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An approach to improve ill-conditioned steepest descent methods,

application to a parabolic optimal control problem via time

domain decomposition.

Mohamed Kamel Riahi1,

CMAP, INRIA-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau.

Abstract

In this paper we present a new steepest-descent type algorithm for convex optimization problems.

The method combines a Newton technique together with time domain decomposition in order

to achieve the optimal step-length for the given set of descent directions. This is a parallel

algorithm, where the parallel tasks turn on the control during a specific time-window and turn

it off elsewhere. This new technique significantly improves computational time compared with

recognized methods. Convergence analysis of the algorithm is provided for an arbitrary choice

of partition. Numerical experiments are presented to illustrate the efficiency of our algorithm.

Keywords: Optimal control, regularization, time-domain decomposition, Newton algorithm,

convex optimization, PDEs, high performance computing, parallel algorithm.
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1. Introduction

Typically the improvement of iterative methods is based on an implicit transformation of

the original linear system in order to get a new system which has a condition number ideally

close to one. This technique is known as preconditioning. Modern preconditioning techniques

such as algebraic multilevel and domain decomposition methods attempt to produce efficient

tools to accelerate convergence. Other techniques have introduced a different definition of the

descent directions, for example, CG-method, BFGS, or its limited memory version l-BFGS.

Others approaches (e.g. [1, 2, 3], without being exhaustive) propose different formulas for the

line search.

The central investigation of this paper is the computation of the line search for a given set of

descent directions.

Steepest descent methods [4] are usually used for solving, for example, optimization prob-

lems, control with partial differential equations (PDEs) constraints and inverse problems. Several

approaches have been developed in the cases of constrained and unconstrained optimization. It is

well-known that the algorithm has a slow convergence rate with ill-conditioned problems because
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the number of iterations is proportional to the condition number of the problem. The method of

J.Barzila and J.Borwein [5] based on two-point step-length for the steepest-descent method for

approximating the secant equation avoids this handicap. Our method is very different, because

it is based on domain decomposition that proposes block gradient descent, also because it is

general where it can be coupled together with any optimization procedure.

The key idea of our method is based on a quasi-Newton technique to perform efficient real

vector step-length for a set of descent directions, which is the canonical output of the time domain

decomposition.

The originality of our approach consists in enabling parallel computation by considering the

step-length as a vector, which achieves the optimal descent direction in a high dimensional space.

The theoretical basis of our approach is presented on a simple positive definite quadratic form

and applied on a more complex engineering problem involving control of system governed by

PDEs. We apply the technique on a convex optimal control problem with the constrained heat

equation. We test the case of well-posed problem and also the ill-posed case.

This paper is organized as follows: In Section 2, we present our method in a linear algebra

framework and highlight its generality. Section 3 is devoted to the presentation of the optimal

control problem with constrained PDE for both distributed and Dirichlet control problem. We

present the Euler-Lagrange-system associated to the optimization problem and give the explicit

formulation of the gradient in both cases. Then, we present and explain the parallel setting for

the complex control problem. In Section 4, we perform the convergence analysis of the parallel

algorithm. In Section 5, we present the numerical experiments that demonstrate the efficiency

and the robustness of the approach. We make concluding remarks in Section 6. For completeness,

we include calculus results in the Appendix.

Let Ω be a bounded domain in R
3, and Ωc ⊂ Ω a subdomain. In what follows, we denote

by 〈., .〉2 (respectively 〈., .〉c) the standard L2(Ω) (respectively L2(Ωc)) inner-product that induces

the L2(Ω)-norm ‖.‖2 on the domain Ω (respectively ‖.‖c on Ωc). In the case of finite dimensional

vector space Rm, the scalar product aT b of a and b (where aT stands for the transpose of a) is also

denoted by 〈., .〉2. The scalar product with respect to the matrix A, i.e. 〈x, Ax〉2 is denote by 〈x, x〉A
and the induced norm is denoted by ‖x‖A. We denote by a.b the dot product (multiplication term

by term). The Hilbert space L2(0,T ; L2(Ωc)) will have the scalar product 〈., .〉c,I that induces the

norm ‖.‖c,I . The transpose of the operator A is denoted by AT .

2. Enhanced steepest descent iterations

The steepest descent algorithm minimizes at each iteration the quadratic function q(x) =

‖x − x⋆‖2
A
, where A is assumed to be an SPD matrix and x⋆ is the minimum of q. The vector

−∇q(x) is locally the descent direction that yields the fastest rate of decrease of the quadratic

form q. Therefore all vectors of the form x + θ∇q(x), where θ is a suitable negative real value,

decrease q. The choice of θ is found by looking for the mins<0 q(x + s∇q(x)) with the use of a

line search technique. In the case where q is a quadratic form θ is given by −‖∇q(x)‖2
2
/‖∇q(x)‖2

A
.

We recall in Algorithm 1 the steepest descent algorithm; Convergence is a boolean based on an

estimate of the residual vector rk < ǫ, where ǫ is the threshold.

Our method proposes to modify the instance 5. of Algorithm 1. It shall consider the step-

length θ as a vector of an arbitrary n̂ with 1 ≤ n̂ ≤ size(x), we shall denote this new vector as
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Algorithm 1: Steepest descent.

Input: x0;

1 k = 0;

2 while Convergence do

3 rk = ∇qk := ∇q(xk);

4 Compute Ark;

5 Compute θk = −‖rk‖2
2
/‖rk‖2

A
;

6 xk+1 = xk + θkrk;

7 k = k + 1;

8 end

Θn̂.

Suppose x ∈ R
m. Let us introduce the partition of the identity operators: the basis {en}

n̂
n=1

such that
∑n̂

n=1 en = Id. The operators en are defined by en : x 7→ en(x) = x̃n ∈ R
m
n̂ , where it is

assumed that n̂ divide m with null rest. The concatenation of x̃n for all 1 ≤ n ≤ n̂ is denoted by

x̂n̂ = (x̃1, . . . , x̃n̂)T ∈ R
m
n̂
×n̂. Recall the gradient ∇ = ( ∂

∂x1
, . . . , ∂

∂x̃m
)T , and define the bloc gradient

∇n̂ = ( ∂
∂x̃1
, . . . , ∂

∂x̃n̂
)T . In the spirit of the decomposition we investigate, in the sequel, the local

descent directions as the bloc partial derivatives with respect to the bloc variables (x̃n)n. We aim,

therefore, at finding Θn̂ = [θ1, . . . , θn̂]T that ensure min(θn)n<0 q(x̂n̂ +Θn̂.∇
n̂q(x̂n̂)), where we recall

that Θn̂.∇
n̂q(x̂n̂) means the dot product.

Remark 2.1. Remark that we identify x̂n̂ with x ∈ Rm.

We state hereafter a motivating theorem, which proof is straightforward because the spaces

are embedded.

Theorem 2.1. We denote by qn̂ the continuous functions defined by qn̂(x) := q(x̂n̂). We have thus

min
R

m
2n̂
×2n̂

q2n̂(x̂2n̂) ≤ min
R

m
n̂
×n̂

qn̂(x̂n̂) ≤ min
R

m
2
×2

q2(x̂2) ≤ min
Rm

q1(x̂1).

Furthermore, x⋆ the unique minimum of q satisfies

q2n̂(x⋆) = qn̂(x⋆) = q2(x⋆) = q1(x⋆),

where obviously x⋆ = x̂⋆
2n̂
= x̂⋆

n̂
= x̂⋆

2
= x̂⋆

1
.

The new algorithm we discuss in this paper proposes to define a sequence (x̂k
n̂
)k of vectors

that converges to x⋆ (if it exists). The update formulae reads:

x̂k+1
n̂ = x̂k

n̂ + Θ
k
n̂.∇

n̂q(x̂k
n̂), ∀ 1 ≤ n ≤ n̂,

where n̂ is an arbitrarily chosen integer.

We shall explain now how one can accurately computes the vector step-length Θn̂, in the case

where q is a quadratic form. In fact, denote Φn̂(Θn̂) : Rn̂ → R
n̂,Θn̂ 7→ q(x̂k

n̂
+ Θk

n̂
.∇n̂q(x̂k

n̂
). This

form is quadratic because q is. Using the chain rule, we obtain Φ′
n̂
(Θn̂) = ∇n̂qT (x̂k

n̂
).∇n̂q(x̂k

n̂
+

Θk
n̂
.∇n̂q(x̂k

n̂
) and Φ′′

n̂
(Θn̂) = ∇n̂qT (x̂k).

(

∇n̂
)2

q(x̂k
n̂
+ Θk

n̂
.∇q(x̂k

n̂
).∇q(x̂k

n̂
). Here

(

∇n̂
)2
= ∇n̂.(∇n̂)T is
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the Hessian matrix. We thus have the Taylor expansion Φn̂(Θk
n̂
) = Φn̂(0T ) + (Θk

n̂
)TΦn̂(0T ) +

1
2
(Θk

n̂
)TΦ′′

n̂
(0T )Θk

n̂
, with 0T := (0, .., 0)T ∈ Rn̂. Then the vector Θk

n̂
that annuls the gradient writes:

Θk
n̂ = −

(

∇n̂qT (x̂k
n̂).

(

∇n̂)2
q(x̂k

n̂).∇n̂q(x̂k
n̂)
)−1

(∇n̂qT (x̂k
n̂).∇n̂q(x̂k

n̂))T . (1)

Algorithm 1, therefore, has a bloc structure which can be solved in parallel. This is due to the

fact that partial derivatives can be computed independently. The new algorithm is thus as follows

Algorithm 2: Enhanced steepest descent.

k = 0;

Input: x̂0
n̂
;

1 while Convergence do

2 forall the 1 ≤ n ≤ n̂ do

3 x̃k
n = en(x̂k

n̂
);

4 rn =
∂
∂x̃k

n
q(x̂k

n̂
);

5 end

6 Concatenate r̂n̂ = [r1, .., rn̂]T ;

7 Assemble the vector Dn̂ = r̂T
n̂
.r̂n̂;

8 Assemble the matrix Hn̂ = r̂n̂.A.r̂n̂;

9 Compute Θk
n̂
= −H−1

n̂
Dn̂;

10 x̂k+1
n̂
= x̂k

n̂
+ Θk

n̂
.∇n̂q(x̂k

n̂
);

11 k = k + 1;

12 end

3. Application to a parabolic optimal control problem

In this part we are interested in the application of Algorithm 2 in a complicated computa-

tional engineering problem, involving optimization with constrained PDE. In particular, we deal

with the optimal control problem of a system, which is governed by the heat equation.We shall

present two types of control problems. The first concerns the distributed optimal control and the

second concerns the Dirichlet boundary control.

3.1. Distributed control problem

Let us briefly present the steepest descent method applied to the following optimal control

problem: find v⋆ such that

J(v⋆) = min
v∈L2(0,T ;L2(Ωc))

J(v), (2)

where J is a quadratic cost functional defined by

J(v) =
1

2
‖y(T ) − ytarget‖22 +

α

2

∫

I

‖v‖2cdt, (3)
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where ytarget is a given target state and y(T ) is the state variable at time T > 0 of the heat equation

controlled by the variable v over I := [0,T ]. The Tikhonov regularization parameter α is also

introduced to penalize the control’s L2-norm over the time interval I, this quantity is also called

energy.

The optimality system of our problem reads:
{

∂ty − σ∆y = Bv, on I ×Ω,

y(t = 0) = y0.
(4)

{

∂t p + σ∆p = 0, on I ×Ω,

p(t = T ) = y(T ) − yT .
(5)

∇J(v) = αv + BT p = 0, on I ×Ω. (6)

In the above equations, the operator B is a linear operator that distributes the control in Ωc.

3.2. Dirichlet boundary control problem

In this subsection we are concerned with the PDE constrained Dirichlet boundary optimal

control problem, where we aim at minimizing the cost functional JΓ defined by

JΓ(vΓ) =
1

2
‖y(T ) − ytarget‖22 +

α

2

∫

I

‖vΓ‖
2
Γdt, (7)

using only a boundary control on Γ ⊂ ∂Ω. The involved optimality system reads































∂tyΓ − σ∆yΓ = f on I ×Ω

yΓ = vΓ on I × Γ

yΓ = g on I × {∂Ω\Γ}

yΓ(0) = y0.

(8)



















−∂t pΓ − σ∆pΓ = 0 on I ×Ω

pΓ = 0 on I × ∂Ω

pΓ(T ) = yΓ(T ) − ytarget.
(9)

∇JΓ(vΓ) = αvΓ − ∇pΓ.~n = 0 on I × Γ (10)

where f ∈ L2(Ω) is any source term, g ∈ L2(Γ) and ~n is the outward unit normal on Γ.

3.3. Steepest descent algorithm for optimal control of constrained PDE

We propose to solve the optimization problem iteratively. Let us denote by k the current

iteration superscript. We suppose that v0 is known. The first order steepest descent algorithm

updates the control variable as follows:

vk = vk−1 + θk−1∇J(vk−1), for k ≥ 1. (11)

The step-length θk−1 ∈ R−\{0} in the direction of the gradient ∇J(vk−1) = {αvk−1 +BT pk−1, αvΓ −

∇pΓ.~n} is computed as follows:

θk−1 = −‖∇J(vk−1)‖2c,I/‖∇J(vk−1)‖2
∇2 J
.

This step-length is optimal in the sense that it minimizes the functional θ → J(vk−1 + θ∇J(vk−1))

(see e.g. [6]). The rate of convergence of this technique is
( κ−1

κ+1

)2
, where κ is the condition number

of the quadratic form, namely the Hessian of the cost functional J.
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3.4. Time-domain decomposition algorithm

Consider n̂ subdivisions of the time interval I = ∪n̂
n=1In, consider also the following convex

cost functional J:

J(v1, v2, .., vn̂) =
1

2
‖Y(T ) − ytarget‖22 +

α

2

n̂
∑

n=1

∫

In

‖vn‖
2
cdt, (12)

where vn, n = 1, ..., n̂ are control variables with time support included in In, n = 1, ..., n̂. The state

Y(T ) depends on v; the concatenation of controls v1, v2, .., vn̂. Let us define Θn̂ := (θ1, θ2, ..., θn̂)T

where θn ∈ R\{0}. For any admissible control w = (w1, . . . ,wn̂)T we also define ϕn̂(Θn̂) :=

J(v +
∑n̂

n=1 θnwn)), which is quadratic. We have:

ϕn̂(Θn̂) = ϕn̂(0) + ΘT
n̂∇ϕn̂(0) +

1

2
ΘT

n̂∇
2ϕn̂(0)Θn̂, (13)

where 0 = (0, ..., 0)T . Therefore we can write ∇ϕn̂(Θn̂) ∈ Rn̂ as ∇ϕn̂(Θn̂) = D(v,w) + H(v,w)Θn̂,

where the Jacobian vector and the Hessian matrix are given respectively by:

D(v,w) := (〈∇J(v), e1(w)〉c, . . . , 〈∇J(v), en̂(w)〉c)T ∈ Rn̂,

H(v,w) := (Hn,m)n,m, for Hn,m = 〈en(w), em(w)〉∇2 J .

Here, (en)n are Heaviside functions with support on the time interval In.

The solution Θ⋆
n̂

of ∇ϕn̂(Θn̂) = 0 can be written in the form:

Θ⋆n̂ = −H−1(v,w)D(v,w). (14)

Enlarging the domain of minimization guarantees a lower minimum. Since (vn + θnwn)n are

controls with disjoint time-support, they drive independent solutions. In fact, the processors

require only the scalar θn in order to perform the update. This feature is very important because

it reduces the communication of a vector θnwn to the communication of a scalar θn.

In the parallel distributed control problem, we are concerned with the following optimality

system:

{

∂tYn − σ∆Yn = Bvn, on I ×Ω,

Yn(t = 0) = δ0ny0.
(15)

Y(T ) =

n̂
∑

n=1

Yn(T ) (16)

{

∂tP + σ∆P = 0, on I ×Ω,

P(t = T ) = Y(T ) − ytarget.
(17)

∇J(

n̂
∑

n=1

vn) = BTP + α

n̂
∑

n=1

vn = 0, on I ×Ω. (18)

6



and for the Dirichlet control problem we are concerned with:






























∂tYn,Γ − σ∆Yn,Γ = f on I ×Ω

Yn,Γ = vn,Γ on I × Γ

Yn,Γ = g on I × {∂Ω\Γ}

Yn,Γ(0) = δ0ny0.

(19)

YΓ(T ) =

n̂
∑

n=1

Yn,Γ(T ) (20)



















−∂tPΓ − σ∆PΓ = 0 on I ×Ω

PΓ = 0 on I × ∂Ω

PΓ(T ) = YΓ(T ) − ytarget.
(21)

∇JΓ(

n̂
∑

n=1

vn,Γ) = −
(

∇PΓ
)T
~n + α

n̂
∑

n=1

vn,Γ = 0 on I × Γ. (22)

The resolution of Eqs. (15) and (19) is fully performed in parallel over I. As before the

superscript k denotes the iteration index for the new algorithm as well. The update formulae for

the control variable vk is given by:

vk
n = vk−1

n + θk−1
n

{

BTPk−1 + α
∑n̂

n=1 vk−1
n .

−
(

∇Pk−1
Γ

)T
~n + α

∑n̂
n=1 vk−1

n,Γ
.

We show hereafter how to assemble vector step-length Θk
n̂

at each iteration. For the purposes of

notation we denote by Hk the k-th iteration of the Hessian matrix H(∇J(vk),∇J(vk)) and by Dk

the k-th iteration of the Jacobian vector D(∇J(vk),∇J(vk)).

Line search is performed with quasi-Newton techniques that uses at each iteration k a Hessian

matrix Hk and Jacobian vector Dk defined respectively by:

Dk :=
(

〈∇J(vk), e1

(

∇J(vk)
)

〉c, .., 〈∇J(vk), en̂

(

∇J(vk)
)

〉c
)T
, (23)

(Hk)n,m := 〈en

(

∇J(vk)
)

, em

(

∇J(vk)
)

〉∇2 J . (24)

We denote the condition number of the Hessian matrix ∇2J as: κ = κ(∇2J) := λmaxλ
−1
min

, with

λmax := λmax(∇2J) the largest eigenvalue of ∇2J and λmin := λmin(∇2J) its smallest eigenvalue.

According to Eq.(14) we have

Θk
n̂ = −H−1

k Dk. (25)

From Eq.(13) we have:

J(vk+1) = J(vk) + (Θk
n̂)T Dk +

1

2
(Θk

n̂)T H(v,w)Θk
n̂. (26)

Our parallel algorithm to minimize the cost functional (see Eq.(12)) is stated as follows:

Since (vn)n have disjoint time-support, thanks to the linearity, the notation en

(

∇J(vk)
)

is nothing but ∇J(vk
n), where vk is the concatenation of vk

1
, . . . , vk

n̂
.

In Algorithm 3 instances 6,7,9,10 and 11 are trivial tasks in regards to compu-

tational effort.

7



Algorithm 3: Enhanced steepest descent algorithm for the optimal control problem.

0 Input:

1 while Convergence do

2 forall the 1 ≥ n ≥ n̂ do

3 Solve Yn(T )(vk
n) of Eq.(15)(or Eq.(19)) in parallel for all 1 ≤ n ≤ n̂;

4 Compute (Dk)n of Eq.(23) in parallel for all 1 ≤ n ≤ n̂;

5 end

6 Gather (Dk)n from processor n, 2 ≤ n ≤ n̂ to master processor;

7 Assemble the Hessian matrix Hk according to Eq.(24) with master processor;

8 Compute P(t) with the backward problem according to Eq.(17) (or Eq.(21)) ;

9 Compute the inversion of the SPD matrix Hk and calculate Θk
n̂

using Eq.(25);

10 Broadcast θkn from master processor to all the other (n̂ − 1) processors;

11 Update local control variable vk+1
n in parallel as :

vk+1
n = vk

n + θ
k
nen

(

∇J(vk)
)

for all 1 ≤ n ≤ n̂,

and go to step 2;

12 k = k + 1;

13 end

4. Convergence analysis

This section provides the proof of convergence of Algorithm 3. The size of the matrix Hk is

bounded above by the number of the time step discretizations τ. We have thus n̂ ≤ T
τ

so we may

use direct solver in order to obtain an exact inversion.

In the sequel, we suppose that ‖∇J(vk)‖c does not vanish; otherwise the algorithm has already

converged.

prop 4.1. The increase in the cost functional between two successive controls vk and vk+1 is

bounded below by:

J(vk) − J(vk+1) ≥
1

2κ(Hk)

‖∇J(vk)‖4c

‖∇J(vk)‖2
∇2 J

. (27)

Proof. Using Eq.(25) and Eq.(26), we can write:

J(vk) − J(vk+1) =
1

2
DT

k H−1
k Dk. (28)
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Preleminaries: From the definition of the Jacobian vector Dk we have

‖Dk‖
2
2 =

n̂
∑

n=1

〈∇J(vk), en(∇J(vk))〉2c ,

=

n̂
∑

n=1

〈en(∇J(vk)), en(∇J(vk))〉2c ,

=

n̂
∑

n=1

‖en(∇J(vk))‖4c ,

= ‖∇J(vk)‖4c .

Furthermore since Hk is an SPD matrix we have

λmin(H−1
k ) =

1

λmax(Hk)
,

from which we deduce:
1

λmin(H
k
)
≥

1
1
n̂
1T

n̂
Hk1n̂

.

Moreover, we have:

DT
k H−1

k Dk =
DT

k
H−1

k
Dk

‖Dk‖
2
2

‖Dk‖
2
2 ≥ λmin(H−1

k )‖Dk‖
2
2

= λmin(H−1
k )λmin(Hk)

‖∇J(vk)‖4c

λmin(Hk)

≥
λmin(Hk)

λmax(Hk)

‖∇J(vk)‖4c
1
n̂
1T

n̂
Hk1n̂

=
n̂

κ(Hk)
‖∇J(vk)‖−2

∇2 J
‖∇J(vk)‖4c .

Since the partition number n̂ is greater than or equal to 1, we conclude that :

DT
k H−1

k Dk ≥
‖∇J(vk)‖−2

∇2 J
‖∇J(vk)‖4c

κ(Hk)
. (29)

Hence, using Eq.(28) we get the stated result. �

Theorem 4.2. The control sequence (vk)k≥1 of Algorithm 1 converges with any partition n̂ of

sub intervals. Furthermore we have:

‖vk − v⋆‖2
∇2 J
≤ rk‖v0 − v⋆‖2

∇2 J
,

where the rate of convergence r :=
(

1 −
4κ

κ(Hk)(κ+1)2

)

satisfies 0 ≤ r < 1.

9



Proof. We denote by v⋆ the optimal control that minimizes J. The equality

J(v) = J(v⋆) +
1

2
〈v − v⋆, v − v⋆〉∇2 J = J(v⋆) +

1

2
‖v − v⋆‖2

∇2 J
,

holds for any control v; in particular we have:

J(vk+1) = J(v⋆) +
1

2
‖vk+1 − v⋆‖2

∇2 J
,

J(vk) = J(v⋆) +
1

2
‖vk − v⋆‖2

∇2 J
.

Consequently, by subtracting the equations above, we obtain

J(vk+1) − J(vk) =
1

2
‖vk+1 − v⋆‖2

∇2 J
−

1

2
‖vk − v⋆‖2

∇2 J
. (30)

Since J is quadratic, we have ∇2J(vk − v⋆) = ∇J(vk), that is vk − v⋆ = (∇2J)−1∇J(vk). Therefore

we deduce:

‖vk − v⋆‖2
∇2 J

= 〈vk − v⋆, vk − v⋆〉∇2 J (31)

= 〈vk − v⋆,∇2J, vk − v⋆〉c

= 〈(∇2J)−1∇J(vk),∇2J, (∇2J)−1∇J(vk)〉c

= 〈∇J(vk), (∇2J)−1,∇J(vk)〉c

= ‖∇J(vk)‖2
(∇2 J)−1 .

Because of Eq.(28), we also have

J(vk+1) − J(vk) = −
1

2
DT

k H−1
k Dk.

Using Eq.(30) and the above, we find that:

‖vk+1 − v⋆‖2
∇2 J
= ‖vk − v⋆‖2

∇2 J
− DT

k H−T
k Dk.

Moreover, according to Eqs (29)-(31), we obtain the following upper bound:

‖vk+1 − v⋆‖2
∇2 J

≤ ‖vk − v⋆‖2
∇2 J
−

1

κ(Hk)

‖∇J(vk)‖4c

‖∇J(vk)‖2
∇2 J

≤ ‖vk − v⋆‖2
∇2 J

(

1 −
1

κ(Hk)

‖∇J(vk)‖4c

‖∇J(vk)‖2
∇2 J
‖∇J(vk)‖2

(∇2 J)−1

)

. (32)

Using the Kantorovich inequality [7, 8] (see also The Appendix) :

‖∇J(vk)‖4c

‖∇J(vk)‖2
∇2 J
‖∇J(vk)‖2

(∇2 J)−1

≥
4λmaxλmin

(λmax + λmin)2
. (33)

Then

1 −
1

κ(Hk)

‖∇J(vk)‖4c

‖∇J(vk)‖2
∇2 J
‖∇J(vk)‖2

(∇2 J)−1

≤ 1 −
4κ

κ(Hk)(κ + 1)2
.

10



Finally we obtain the desired results for any partition to n̂ subdivision, namely

‖vk − v⋆‖2
∇2 J
≤

(

1 −
4κ

κ(Hk)(κ + 1)2

)k
‖v0 − v⋆‖2

∇2 J
.

The proof is therefore complete. �

Remark that for n̂ = 1, we immediately get κ(Hk) = 1 and we recognize the serial steepest

gradient method, which has convergence rate
( κ−1

κ+1

)2
. The iterative procedure is therefore very

slow as κ rises. We present in what follows numerical results that demonstrated the efficiency of

our algorithm, even the theoretical proof of the convergence rate is not optimal with respect to n̂,

because of the difficulty to estimate κ(Hk) which depends on the set of the descent directions and

the problem it self. Tests consider examples of well-posed and ill-posed control problem.

5. Numerical experiments

In order to validate the method in a linear algebra framework, we first implement a simple

code with the scientific programming language Scilab [9]. The implemented algorithm considers

the minimization of a quadratic form as we shall explain in the sequel.

5.1. Simple linear algebra program

Consider A an SPD m-by-m matrix and a real vector b ∈ R
m ∩ rank(A). We aim at solving

iteratively the linear system Ax = b, by minimizing the following quadratic form

q(x) =
1

2
xT Ax − xT b. (34)

In the following, we denote by n̂ the partition number of the unknown x ∈ Rm. Without loss

of generality, the partition is supposed to be uniform; it is thus assumed that n̂ divides m with a

null rest.

We give in Fig. 1 a Scilab function that builds the vector step-length Θk
n̂

as stated in Eq. (1).

Several tests has been carried out. For each test, we randomly generate an SPD sparse matrix

A = γmI + R, where γ > 1, I is the identity matrix and R is a symmetric random matrix.

This way the matrix A is diagonally dominant, hence SPD. For each matrix A we proceed to

minimize the quadratic form defined in Eq.(34) with various subdivisions on n̂. In the case of a

rapidly vanishing Eigen values of A we use a Tikhonov regularization. In this case A becomes

A = A + αI. This technique helps us to manipulate the condition number and the coercivity of

the handled problem.

Fig. 2 presents the improvement quality of the algorithm against the serial case n̂ = 1. In

the left side of Fig. 2 we present the cost function decay versus the iteration number of the

algorithm. Several choices of partition on n̂ are carried out. In the right side of the Fig. 2 we give

the logarithmic representation of the relative error
‖xk−x⋆‖2
‖x⋆‖2

, where x⋆ is the exact solution of the

linear system.
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1 f u n c t i o n [ P]=Bui ld Hk ( n , A, b , xk , dJk )

2 m= s i z e (A, 1 ) ; l=m/ n ; i i =modulo (m, n ) ;

3 i f i i ˜=0 t h e n

4 p r i n t f ( ” Bad c h o i c e o f p a r t i t i o n : n ! ” ) ;

5 p r i n t f ( ” P l e a s e chose an o t h e r n ! ” ) ;

6 a b o r t ;

7 end

8 dJkn=z e r o s (m, n ) ; Dk= [ ] ;

9 f o r i =1: n

10 dJkn ( ( i −1) ∗ l +1: i ∗ l , i )= dJk ( ( i −1) ∗ l +1: i ∗ l ) ;

11 Dk ( i )=dJkn ( : , i ) ’∗ (A∗xk−b ) ;

12 end

13 Hk= [ , ] ;

14 f o r i =1: n

15 f o r j= i : n

16 Hktmp=A∗ dJkn ( : , j ) ;

17 Hk ( i , j )=dJkn ( : , i ) ’∗Hktmp ;

18 Hk ( j , i )=Hk ( i , j ) ;

19 end

20 end

21 t h e t a=−Hk\Dk ;

22 P = eye (m,m) ;

23 f o r i =1: n

24 P ( ( i −1) ∗ l +1: i ∗ l , ( i −1) ∗ l +1: i ∗ l )= t h e t a ( i ) . ∗ eye ( l , l ) ;

25 end

26 e n d f u n c t i o n

Figure 1: Scilab function to build the vector step length, for the linear algebra program.

Figure 2: Cost functional decay versus time of computation for several values of n̂ (i.e. the number of processors used),

results from the linear algebra Scilab program.
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5.2. Finite element program

We discuss in the following section the application of our algorithm for the optimal control

of a system governed by the heat equation. This is a typical optimal control problem faced by

engineers.

Our tests deal with the 2D-heat equation on the bounded domain Ω = [0, 1] × [0, 1]. We

consider, three types of test problems on both distributed and Dirichlet controls. Tests vary

according to the theoretical difficulty of the control problem[10, 11, 12]. Indeed, with the min-

imization problem of the quadratic cost functional, we vary the regularization parameter α and

also change the initial and target solutions in order to handle more severe control problems as

has been tested in [10].

As has already been presented in the previous section, the optimal control problem is regu-

larized in the sense of Tikhonov, in order to ensure on one hand well-posedeness and on the other

hand to penalize the control on the cost function. Numerical tests concern also the case where

the regularizing parameter α tends to zero. In this case, the optimal control problem becomes an

approximated controllability problem in the sense that it tries to reach, as close as it can, the tar-

get solution. With this strategy, we accentuate the ill-posedness degree of the handled problem.

We also consider improper-posed problems in the case of controllability approximation, where

the target solution doesn’t belong to the space of the reachable solutions.

In order to emphasize the role of the parameter α in the problems, they are tagged as Pα
i

where the index i refers to the problem {1, 2, 3, 4}.

Tests that concern the distributed control problem are produced with control that acts on

Ωc ⊂ Ω, with Ωc = [0, 1
3
] × [0, 1

3
], whereas Dirichlet boundary control problem only concerns

Γ ⊂ ∂Ω, with Γ = {(x1, x2) ∈ ∂Ω, |x2 = 0}. The time horizon of the problem is fixed to T = 6.4

and the small time step is τ = 0.01. In order to have a better control of the time evolution we put

the diffusion coefficient σ = 0.01.

We suppose from now on that the computational domainΩ is a polygonal domain of the plane

R
2. We then introduce a triangulation Th of Ω; the subscript h stands for the largest length of the

edges of the tringles that constitute Th. The solution of the heat equation at a given time t belongs

to H1(Ω). The source terms and other variables are elements of L2(Ω). Those infinite dimensional

spaces are therefore approximated with the finite-dimensional space Vh, characterized by P1 the

space of the polynomials of degree ≤ 1 in two variables (x1, x2). We have Vh := {uh| uh ∈

C0(Ω), uh|K ∈ P1, for all K ∈ Th}. In addition, Dirichlet boundary conditions (where the solution

is in H1
0
(Ω) i.e. vanishing on boundary ∂Ω) are taken into account via penalization of the vertices

on the boundaries. The time dependence of the solution is approximated via the implicit Euler

scheme. The inversion operations of matrices is performed by the umfpak solver. We use the

trapezoidal method in order to approximate integrals defined on the time interval.

The numerical experiments were run over a parallel machine with 24 CPU’s AMD with 800

MHz in a Linux environment. We code two FreeFem++ [13] scripts for the distributed and

Dirichlet control. We use MPI library in order to achieve parallelism.

5.2.1. First test problem

we consider a well-posed optimal control problem [14] on the heat equation. The control is

considered first to be distributed and then Dirichlet. For the distributed optimal control problem

we first use the functions

y0(x1, x2) = exp
(

− γ2π
(

(x1 − .7)2 + (x2 − .7)2))

ytarget(x1, x2) = exp
(

− γ2π
(

(x1 − .3)2 + (x2 − .3)2)),
(Pα

1
)
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as initial condition and target solution respectively. The real valued γ is introduced to force the

Gaussian to have support strictly included in the domain and verify the boundary conditions. We

look for the minimizer of a cost functional of type Eq. (3). The decay of the cost function with

Figure 3: First test problem, for Pα
1

: Normalized and shifted cost functional values versus iteration number (left) and

versus computational time (right) for several values of n̂ (i.e. the number of processors used).

respect to the iterations of our algorithm is presented in Fig. 3 on the left side, and the same

results are given with respect to the computational time on the right side. We show that the

algorithm accelerates with respect to the partition number n̂ and also preserves the accuracy of

the serial resolution (i.e. n̂ = 1) in the sense that all tests, independently of n̂, always converge to

the unique solution. This is in agreement with Theorem (4.2), which proves the convergence of

the algorithm to the optimal control (if it exists [14]) for an arbitrary partition choice n̂.

We test a second problem with an a priori known solution of the heat equation. The consid-

ered problem has

y0(x1, x2) = sin(πx1) sin(πx2)

ytarget(x1, x2) = exp(−2π2σT ) sin(πx1) sin(πx2),
(Pα

2
)

as initial condition and target solution respectively. Remark that the target solution is taken as

a solution of the heat equation at time T . The results of this test are presented in Fig. 5, which

shows the decay in values of the cost functional versus the iterations of the algorithm on the left

side and versus the computational time on the right side.

We give in Fig. 4 and Fig. 6 several rows value snapshots (varying the n̂) of the control and its

corresponding controlled final solution y(T ). Notice the stability and the accuracy of the method

with any choice of n̂.

For the Dirichlet boundary control problem we choose the following functions as source

term, initial condition and target solution:

f (x1, x2, t) = 3π3σexp(2π2σt)(sin(πx1) + sin(πx2))

y0(x1, x2) = π(sin(πx1) + sin(πx2))

ytarget(x1, x2) = πexp(2π2σ)(sin(πx1) + sin(πx2)),

(Pα
3
)
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Figure 4: Several rows value snapshots in n̂ of the distributed optimal control on the left column and its corresponding

controlled final state at time T: y(T ) on the left columns. The test case corresponds to the control problem Pα
1

, where α

is taken as α = 1 × 10−02.
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Figure 5: First test problem, for Pα
2

: Normalized cost functional values versus time of computation for several values of

n̂ (i.e. the number of processors used).

respectively.

Remark 5.1. Because of the linearity and the superposition property of the heat equation, it can

be shown that problems (Pα
2

and Pα
3
) mentioned above are equivalent to a control problem which

has null target solution.

Test problem Results

Pα
1

α = 1 × 10−02

Quantity n̂ = 1 n̂ = 2 n̂ = 4 n̂ = 8 n̂ = 16

Number of iterations k 100 68 63 49 27

walltime in mn 15311.6 15352.3 14308.7 10998.2 6354.56

‖yk(T ) − ytarget‖2/‖y
target‖2 0.472113 0.472117 0.472111 0.472104 0.472102

∫

(0,T )
‖vk‖2c dt 0.0151685 0.0151509 0.0151727 0.0152016 0.015214

Pα
2

α = 1 × 10−02

Quantity n̂ = 1 n̂ = 2 n̂ = 4 n̂ = 8 n̂ = 16

Number of iterations k 60 50 45 40 35

walltime in mn 3855.21 3726.28 4220.92 3778.13 3222.78

‖yk(T ) − ytarget‖2/‖y
target‖2 8.26 × 10−08 8.26 × 10−08 8.15 × 10−08 8.15 × 10−08 8.14 × 10−08

∫

(0,T )
‖vk‖2c dt 1.68 × 10−07 1.68 × 10−07 1.72 × 10−07 1.72 × 10−07 1.72 × 10−07

Pα
2

α = 1 × 10−08

Quantity n̂ = 1 n̂ = 2 n̂ = 4 n̂ = 8 n̂ = 16

Number of iterations k 60 50 40 30 20

walltime in mn 3846.23 4654.34 3759.98 2835.31 1948.4

‖yk(T ) − ytarget‖2/‖y
target‖2 3.93 × 10−08 1.14 × 10−08 5.87 × 10−09 2.04 × 10−09 1.76 × 10−09

∫

(0,T )
‖vk‖2c dt 5.42 × 10−07 4.13 × 10−06 2.97 × 10−04 3.64 × 10−03 2.51 × 10−03

Table 1: Results’ summary of Algorithm 3 applied on the distributed control problems Pα
1

and Pα
2

.

5.2.2. Second test problem

In this section, we are concerned with the approximate controllability of the heat equation,

where the regularization parameter α vanishes, practically we take α = 1 × 10−08. In this case,

problems Pα
2

and Pα
3
, in the continuous setting are supposed to be well posed (see .e.g [15, 16]
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Figure 6: Several rows value snapshots in n̂ of the distributed optimal control on the left columns and its corresponding

controlled final state at time T: y(T ) on the right columns. The test case corresponds to the control problem Pα
2

, where

α = 1 × 10−02.

17



Figure 7: Several rows value snapshots in n̂ of the Dirichlet optimal control on the left columns and its corresponding

controlled final state at time T: y(T ) on the right columns. The test case corresponds to the control problem Pα
3

, where

α = 1 × 10−02.
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and references therein). However, may not be the case in the discretized settings; we refer for

instance to [12] (and reference therein) for more details.

Figure 8: Normalized and shifted cost functional values versus time of computation for several values of n̂ (i.e. the

number of processors used), Distributed control problem Pα
2

whith α = 1 × 10−08.

Test problem Results

Pα
3

α = 1 × 10−02

Quantity n̂ = 1 n̂ = 2 n̂ = 4 n̂ = 8 n̂ = 16

Number of iterations 40 40 30 18 10

walltime in mn 12453.9 12416.1 9184.28 5570.54 3158.97

‖y(T ) − ytarget‖2/‖y
target‖2 8.54 × 10+06 0.472488 0.0538509 0.0533826 0.0534024

∫

(0,T )
‖v‖2
Γ
dt 2.79 × 10+08 1.96 × 10+07 31.4193 138.675 275.08

Pα
3

α = 1 × 10−08

Quantity n̂ = 1 n̂ = 2 n̂ = 4 n̂ = 8 n̂ = 16

Number of iterations 40 40 30 27 10

walltime in mn 1248.85 1248.97 916.232 825.791 325.16

‖y(T ) − ytarget‖2/‖y
target‖2 8.85 × 10+06 0.151086 0.0292072 0.0278316 0.0267375

∫

(0,T )
‖v‖2
Γ
dt 7.92 × 10+08 2.30 × 10+07 1.27 × 10+07 1.47 × 10+07 1.58 × 10+06

Table 2: Results’ summary of Algorithm 3 applied on the Dirichlet boundary control problems Pα
2

and Pα
3

.

Table 1 contains the summarized results for the convergence of the distributed control prob-

lem. On the one hand, we are interested in the error given by our algorithm for several choices

of partition number n̂. On the other hand, we give the L2(0,T ; L2(Ωc)) of the control.

We notice the improvement in the quality of the algorithm in terms of both time of execution

and control energy consumption. In fact, for the optimal control framework (α = 1 × 10−02

relatively big), we see that, for a fixed threshold, the algorithm is faster and consume less energy

as n̂ increases.

For the approximate controllability framework (α = 1 × 10−08 vanishes), we note first that

the general accuracy of the controlled solution is improved as α diminishes. Second, we note

that the error diminishes with respect to increasing n̂; however the energy consumption rises as

well. The scalability in time and number of iteration is not directly affected by the change of the

problem in α.

Table 2 contains the summarized results at the convergence of the Dircichlet boundary control
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Figure 9: Several rows value snapshots in n̂ of the distributed optimal control on the left columns and its corresponding

controlled final state at time T: y(T ) on the right columns. The test case corresponds to the control problem Pα
2

, where

α = 1 × 10−08.
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Figure 10: Several rows value snapshots in n̂ of the Dirichlet optimal control on the left columns and its corresponding

controlled final state at time T: y(T ) on the right columns. The test case corresponds to the control problem Pα
3

, where

α = 1 × 10−08..
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problem. This problem is known in the literature for its ill-posedness, where it may be singular

in several cases [11]. In fact, it is very sensitive to noise in the data. We show in Table 2 that

for a big value of the regularization parameter α our algorithm behaves already as the distributed

optimal control for a vanishing α, in the sense that it consumes more control energy to produce a

more accurate solution with smaller execution time. It is worth noting that the serial case n̂ = 1

fails to converge, whereas the algorithm behaves well as n̂ rises.

We give in Fig. 7 and Fig. 10 several rows value snapshots (varying n̂) of the Dirichlet control

on Γ. We present in the first column its evolution during [0,T ] and on the second column its

corresponding controlled final solution y(T ) at time T ; we scaled the plot of the z-range of the

target solution in both Figs.7 and 10.

In each row one sees the control and its solution for a specific partition n̂. We notice that the

serial case n̂ = 1 fails to reach the target solution even if we have a stable minimization procedure

of the cost function.

The serial case n̂ = 1 leads to a controlled solution which does not have the same rank as

ytarget, whereas as n̂ rises, we improve the results. It is worth noting that the control is generally

active only around the final horizon time T . This is very clear in Fig. 7 and Fig. 10 (see the first

row i.e. case n̂ = 1). The nature of our algorithm, which is based on time domain decomposition,

obliges the control to act in subintervals. Hence, the control acts more often and earlier in time

(before T ) and leads to a better controlled solution y(T ).

5.2.3. Third test problem

In this test case, we consider a severely ill-posed problem. In fact, the target solution is

piecewise Lipschitz continuous, so that it is not regular enough compared with the solution of

the heat equation. This implies that in our control problem, both the distributed and the Dirchlet

boundary control has no solution. The initial condition and the target solution are given by

y0(x1, x2) = π(sin(πx1) + sin(πx2))

ytarget(x1, x2) = min
(

x1, x2, (1 − x1), (1 − x2)
)

,
(Pα

4
)

respectively. A plots of the initial condition and the target solutions are given in Fig. 11.

Figure 11: Graph of initial and target solution for both distributed and Dirichlet boundary control problem.
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Figure 12: Several snapshots in n̂ of final state at time T: y(T ). The test case corresponds to Distributed control sever

Ill-posed problem Pα
4

.

Test problem Results

Distributed control

Pα
4

α = 1 × 10−08

Quantity n̂ = 1 n̂ = 2 n̂ = 4 n̂ = 8 n̂ = 16

Number of iterations 100 68 60 50 40

walltime in mn 6381.43 6303.67 5548.16 4676.83 3785.97

‖y(T ) − ytarget‖2/‖y
target‖2 8.16 × 10−03 5.3 × 10−03 4.74 × 10−03 3.95 × 10−03 3.76 × 10−03

∫

(0,T )
‖v‖2
Γ
dt 0.34 3.01 52.87 52.77 2660.87

Dirichlet control

Pα
4

α = 1 × 10−08

Quantity n̂ = 1 n̂ = 2 n̂ = 4 n̂ = 8 n̂ = 16

Number of iterations 25 25 20 4 1

walltime in mn 848.58 655.40 655.40 146.19 62.87

‖y(T ) − ytarget‖2/‖y
target‖2 2.85 × 10+10 3055 39.3 0.2 0.067

∫

(0,T )
‖v‖2
Γ
dt 6.73 × 10+08 2.17 × 10+07 141.62 17.84 26758.5

Table 3: Results’ summary of Algorithm 3 applied on to both distributed and Dirichlet boundary control for the third

test problem Pα
4

.
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Figure 13: Several snapshots in n̂ of final state at time T: y(T ). The test case corresponds to Dirichlet control sever

Ill-posed problem Pα
4

.

Figure 14: Log scale representation of the normalized and shifted cost functional values versus time of computation for

several values of n̂ (i.e. the number of processors used). Distributed control problem Pα
4

with α = 1 × 10−08.
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In Figures 12 and 13 we plot the controlled solution at time T for the distributed and Dirichlet

control problems respectively. We remark that for the distributed control problem the controlled

solution is smooth except in Ωc, where the control is able to fit with the target solution.

Remark 5.2. Out of curiosity, we tested the case where the control is distributed on the whole

domain. We see that the control succeeds to fit the controlled solution to the target even if it is

discontinuous. This is impressive and shows the impact on the results of the regions where the

control is distributed.

We note the stability of the method of the distributed test case. However, the Dirichlet prob-

lem test case presents hypersensitivity. In fact, in the case of n̂ = 1 the algorithm succeeds to fit

an acceptable shape of the controlled solution, although still far in the scale. We note that the

time domain decomposition leads to a control which gives a good scale of the controlled solution.

In this severely ill-posed problem, we see that some partitions may fail to produce a control that

fits the controlled solution to the target. There is an exemption for the case of n̂ = 8 partitions,

where we have a good reconstruction of the target. The summarized results are given in Tables 3.

5.2.4. Regularization based on the optimal choice of partition

The next discussion concerns the kind of situation where the partition leads to multiple so-

lutions, which is common in ill-posed problems. In fact, we discuss a regularization procedure

used as an exception handling tool to choose the best partition, giving the best solution of the

handled control problem.

It is well known that ill-posed problems are very sensitive to noise, which could be present

due to numerical approximation or to physical phenomena. In that case, numerical algorithm

may blow-up and fail. We present several numerical tests for the Dirichlet boundary control,

which is a non trivial problem numerically. The results show that in general time domain decom-

position may improve the results in several cases. But scalability is not guaranteed as it is for

the distributed control (see for instance Fig. 14). We propose a regularization procedure in order

to avoid the blow-up and also to guarantee the optimal choice of partition of the time domain.

This procedure is based on a test of the monotony of the cost function. In fact, suppose that we

possess 64 processors to run the numerical problem. Once we have assembled the Hessian Hk

and the Jacobian Dk for the partition n̂ = 64, we are actually able to get for free the results of

the Hessian and the Jacobian for all partitions n̂ that divide 64. Hence, we can use the quadratic

property of the cost functional in order to predict and test the value of the cost function for the

next iteration without making any additional computations. The formulae is given by:

J(vk+1) = J(vk) −
1

2
DT

k H−1
k Dk.

We present in Algorithm 4 the technique that enables us to reduce in rank and compute a series

of Hessians and Jacobians for any partition n̂ that divide the available number of processors. An

exemple of the applicability of these technique, on a 4-by-4 SPD matrix, is given in Appendix.

6. Conclusion

We have presented in this article a time parallel approach for the simulation of optimal control

problem for systems governed by PDEs. The method is based on the calculation of the vector

step-length according to a set of gradient descent directions using a quasi-Newton technique.
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Algorithm 4: Reduce in rank of the partition n̂

0 Input: n̂,Hk
n̂
,Dk

n̂
;

1 n = n̂;

2 Jk+1
n/2
= Jk+1

n ;

3 while Jk+1
n/2
> Jk

n do

4 for i = 0; i ≤ n; i + 2 do

5
(

Dk
n/2

)

i =
(

Dk
n

)

i +
(

Dk
n

)

i+1;

6 for j = 0; j ≤ n; j + 2 do

7
(

Hk
n/2

)

i, j =
(

Hk
n

)

j +
(

Hk
n

)

j+1;

8 end

9 end

10 Estimation of the cost Jk
n/2

;

11 n = n
2
;

12 end

It is guaranteed that the new algorithm performs much better than the optimal steepest descent

algorithm in the well-posed settings. However, for the ill-posed settings, we have to regularize

the descent directions in order to obtain performance improvement. Convergence property of the

presented method is provided for any arbitrary partition for the well-posed case. Those results

are illustrated with several numerical tests using parallel resources with MPI implementation.

Kantorovich matrix inequality. For the sake of completeness, we give in this appendix the Matrix

Kantorovich inequality, that justifies the statement of our convergence proof. Assume that ∇2J is

symmetric positive definite with smallest and largest eigenvalues λmin and λmax respectively. We

give in the following the matrix version of the famous Kantorovich inequality, which reads:

Theorem 6.1 (see [7] for more details). Assume that
∑n̂

n=1 αn = 1 where αn ≥ 0 and λn > 0 ∀n;

we have thus :
n̂

∑

n=1

αnλn

n̂
∑

n=1

αn

λn

≤
(λmax + λmin)2

4λmaxλmin

.

By diagonalizing the symmetric positive definite operator H we obtain: H = PΛP−1, where

P is orthonormal operator (i.e. PT = P−1). Recall Eq.(33) that we rewrite as:

‖∇J(vk)‖2
∇2 J
‖∇J(vk)‖2

(∇2 J)−1

‖∇J(vk)‖4c
≤

(λmax + λmin)2

4λmaxλmin

.

In order to simplify the expression, we shall use dk instead of ∇J(vk) so that the equation above

reads:

dT
k

(∇2J)dk dT
k

(∇2J)−1dk

(dT
k

dk)2
=

dT
k

PTΛPdk

dT
k

PT Pdk

dkPTΛ−1Pdk

dT
k

PT Pdk

.

Let us define dk := Pdk, consequently the above equality becomes:

dT
k
Λdk

dT
k

dk

dT
k
Λ−1dk

dT
k

dk

=

n̂
∑

n=1

(dk)2
n

dT
k

dk

λn

n̂
∑

n=1

(dk)2
n

dT
k

dk

1

λn

.
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We then denote by αn =
(dk)2

n

dT
k

dk
so that

∑n̂
n=1 αn = 1, and finally:

dT
k

Adk dT
k

A−1dk

(dT
k

dk)2
=

n̂
∑

n=1

αnλn

n̂
∑

n=1

αn

λn

.

�

Exemple 4-by-4 SPD matrix reduced in rank using Algorithm 4. In order to illustrate the instance

of Algorithm 4. We choose a simple example: a matrix 4-by-4 which we are going to reduce

recursively in 2-by-2 and in 1-by-1 as follows:





























6 1 2 3

1 8 2 4

2 2 12 7

3 4 7 16





























7→





























(6 1) (2 3)

(1 8) (2 4)

(2 2) (12 7)

(3 4) (7 16)





























7→





























7 5

9 6

4 19

7 23





























7→

(

16 11

11 42

)

(

16 11

11 42

)

7→

(

27

53

)

7→ (80)
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