-Muller codes

We denote by P“(Fq) the projective space of dimension n over the finite field Fq with q

elements, q a power of a prime p. The number of (rational) points (over F) of P"(Fq) is:
n+l
T = I PYEYI=q" +q" " + .. +q+1 =—qq—_—“1—1.



Let Wj be the set of points with homogeneous coordinates (Xg: X3 : ... 1 Xy) € P“(Fq) such that
Xg=X1 =..=Xi1 =0and x; #0.
The family { W; ), is clearly a partition of P'(Fy).

Let Fy[Xg, Xy, - Xn]g be the vector space of homogeneous polynomials of degree d with

(n+1) variables and with coefficients in Fy. Let V be a projective algebraic variety of P“(Fq)

and let | V | denotes the number of theirs rational points over Fg. Following G. Lachaud ([6]),
we define the projective Reed-Muller code ®(d,V) of order d associated to the variety V as the
image of the linear map

¢ : FglXg, X, oo Xplg = FV!

defined by ¢(P) = ( c,(P) Yxe v, Where

P(xg, ..y .
cx(P)=-(—xo—dx—'Q ifx=@&p:..:x)€ Wj .

Xj

G. Lachaud has considered in [6] the case where V = P“(Fq), with d £ q.Moreover,

A.B. Sorensen has considered in [12] the case where V is equal to P“(Fq) too, but with a
weaker hypothesis on d.

Now we are going, firstly, to study the case where V is a quadric, degenerate or not, but
before we have to establish results on quadrics and this is the subject of the following
paragraph.

2. Results on quadrics

In what follows the characteristic of the field Fg is supposed to be arbitrary (the results hold in
characteristic 2 as well as in characteristic different of 2).

2.1. The quadrics in P"(Fg).

In this paragraph, we recall some properties of quadrics in the projective space P“(Fq).
J.F. Primrose has given in [8] the number of points in a nondegenerate quadric (see below the
definition of the rank of a quadric), and D.K. Ray-Chaudhuri [9] gave more general results
(which with, in a particular case, we recover those of Primrose's). We are going here to follow
the notations of J.W.P. Hirschfeld in [4].
A quadric Q of P“(Fq} is the set of zeros in P“(Fq) of a quadratic form

0
Fe Fq[Xo, Xl’ veey XH}Z’



that is of an homogeneous polynomial of degree 2. We set Q=2 P“(F) or simply Z(F) if no

confusion is possible. The quadric Q is said to be degenerate if there exists a linear change of
coordinates with which we can write the form F with a fewer number of variables. More
precisely, if T is an invertible linear transformation defined over P*(F ¢ denote by F(X) the
form F(TX). Let i(F) be the number of indeterminates appearing explicitly in F. The rank r(F)
of F (and by abuse of language, of the quadric Q), is defined by :

r(F) = rn%'n i(Fp)
where T ranges over all the invertible transformations defined over Fq. A form F (and by abuse
the quadric Q) is said to be degenerate if

rF)<n+ 1.

Otherwise, the form and the quadric are nondegenerate.
Let us remark that a quadric is degenerate if and only if it is singular (see [4]).

We recall after J.W.P. Hirschfeld (see [4]) that in P"(Fg), the number of different types
of nondegenerate quadrics Q is 1 or 2 as n is even or odd, and they are respectively called
Parabolic (P, and Hyperbolic (#) or Elliptic (E).

The maximum dimension g(Q) of linear subspaces lying on the nondegenerate quadric Q is
called the projective index of Q. The projective index has the following values (see [4]) :

-2 -1 -3
gD ="5", g="5—, gB="%

The character 0(Q) of a nondegenerate quadric Q of Pn(Fq) is defined by :
o(Q) =2g(Q) —n+3.
Consequently, we have :
oP=1, o@FH=2, (=0 .
Then, we have the following proposition (for a proof see [4]) :

Proposition 1 : The number of points of a nondegenerate quadric Q of P“(Fq) is:
1Ql=m,_; +(w(Q-1)q-D72.

We want now to evaluate the number of points of a degenerate quadric Q = Z(F) of P“(Fq) of
rank r (called a "cone” of rank r).
We have the following decomposition in disjoint union (an analogous decomposition is given
by R.A. Games in [3]) :
Q= Vn—tu Q*r- 1
We have set
Vp_r={(0:0:...:0:y;:...:y5) € P“(Fq)} =P"(Fy),
if we suppose that the r variables appearing in the quadratic form F are Xy, X, ..., Xy 1. The
set V,, _,is called the vertex of Q, and is the set of singular points of Q. We note also
Q_1={(g: ... : Xp_1:¥pi... 1 Yp) € PUFQ 1 F(Xg,..., yp) = 0 and the x; are not all zero}.
Let Q; _ 1 be the nondegenerate quadric of P~ '(F,) associated to Q, i.e. defined by
Q-1=Zp _1(Fr_p)



or more precisely,

Qr-o1={(Xo: ... 1% e P IFYIF_ 1&g, ..., % _1)=01},
where F. _1(Xg, ... , X, _ 1) = FXp, ... .X;). The (degenerate) quadric Q will abusively be
said to be parabolic, hyperbolic or elliptic according to the type of its associated nondegenerate
quadric Q, _ ;. Its character ®(Q) is by definition the character w(Q, _ 1) of Q,_1.
Then, we have the following result which can be found in R.A. Games [3] :

Theorem 1 : The number of points of a quadric Q of P"(F q) of rank ris:

1QI=m,_ 1+ ((Q - 1) g* -V
and we have o(Q) = 1 if ris odd, and ®w(Q) =0 or ®(Q) =2 ifr is even,

In particular, a quadric of odd rank is necessarily parabolic, and a quadric of even rank is
hyperbolic or elliptic.

Corollary : Let Q be a quadric of P“(Fq), with n > 2. We have :
Tn_2<1QIST,_1+q" L,

and the bounds are reached.

Observe that the lower bound is the Warning bound and that the upper bound reaches the
following Serre bound, conjectured by Tsfasman, which says that (see [11]) if F e

F q[XO,...,ang is a nonzero form of degree d < q, with n 2 2, then the number N of zeros of F

inF‘qn is such that :
N <dq" '-@-1q""2

2.2. Hyperplane sections of quadrics.

This paragraph deals with the number of points in the intersection of a quadric and a
hyperplane. When the quadric is nondegenerate, the result is known (see for example [13]).
R.A. Games has given the result when the quadric has the size of a hyperplane, provided the
quadric itself is not a hyperplane (see [3]). Furthermore, .M. Chakravarti in [1] has solved the

case when the quadric is 1-degenerate, that is a quadric of rank n in P“(Fq).
We are going, here, to consider the general case, i.e. quadrics in P“(Fq) of any rank.

We begin by the known nondegenerate case. If Q is a nondegenerate quadric of P“(Fq)
(i.e. of rank r =n + 1) and if H is a hyperplane of P“(Fq), with n > 1, then Q m H can be seen
as a quadric in a space of dimension n — 1. We know (see for example [8]) that the rank of
QN Hisr —1orr—2. Then, either Q n H is nondegenerate (in P"~ 1(F‘q)), or QM Hisof
rank r— 2 = n— 1 (whence degenerate in P" ~ 1(Fq)) ; one says in this last case that H is tangent

to Q.



Now we have to know what is the value of ®(Q m H), i.e. what happens to the type of
the quadric. If the hyperplane H is not tangent to Q, it is obvious that Q N H becomes parabolic
if Q is hyperbolic or elliptic (indeed r(Q) is necessarily even, and if H is not tangent we have
r(Q N H) =1(Q) — 1 hence odd, then Q N H is parabolic) ; and Q m H becomes hyperbolic or
elliptic if Q is parabolic (same reason rest on the parity of the ranks).

Now if the hyperplane H is tangent to Q, we have the following proposition (see [13]) :

Proposition 2 : The quadric Q M H is of the same type as the nondegenerate quadric Q if the
hyperplane H is tangent to Q.

Then, we can give the result about the hyperplane sections of a quadric of any rank :

Theorem 2 : Let Q be a quadric of P“(Fq) of rank r whose decomposition is
*
Q=Vh_vQ,_
and let H be a hyperplane of P"(Fq). Then :
a)If Ho V,, _; then
IQNHI=mn,_,+(@Q,_1NH)-1) q@n-r-Dbr
if H, is not tangent to Qr v and
IQAHI=m,_+ (@(Q-1)q® 72
if H, is tangent to Q; _ 1, where H, is the hyperplane of P* ~ }(F ) defined by
H, = ZP“ 1(h)
where h is the linear form in Fq[Xo,...,X,_ 1](1) defining H ; moreover o(Q, __; N H,) is equal
to 1 if Q is hyperbolic or elliptic, and equal to 0 or 2 if Q is parabolic.
b)If H V,_, then
IQAHI=m, 5+ (@(Q)-1)q®-T-22

Proof : We suppose that the r variables appearing in the quadratic form F defining Q are
XoXisXr_ 1.
If we set Hj the hyperplane whose equation is X; = 0, we have
Vo-r=HgnmnH n..nH;_;.
But
QMH=(Vy_;uQ_DnH=(V,_.nHUEQ;_NnH),
Thus
IQAHI=IV,_AHI+IQ_;nHI=1V,_ nQ_1nHI;
butVn_,hQ*,_1=@,thus:
IQNHI=IV,_,AnHI+IQ_1nHL



1°) Suppose that HH V, _,.
Then, we have : 1V, _ . nHI=1V,_ I=] P“"(Fq) l=Ty_,.
Furthermore, the linear form h defining H is such that h € Fg[Xg,....X;_ 1]?. Indeed, if

n
h= 2 aiXi N
=0

we have foralli2r, Pij=(0:...:0:1:0: .. :0) where the 1 is at the ith _ coordinate,
Pie V,_rand HD V, _, thus h(P)) = 0. But h(P;) = a;, thus a; = 0 for all 1 2 r. Hence,
1Q,_1nHI=q"""*11Q,_;{nH,L
The quadric Q,_; " H, of P'~ 2(Fq) is degenerate or not, according as H, is tangent or not
t0 Q1 Now:
— If H, is not tangent to Q, _; , then by proposition 1, (since Q; _ 1 M H, is
nondegenerate in P*~ 2(Fq) }, we have :

1Qr_ 1 AHy =13+ (@(Q_1 N H)-1)qF 2,

Thus
1IQAHI=m,_+q" "N Q1 nH, I=my 5+ (@(Q_ NH) -1 g? T D2,
— If H, is tangent to Q. _ 1 , then by theorem 1, we have :

1Qr_ 1 AH, I=m_3+(@(Q_1 NHY -1 qF D7,
but by proposition 2 we know that @(Q, _1 M H,) = ®(Q, _ 1),which is equal to ®(Q) by
definition. Finally,

IQAHI=my_+q" " 1 (m_3+ ((Q - 1) qF - D)
=7ty + (@(Q) - 1) q®" =92,

2°) Suppose now that H not contains V, _ .
Wehave V,_nH=HynHin..nH,_NH,thus
Voo rnHI=IP T M F ) I=my .
n
Ifh= ¥ a;X; is the linear form defining H, there exist necessarily one j, r £ j < n, such that
i=0
a;# 0. Thus

*
Qo1 NH={ (X0 i X1 Yl Yjo1i i Yju1 o Y0) € PUFY
with Qp _ 1(Xgs....X; — 1) = 0 and the x; are not all zero },

where t is such that
4yt =—agXg— ... — A _1Xp_ 1~ &Yr— e~ 1Yj 17 34+ 1¥j+ 17 -~ an¥n

Thus
IQ*r_lﬁH|=q(n_r+1)-l'Qr-ll
with Q; _ ; a nondegenerate quadric of P*~ 1(Fq), then :
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Q% _1HI=q""T(m_p+(@(Q_) -1 qf~27?)
and finally :
lQﬁHi =7tn__r_1 +qn—r(7tr_2+(0)(Qr‘1)_ 1) q(r—2)/2)
=Ty g+ @Q-1) g® T2,
which concludes the proof. ¢

2.3. Intersection of two quadrics in P™(F q).
The subject matter of this paragraph is to estimate the number of points in the intersection of
two quadrics in P“(Fq) with n > 1. We give an exact value of this number in a particular case,

and an upper bound in the general case (Theorem 3), inspired by an another upper bound of
W.M. Schmidt ([10] p.152). We need first a lemma :

Lemma : If Q; and Q, are two distinct quadrics in P“(Fq), then :
QN Qyl<m, +q" %

Proof : By theorem 1,1 Qq t=n,_ 1 + (@(Qp-1) q(z""r)/2 if r is the rank of Q;. Thus :

— if r 2 4, we have znz_rSn—2andthele1 f<m, 1 +q“‘2,henccafortiori

QN Qylsn,_1+¢" "2

—ifr=3 orr =1 then Q is parabolic and
1QNQl<IQl=my_q<my_1+q" 2.
— if r = 2 : either Q is elliptic, and then 1 Q; I =7, _1—q" ~ ! and the result holds ; or
Q is hyperbolic, and then Q is the union of two distinct hyperplanes. We can suppose that the
quadric Q, is also hyperbolic of rank 2, otherwise the same reasoning which we have made to
Q, must hold for Q.
We set Q; =HgUH; and Qy =H; U H;, and without loss of generality, we can take for H;
the hyperplane X; = 0. Since, by hypothesis, the quadrics Q; and Q, are distincts, two cases
can appear :
1°) The four hyperplanes are distincts, i.e. t is different of 0 and 1. We obtain, simply in
"counting” the points :
1QNQyl=m,_4+4q" " 2<m,_1+q
(the preceding inequality is equivalent to (q — 1)220).
2°) Qq and Q, have a common hyperplane, i.e. t = 0 or t = 1. Suppose that t = 0. Then,
we have :
QUOQ={O:x;:...:x) e PUFYIU{(1:0:0:x3:...:xp) € P'(Fy },
where the union is disjoint. Hence :

IQNQyl=m,_;+q"~ 2 and the upper bound of this lemrma is reached in this case. ¢

n-2



11

Theorem 3 : Let F{(Xj,...,X;) and Fy(Xj,...,X,) be two non zero quadratic forms with
coefficients in Fg, and let Q and Q, respectively the two associated quadrics of P“(Fq). Three
cases can appear :
1°) the forms F; and F; are proportional (i.e there exists A Fq* such that Fy=AF, ) and then :
1QINQI=1QqI=1Qyl.

2°) Fy and F, have a common factor of degree 1, and then :

1QiNQyl=y_;+q" 2.
3°) K, and F5 have no common factor (no constant), and then :

n-1 6qn—2

7
QN QI smy o4y S 1
(for q 2 7 this upper bound is indeed better than the lemma).

Proof : 1°) Trivial.

2°) We are necessarily in the case where Q; and Q, are the union of two hyperplanes with one
in common ; it is proved in the lemma.

3°) Let F; and F, be two quadratic forms without nonconstant common factor.

The result is obvious if q < 4. Indeed, by the lemma, we have :

-2
QN Qism, 1 +q"

and furthermore,
n-1 n-2

nn—1+qn—2S7tn—2+ qq_ T - 6qq_ 1 is equivalent to g < 5.

Suppose now that q > 4.
We set, foriequal 1 and 2 :
F’i(Xo,...,Xn) = Fi(XO s X1+01X0 , X2+02X0 y ooy Xn+CnX0)

2
= Pj(1,€2,.-,Cn) X+ -

The polynomials Py and P, are not the zero polynomial (otherwise F; and F, would be t00),
and are'not also identically zero, since they have degree at most 2, and q > 4 implies that F; and
F, have atmost 2¢" "1 < q" zerosin Fy" (because a polynomial of degree d in Fg[X,... X,
have at most dq" ~ !zeros in F," , see for example [10]).
Moreover, the total number of zeros of Py added to those of P, is then at most
4 qn -1

which is < q" since q > 4.
Thus it is possible to choose (C1,...,cn) € Fg" such that

Pi(cq,.sp) # 0 and Py(cy,....cp) # 0.
Thus, after a nonsingular linear transformation and after divided by Pj(cy,...,cy) and
Py(cy,....q) Tespectively, we may suppose without loss of generality that :

F1(XguXp) = X5 + X (X100 Xp) + 82(X1,-Xp) and
Fp(XgoerXp) = X5 + Xg hy(X e Xp) + hp(X 1,000, Xp)
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where g1,h1€ Fo[X1,...Xp]0 and.ga,hye FlXy,... X015 -

If we look at now the polynomials Fy and F; as polynomials in Xg, their resultant is a
homogeneous polynomial R(X;,...,.X,)) of degree 4. By the well known properties of the
resultant, we can say that for any common zero (in Fq“"1 ) (X@:X15e--Xp) Oof F1(Xg,....Xy) and
Fy(Xg,....Xp), we have R(xy,...,x,) = 0.

If we apply the Serre bound (see § 2.1) to the resultant R, we obtain that

the number of zeros in F¢" of R(X1,....Xp) is <4q"~ L_3q-2
Moreover, for such n-uple , the number of possibilities for xg is at most 2, and the forms F;
and F, are of degree 2, thus the total number of common zeros (Xg,...,Xy) of Fy and Fy in
Fqn+1 is qun—l . 6qn-2.
And by the following usual equality :

Na(F) =1+ (q—1) Np(F)

where N (F) represent the number of zeros in A“+1(Fq) = Fq"+1 of F and Np(F) the number
of zeros in P“(Fq) of F, we deduce :

gar-! ~ 6 n-2 _
1 Qp M Qyls—24 - 1
n-1 n-1 n-2
- 7 6
=‘En__2+6qn 2+acL_—1 =1tn_2+q q_ l‘qq— 1.0

3. Projective Reed-Muller codes of order 1 associated to a quadric

Let Q be a quadric in P“(Fq) of rank r, decomposing in disjoint union of its vertex V,, _, and of
Q"‘r _ 1» where Q; _ 1 is the nondegenerate associated quadric of P'~ 1(Fq). We will apply the
results of § 2.2 to determine the parameters of the projective Reed-Muller codes of order 1
associated to Q. Since these parameters vary according to the type of the quadric Q, we have to
distinguish three cases.

Theorem 4 (parabolic case) : Let Q be a parabolic quadric of P“(Fq) of rank r # 1. Then the
projective Reed-Muller code of order 1 associated to Q is a code with three weights :

wy =qn—1_ q(2n—-r— 1)/2 , w2=q“" 1+ q(Zn—r~1)/2’ w3 =qn—l
with the following parameters :

length = m, _ ;, dimension =n + 1, distance = q"~ 1 — q@"~T- D72
Theorem 5 (hyperbolic case) : Let Q be an hyperbolic quadric of P”(Fq) of rank r. Then the
projective Reed-Muller code of order 1 associated to Q is a code with three weights :

wy= qn— 1 + q(2n——r)/2, Wo= qn— 1, wy= qn-l +q(2n—r)/2 _ q(Zn—r—-Z)/Z

with the following parameters :

length=m, _;+ q(2" =92 dimension =n + 1, distance = q" ~ L
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Theorem 6 (elliptic case) : Let Q be an elliptic quadric of P“(Fq) of rank r > 2. Then the
projective Reed-Muller code of order 1 associated to Q is a code with three weights :

W= qn—l - q(2n~r)/‘2 , Wy = qn— 1 , W3 = qn~1 _ q(2n~r)/2 +q(2n—-r—2)/2
with the following parameters :

length=m,_; — q®* 972 dimension =n + 1, distance =" =1 — @~ 972

Let us remark that we recover the results of J. Wolfmann as a particular case of these results
(see [13]), indeed he had considered the case of nondegenerate quadrics : his results correspond

to the case where the rank r = n+1. Note that, here, the case H V, _; is excluded, and then

we find only two weights for the hyperbolic and elliptic quadrics, but still three weights for the
parabolic one. We recover also the results of ILM. Chakravarti (see [1]) : it corresponds to the
case where the rank r =n.

Proof : The lengths of the respective codes are equal to the number of points of the respective
quadrics : theorem 1 gives the result.
The map ¢ defining the code ( see § 1) is one to one, and thus the dimension of the code is

equal to the dimension of Fq[Xo,...,Xn](l) over Fg,i.e. n+ 1:indeed, if H is a hyperplane of

Pn(Fq), ( which amounts to taking a linear form of F[Xq,....Xp] ), it is sufficient to apply the
results of Theorem 2 to see that | Q HI<1QI, and to have also the different weights. ¢

4. Projective Reed-Muller codes of order 2 associated to a quadric

The map ¢: Fq[Xo,...,Xn]g - Fqu‘ as introduced in § 1 defining the projective Reed-Muller
code of order 2 associated to the quadric Q has for domain the vector space of quadratic forms
over Fg ; this is why we gave previously some results on the intersection of two quadrics of
PY(F,).

9

Theorem 7 (parabolic case) : Let Q be a parabolic quadric in P“(Fq), n 22, If q = 8 then the
projective Reed-Muller code of order 2 associated to Q has the following parameters :
n-1

length=1tn_1,dimension=—ll(—n~2~t§l, distancezq“‘l-— 6q“'2—q —T1-

Theorem 8 (elliptic case) : Let Q be an elliptic quadric in P“(Fq) ofrankr> 2. If g 2 8 then
the projective Reed-Muller code of order 2 associated to Q has the following parameters :

length =7, _; — g%~ 92, dimension =_____n(n2+ 3) ,
n-1
A n-1 (2n-1/2 n-2_ 9
distance 2q" " " - ¢ - 6q q-T1°
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We reserve the case where the quadric is hyperbolic of rank 2 for the theorem 10 (we have
indeed more precise results).

Theorem 9 (hyperbolic case of rank r 2 4) : Let Q be an hyperbolic quadric in P“(Fq) of rank
12 4. If g 2 8 then the projective Reed-Muller code of order 2 associated to Q has the following

parameters :

length =7, _;+ q@" - 9”2 dimension =-Lr12+—Q ,

n-1
distance 2 ¢~ 1+ g2 -2 _ g ¢n “2+(—1%T.

Let us remark that we can have, for the theorem 9, the same results with a weaker hypothesis
on ¢ when the rank of Q is equal to 4 or 6, namely q > 5.

Now we consider the case of maximal quadrics, that is hyperbolic quadrics of rank 2. By the
corollary of theorem 1, the number of points of these quadrics reaches the maximum number of
points of a quadric, and it is in this sense that we call them "maximal". We can remark that they
are particular quadrics (they are the union of two distinct hyperplanes). The codes which are
associated to them have a minimum distance precisely known. These codes will have a
generalization in the next paragraph.

Theorem 10 (hyperbolic case of rank = 2) : Let Q be an hyperbolic quadric in P“(Fq) of rank

2. The projective Reed-Muller code of order 2 associated to Q has the following parameters :

length = 7, _ 1+ g™ ~ 1, dimension r@;—a ,distance =q"~2(q—1).

Proof : The length of the codes is the number of points of the quadric Q, and is given by
Theorem 1.

Let F'e Fg[Xg,....Xpl3 and Q' = Z,(F), Q = )
Either F and F' are proportional, and then Q = Q'. Remark that there is q — 1 such non zero
forms F ; thus there is at least g quadratic forms vanishing in Q, hence in the kernel of the map

¢ defining these codes. We claim that there are no other forms in Ker(c), and thus the
dimension of this codes is :

0
Fq[X(), aee ,Xn]2

dim(lm ¢) = dim ——grr = @t D0 +2) g (IKere)])
_@+DH@+2) _n’+3n _n@+3)
e i i R

Indeed, suppose now that F and F' are not proportional, we have by Theorem 3 :

1 631'1—-2

, 79"~
QN Q 'S“n_z"”a%‘l—'- q-1"
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- if Q is parabolic (Th 7), we have

n-1 n-2
nn—2+7qq.~ 1~ 6qq_ 1 <!Q1<=>q2» 8q+6>0<q=8.

Moreover, F and F' cannot have a common factor of degree 1 since Q would be the union of
two hyperplanes and thus would be hyperbolic.
The minimum distance follows from the same inequality of the Theorem 3.
~if Q is elliptic (Th 8), F and F' cannot also have a common factor of degree 1, and we have :
79" "1 69" 2 | (@97 ifand only if q > 8 forr =4, and
q_.]_ q..l = %*n-1 q nd only 1t q =
thus a fortiori forr 2 4, i.e. since ris even, r > 2.
-if Q is hyperbolic of rank 2 4 (Th 9), the same reasoning gives a fortiori the results (indeed
the hypothesis g 2 8 holds for more "smallest " quadrics).
- if Q is hyperbolic of rank = 2 (Th 10) :
« either F and F' have a common factor of degree 1, and by the Theorem 3 :

1IQNQ l=m,_+q" 2 whichis<IQl=m,_;+q"!.
» or F and F' have not a common factor of degree 1, and by the lemma preceding Theorem 3
wehave : 1Q N Q1< T, _ 1+ q" "2 whichis <I QI .

The minimum distance in this case is :

QI — (nn_1+q“‘2)

Ty .. 2+

="' "2 =q" " Hg-1).0

S. Projective Reed-Muller codes associated to a maximal

hypersurface

We consider here hypersurfaces of degree h < q reaching the Serre bound, i.e. which are the
union of h distinct hyperplanes containing a linear variety of codimension 2. The Serre bound
enunciated in § 2.1 has the following projective version : if F is a non zero form of degree h < g
of Fq[XO,...,Xn], then
FARGIEST NIPEY T
The construction of such varieties (called maximal) is easy ; indeed we can take for example :
F=T1Xqy - lixl)
1<i<h
where the A, are h distinct elements of F. We are going to construct projective Reed-Muller
codes associated to such varieties.

Theorem 11 :LetV = ZPn(F) be a variety of P“(Fq) which is the union of h distinct

hyperplanes containing a linear variety of codimension 2, with h < q. Then the projective Reed-
Muller code of order d < h associated to V has the following parameters :

length = m, _,+hq" !, dimension = (n; d), distance = (h —d) ¢" " ! .
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Let us remark that we find again the projective Reed-Muller codes of order 1 associated to a
maximal quadric (in the particularcase h=2andd=1).

Proof : The length of the code is equal to the number of points of the variety V which is, by
construction,

Rp_2+ h qn - 1.
The map c: Fq[XO,...,Xn]g - F qIVI defining the code is obviously one to one since d <h.
Thus the dimension of the code is equal to the dimension, over Fg, of

F[Xo Xyl ie. (" ] 9.

If V=H; U ... U Hy, then the subvariety V' of degree d of V defined by V' =H; U ... UHy
where the d hyperplanes are taken among the h defining V, is such that :
IV i=m,_,+dq" L.
Thus the minimum distance of the code is equal to :
IVI = (tg_p+d @ D=hq" '-dq" T=-d)g" Le

We can say more if we consider the particular case of the codes above of order 1. Indeed,
it is easy to see that the hyperplane sections of such maximal varieties have three possible sizes,
namely T, _1,%p_90r R, _3+hq"~ 2, Thus, the projective Reed-Muller code of order 1
associated to V (with h > 1) is a code with three weights :

wi=(h-1)g"" !, wo=hq" ! ,wg=hg" " 1+(1 - h)qg"~?
and with the following parameters :

length=n, _o,+hq""” 1 dimension =n+ 1, distance = (h— 1) q"~ L
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