C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation. Institute of Physics, 1991.
DOI : 10.1887/0750301171

M. Bostan, The Vlasov???Maxwell System with Strong Initial Magnetic Field: Guiding-Center Approximation, Multiscale Modeling & Simulation, vol.6, issue.3, p.10261058, 2007.
DOI : 10.1137/070689383

URL : https://hal.archives-ouvertes.fr/inria-00139665

J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2001.
DOI : 10.1007/978-3-642-83876-7

S. M. Cox and P. C. Matthews, Exponential time dierencing for sti systems, J. Comput. Phys, vol.176, issue.2, p.430455, 2002.

N. Crouseilles, E. Frénod, S. A. Hirstoaga, and A. Mouton, Two-scale macro-micro decomposition of the Vlasov equation with a strong magnetic eld, Math. Models Methods Appl. Sci, vol.23, issue.8, p.15271559, 2013.

N. Crouseilles, M. Mehrenberger, and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, Journal of Computational Physics, vol.229, issue.6, p.19271953, 2010.
DOI : 10.1016/j.jcp.2009.11.007

URL : https://hal.archives-ouvertes.fr/hal-00363643

D. H. Dubin, J. A. Krommes, C. Oberman, and W. W. Lee, Nonlinear gyrokinetic equations, Phys. Fluids, vol.26, issue.12, p.35243535, 1983.
DOI : 10.2172/6293388

E. Frénod, S. A. Hirstoaga, and M. Lutz, Long-time simulation of a highly oscillatory Vlasov equation with an exponential integrator, Comptes Rendus M??canique, vol.342, issue.10-11, p.595609, 2014.
DOI : 10.1016/j.crme.2014.06.006

E. Frénod, S. A. Hirstoaga, and E. Sonnendrücker, An exponential integrator for a highly oscillatory vlasov equation, Discrete and Continuous Dynamical Systems - Series S, vol.8, issue.1, p.169183, 2015.
DOI : 10.3934/dcdss.2015.8.169

E. Frénod and M. Lutz, On the geometrical gyrokinetic theory, Kinet. Relat. Models, 2015.

E. Frénod, P. A. Raviart, and E. Sonnendrücker, Asymptotic expansion of the Vlasov equation in a large external magnetic eld, J. Math. Pures et Appl, vol.80, issue.8, p.815843, 2001.

E. Frénod, F. Salvarani, and E. Sonnendrücker, LONG TIME SIMULATION OF A BEAM IN A PERIODIC FOCUSING CHANNEL VIA A TWO-SCALE PIC-METHOD, Mathematical Models and Methods in Applied Sciences, vol.19, issue.02, p.175197, 2009.
DOI : 10.1142/S0218202509003395

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic eld, Asymptot. Anal, vol.18, issue.3, p.193214, 1998.

E. Frénod and E. Sonnendrücker, Long time behavior of the two dimensionnal Vlasov equation with a strong external magnetic eld, Math. Models Methods Appl. Sci, vol.10, issue.4, p.539553, 2000.

F. Golse and L. Saint-raymond, The Vlasov-Poisson system with strong magnetic eld

M. Hochbrück and A. Ostermann, Exponential integrators, Acta Numerica, vol.19, p.209286, 2010.
DOI : 10.1017/S0962492910000048

S. Jin, Ecient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput, vol.21, p.441454, 1999.

W. W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids, vol.26, issue.2, p.556562, 1983.

R. G. Littlejohn, A guiding center Hamiltonian: A new approach, Journal of Mathematical Physics, vol.20, issue.12, p.24452458, 1979.
DOI : 10.1063/1.524053

R. G. Littlejohn, Hamiltonian formulation of guiding center motion, Physics of Fluids, vol.24, issue.9, p.17301749, 1981.
DOI : 10.1063/1.863594

M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation, International Journal for Numerical Methods in Engineering, vol.18, issue.10, p.15251538, 1981.
DOI : 10.1002/nme.1620171007

E. Sonnendrücker, Approximation numérique des équations de Vlasov-Maxwell, 2010.