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Abstract. Interaction is a vital component in the visualization of mul-
tivariate networks. It enables greater amounts of information to be seen
and explored than is possible with static visualization. Int eraction can
also help show the information landscape of the data while stil l allowing
users to �nd and view areas of interest in greater detail and pivot between
these. In this chapter we �rst discuss the design space and requirements
for interacting with large multivariate data sets. We describe an d clas-
sify relevant interaction techniques, and give examples of the interactive
aspects of multivariate graph visualization systems. We present recom-
mendations and guidelines for designing novel interaction approaches.
Finally, we describe the open challenges within the �eld of mu ltivariate
graph visualization as we see them.

1 Introduction

The overall aim of visualization is to obtain insight into large amounts of data.
Detection of patterns as well as outliers are typical examples. For networks, such
patterns can be number and position of cliques; for multivariate data this can be
the correlation between attributes. The major challenge of multivariate network
visualization is to understand the interplay between propertiesof the network
and its associated data, for instance to see if the formation of cliques canbe
understood from attributes of nodes.
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Producing useful and informative visualizations for multivariate networks is
a complex and challenging task. Complexity and scalability (see Chapter ??) are
signi�cant issues, both with respect to the graph size as well as to the number
and variety of variables. It is very di�cult to statically display lar ge, complicated
data sets in general, including multivariate data and networks. Occasionally it is
possible to nicely encode small multivariate data sets completelyin custom static
visualizations, such as with Minard's seminal \Napoleon's March to Moscow"
visualization [53], but this is rare.

In practice, even moderate-sized networks can be di�cult to visualize without
overlaps and loss of information, let alone when augmented with additional vari-
ables. Moreover, people working with visualizations can usually only comprehend
a small subset of the information space at a time. It is therefore important to
reduce the relevant information displayed at any point to a manageable amount
in order to facilitate understanding of the main data characteristics. Thus, as
the data size and complexity (i.e., the combination of dimensions and network
complexity) increases, there is a need to e�ciently navigate through the data
and to enable discovery and communication of the data.

Interaction is a vital component in the visualization of multivariate ne tworks.
By allowing people to browse data sets with interactions like panning and zoom-
ing, we can enable much more information to be seen and explored than would
otherwise be possible with static visualization. Overview-based interactions af-
ford the user the ability to understand a complete picture of the data or infor-
mation landscape and to decide where to direct her attention. Through search
and �ltering, interaction can reduce cognitive e�ort on users by allowi ng them
to locate, focus on and understand subsets of the data in isolation. Pivoting and
other navigational interactions at both the view and data level allow people to
identify and then to transition between areas of interest.

While there are methods for interacting with graphs and dimensions sep-
arately, the combination of both needs special attention. The challenge is to
clearly visualize multiple sets of individual dimensions as well asto o�er a useful
visual overview of data, and allow transitions between these to be easily under-
stood. Moreover, we need to �nd ways to support users in navigating through the
complex data space (graphs� dimensions) without \getting lost," and without
an overburden of interaction actions that may frustrate the user.

In this chapter interaction for the visualization of multivariate netw orks is
considered. After a discussion of the design space for interaction, existing ap-
proaches are examined, guidance for designing interactions is o�ered andopen
problems in the area are described. It is aimed at readers who are intending to
visualize networks with multivariate data. They may be planning to evaluate
and select some existing approaches or systems and adapt these to theirneeds,
or they may be thinking about designing a custom visualization tailoredto the
needs of their data and audience. Rather than just a survey of the �eld, this
chapter should be considered a guide to interaction for networks withmultivari-
ate data; explaining what the problems are, what is possible, what has been
done before, what might be done in future.



3

The rest of the chapter is organized in �ve further sections. The next section
discusses the design space and requirements for working with large multivariate
data sets, including di�culties in navigating networks and dimen sions. Section 3
classi�es relevant interaction techniques on the basis of the stages in the standard
Information Visualization Reference Model. Section 4 gives examples ofthe in-
teractive aspects of multivariate graph visualization systems. Section 5 presents
recommendations and guidelines for designing novel interaction approaches, in-
cluding adaptation of existing interaction design principles for usein this setting.
Finally, Section 6 puts forward a vision of the challenges and goals as we seethem
within the �eld of multivariate graph visualization.

2 Background

Interaction is a vital ingredient of information visualization, and has been heavily
studied. In this section, we do not aim to explain in general how interaction
works in visualization, as this is very well addressed by excellentbooks such
as [58] and a large number of articles [30,39,72]. Also, we acknowledge that data
exploration encompasses much more than just direct interaction with graphical
representations, and includes aspects like navigation support, knowledge capture,
and collaborative visualization. This area is studied in visual analytics; for an
overview see Pike et al. [51].

Furthermore, for this chapter, we mostly consider interaction for standard
point-and-click and keyboard interfaces on desktop computers. Whilemulti-
touch tablets are commonplace and we are seeing increasing availabilityof large
touch-based tables and displays, there has been relatively littlework designing or
evaluating interaction techniques for working with large networks or multivari-
ate data on these. This is also the case with other new technology now becoming
available to consumers such as 3D displays, contactless input devices, and multi-
monitor displays. We discuss this as a key ongoing challenge in Section6.

Data exploration often involves a top down approach, as strongly summarized
in the visual information seeking mantra of Ben Shneiderman [56]: \overview
�rst, zoom and �lter, details on demand". Both for network and multivariat e
visualization, many systems and techniques aim to satisfy this pattern. But in
practice, a bottom up approach is used. For instance, in social network visual-
ization a certain person can be the starting point for further exploration [27];
in multivariate visualization one can start from one particular item and explore
items which are similar. Since these approaches are valuable, an ideal system
should support both.

To describe the multiple kinds of interactions used for the visualization of
multivariate networks in more detail, we use the Information Visualization Ref-
erence Model [10] (see Figure 1), which breaks down the visualizationprocess
into four stages: raw data or source data, data tables, visual structures or vi-
sual abstractions, and views. To display the raw data, several transformations
have to be applied: the raw data is transformed into data tables through data
transformations, the data tables into visual structures through visual mappings,
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Fig. 1. The information Visualization Reference Model.

and the �nal rendering transforms the visual structure into an image on a view.
All these transformations are performed using a multitude of speci�c parame-
ters, and interaction can then be de�ned at the system level asthe change of
transformation parameters controlled by the user with immediate feedback to the
user.

This generic model applies both to network and multivariate visualization,
and many interaction techniques speci�cally tailored to the properties of these
data types have been developed. In the next section we enumerate the most
relevant of these, categorized along the stages of the reference model.However,
far less techniques have been developed that speci�cally aim at interaction with
combinations of network and multivariate data. The challenge here is to o�er
a simple but powerful set of interaction techniques that allows users to explore
such combinations with minimal cognitive overload. On the one hand, this should
be achievable, since many tasks and operations are similar at a high level;but
on the other hand, standard representations of networks and multivariatedata
do vary largely, and also the more powerful and customized interaction methods
for dealing with these data types di�er greatly.

These e�ects can be observed for all stages of the reference model. At�rst
sight, network data and multivariate data seem fundamentally di�erent. How-
ever, topological aspects of network data can be nicely captured as multivariate
data, simply by calculating topological metrics of nodes and edges. Also, mul-
tivariate data can be considered as networks, for instance by introducing edges
between nodes that are similar, as pursued by Liu et al. [42]. Having saidthis,
multivariate network visualization usually cannot be reduced to purely multi-
variate or network visualization. In fact, the combination makes analysis ofmul-
tivariate networks a real challenge since discovery of an underlyingphenomenon
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in the data can require a detailed understanding of the network topologyto-
gether with the multivariate attributes, e.g., if variables represent snapshots of
a 
ow dictated by the topology. One consequence for interaction is that users
should be enabled to obtain such associated data on request. Filtering of data
is a standard operation. For multivariate data this typically involves selection
based on ranges of attributes, and for networks the distance from a selected set
of nodes can be used.

Concerning the visual representation, network data and multivariate data
can be shown separately or be combined. The use of multiple views on data
is standard in visualization, and by interacting through linking and br ushing,
information from di�erent views can be associated. Interaction is crucial here,
but also, as both types of data are shown separately, fusion of information is
often hard. One way to provide a combined view is to use a network-based
approach, where nodes and edges are embellished with iconic representations
of values or attributes. This limits the use of standard interaction methods for
multivariate data, for instance, to select two ranges for attributes by sweeping
out a rectangle in a scatterplot. Another way to combine data in one view is to
use a multivariate data-based approach, for instance, by superimposingedges on
top of a scatterplot. Now, standard interaction methods for multivariate data can
be used, as positions of nodes encode attribute values, but also, some network
interaction techniques that imply changes in the layout cannot be used anymore.

The standard approach in the view transformation stage is to provide options
for zooming and panning. On the image level, this is straightforward, however,
when using multiple views where the spatial dimensions have di�erent meanings,
this can be hard to deal with in a natural way.

These examples show there are basically two approaches to interacting with
multivariate networks. One approach is to stick to conventional representations
and dedicated interaction methods, another, more challenging but also poten-
tially more rewarding approach is to aim for tight integration, both with re spect
to representation and interaction, to facilitate the understanding of the relation
between network and multivariate. In the following sections theseapproaches
are explored in more detail.

3 Classi�cation of Interactions

We use the Information Visualization Reference Model, originally presented
in [10], as the basis for our classi�cation of interaction techniques (seeFigure 1).
We classify interaction techniques based on the level of this pipeline they a�ect.
Note, the match may not be always perfect, as some techniques address multiple
levels simultaneously. Where possible, we make use of standard terminology and
jargon from the information visualization community in order to simplify access
to related work.

Notably, our classi�cation presents the pipeline stages in the reverse order
to [10]: we describe interactions at the view-level �rst for pedagogicalclarity,
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since these are simpler, easier to understand, and are sometimes extended or
utilized by interactions in the remaining stages of the pipeline.

Many of the generic interaction techniques are applicable both to standard
networks as well as multivariate data, and basic examples are given. As discussed
in Section 2, there are many possible graph representations, the choiceof which
can limit the applicability of interaction techniques since thesemay be dependent
on speci�c aspects of the chosen graph representation. Examples of complete
systems utilizing a mix of interaction techniques to deal simultaneously with a
combination of multivariate data and networks are described in Section 4.

This classi�cation is a revised and expanded version of a similar classi�cation
of interaction techniques for network visualization appearing in [68]. Note, this
is certainly not the only way to de�ne and categorize interaction. For instance,
Yi et al. advocate for a taxonomy based on user intent, and they distinguish
Select, Explore, Recon�gure, Encode, Abstract/Elaborate, Filter, and Connect
as main categories [72]. Similar classi�cation has been recently also presented
for cartography [54].

3.1 View-Level Interactions

The view-level interactions are mostly related to visual emphasis ofinteresting
objects, navigation through the data set, and using Magic Lenses to augment
the visualized information.

Highlighting

Highlighting transiently changes the visible rendition of items at the view-level,
not at the visual encoding level. Although it can be practically implemented with
support at the visual structures level, this is not required so weconceptually
consider it a view level interaction.

Interactions such as search or mouse hovering may lead to highlightingof
objects such as search results or linked content.

Hovering: Hovering is used in multivariate visualizations such as InfoZoom [61]
that display large data tables with a smart aggregation mechanism. Rows are
items, columns are attributes, and values are in cells. When the mouse passes
over a value in a cell, all the cells with the same value for that attribute are
highlighted, showing the frequency and distribution of this value. Hovering is
even more useful with multiple views to highlight parts linked by some relation.
MatrixExplorer [31] uses two linked visual representations for networks, one
being a node-link diagram and the other an adjacency matrix. When the mouse
hovers over an entity in one visual representation, the same entityis highlighted
in the other.

Brushing and Linking: This technique involves the user watching multiple views
related to the same dataset. When the pointer is moved over an item inone
view, all the related items are highlighted in all the views [4,9].
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For multivariate networks, these views can use the same visual representation
or a di�erent one; they can show the same information (e.g., the networktopology
as a node-link diagram as well as an adjacency matrix [31]), complementary
information (e.g., the network topology as a node-link diagram and nominal
attributes as lists [28]), or mixed aspects (e.g., the network topology as anode-
link diagram and attributes using parallel coordinates [3,60]). These canbe used
to more easily contrast and compare information or variables in distant places
within the network or to see parts of the dataset from di�erent perspectives. The
latter is often used when visual encoding does not allow for viewingall the data
in one visual representation. This is generally caused by data size (too many
data points to show) or data complexity (too many data variables).

Further interaction techniques are often used to augment and enhancethe
use of multiple views. Some of these will be described in the visual encodings
section.

Magic Lenses: Magic lenses [7] are \�lters, that modify the presentation of
application objects to reveal hidden information, to enhance data of interest,
or to suppress distracting information." They have been used extensively in
visualization of networks and multivariate data.

Excentric Labeling [20] o�ers an approach similar to tooltips: labels are in-
teractively displayed over dense visualizations such as scatterplots or node-link
diagrams. When enabled, they show a focal region (rectangular or circular) that
follows the mouse; all the items inside the region are labeled outsideof the region
with a line connecting each item to its label. Bertini et al. [5] has extended upon
this to give better control of the focal region and visualization of aggregated
information on the focal region.

Jusu� et al. [36] describe lenses for multivariate network that display nodes
as small multidimensional visualizations when they are within the focal area.
They use several visualizations: parallel coordinates, bar charts, andstar plots.

Navigation

Panning and zooming: Panning and zooming involve changing the visible view-
port over the otherwise unchanged visualized data. These actions are usually
accomplished via standard interactions with common controls like scroll bars
and sliders, hardware like mouse scroll-wheels and track-pads or using multi-
touch at touch tables or tables.

Several navigation techniques have been designed to improve panning and
zooming over large data sets, which are discussed in detail in Chapter ??. Suf-
�ce it to say that these operations can be very cumbersome, requiring users to
drag the cursor for long distances across the screen. The simplest technique to
overcome that problem is to use an overview plus details representation, such as
a bird's eye view of the visualization in a small window and detailed view in a
large one. The viewport of the detailed view is usually displayed as arectangle
on the small window that can be manipulated for fast panning.
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In graph visualization, topology-aware graph navigationallows automatic
panning and zooming in a graph. These actions can be performed directlyon
the network structure, such as link sliding [46] or bring-and-go [63]. These tech-
niques allow the user to quickly �nd out-of-viewport nodes that are attached to
a particular node, relocate these to be temporarily positioned in their current
view and then allow further navigation from them. The bring-and-go technique
can also be considered as a magic lens for navigation.

View distortion (single/multiple): View distortion allocates more space to items
of the users' interest. In particular, �sheye views generally allow people to see
more information at a point of interest. For example, this can reveal detailed
information that was initially smaller than one pixel in size.

For graphs, there are speci�c distortion techniques, such as Balloon Focus in
a treemap [64] and a guaranteed visibility technique in dendrograms [47]that
allocate more space to the nodes in focus for their detailed inspection. These
techniques allow for multiple foci at the same time.

Distortion can be applied also to edges, improving the visibility of items on
the screen. For example, Edge Lenses [71] interactively displace edges under the
pointer in order to avoid overplotting of edges over nodes or edges over each
other. Tominski et al. [63] have proposed two types of lenses to facilitate the
exploration of networks: Local Edge Lensonly show edges with vertices inside
the focal region to locally reduce clutter;Bring Neighbors Lenstransiently moves
vertices that are connected to vertices in the focal area but not visible in the
viewport at the boundaries of the focal area. Their lenses can also be combined.
Note that the latter technique can be seen as an example of magic lenses.

The view distortion is not always geometric: Semantic zoomingchanges the
visual representation and level or details according to the zoom level. The inter-
action technique remains the same as panning & zooming (e.g., using the mouse
wheel or a zoom slider) but the visual e�ect of zooming is changed. Semantic
zooming [50] involves changing the visual parameters by altering the amount of
detail shown at various levels of zoom. The simpler kind of semantic zooming
consists of showing more details when zooming in, and less when zooming out,
connecting the zoom level to the data aggregation level [19]. This could involve
showing more of a network at the greater zoom depth such as changing graph
aggregation level [17].

3.2 Visual Structure Level Interactions

Selection: Selection interactions alter the visual parameters of the visualization.
They generally result in the most basic form of encoding change in orderto
highlight or emphasize areas of the network. Often they modify visual attributes
of the graph entities (e.g., color, size, line width, etc). Selection di�ers from the
view-level highlighting in that it implies a state change at least at the visual
structure level, sometimes even at the data level. Also, highlighting is transient
and changes implicitly as the pointer moves or the search query changes, whereas
selection is explicitly set on or o�.
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There are various ways of selecting. For graphs one can select/brush nodes di-
rectly by clicking on them, select nodes according to their network properties [6]
or select items according to network attribute values. The latter is speci�cally
suitable when analyzing multivariate networks. Moreover, the network structure
can be used for an enhanced highlighting, i.e., not only the selected nodes are
highlighted but also their neighbors or parent/child nodes. This can be extended
with node or edge properties, where only those adjacent/connected nodes are
highlighted that have certain node attribute values. An example is highlighting
of controlled companies in a shareholding network [62].

McGu�n et al. [44] have described techniques to select subgraphs interac-
tively. In addition to traditional rectangle and lasso selection of nodes, they
introduce a special kind of radial menu to further control and extend the selec-
tion of nodes (e.g., extending it by increasing a radius from the current selection:
add nodes at distance 2, 3, etc.) They also introduce a special kind of menu box
that appears transiently to operate on the current selection for visualstructure
level or data level operations (e.g., align, change color, change shape, etc.).

Changing mapping of attributes: Interactions that change the visual encoding
can also be used to explore and understand various dimensions of the data.An
example of this is changing the visual mapping of attributes, i.e., which attributes
are assigned to which visual attributes such as size and color. Such interaction
should be typically provided in interactive graph visualization systems.

Even considering just classic node-link representations for networks, visual
encodings and styles of these may still vary greatly. Di�erent emphasis can be
given to visual objects, such as by drawing edges faintly using a highlevel of
transparency or displaying nodes as points without size. These choices can in
turn lead to vastly di�erent visual results for the same data. Hence, interactively
varying such attributes of the visual encoding can be useful to discover di�erent
properties of the data. See [41] for some of the more extreme examples, as well
as further discussion of similar techniques in Chapter??.

Network layout: Layout-based interactions alter the position of nodes and edges
based on properties of the network. The intent is for the layout to reveal addi-
tional information about the structure of the network.

Examples of layout-altering interactions include positioning nodes and edges
to emphasize similarity, such as using Multidimensional Scaling [40], or by ap-
plying existing automated graph layout algorithms. Interactions to apply layout
changes are typically triggered by changing a layout setting, however layout can
sometimes be adjusted by interacting directly with the network, i.e., dragging
nodes or edges.

Network layout can be calculated solely in dependence of network struc-
ture [26], only in dependence on node properties [6] or a combination of both
network structure and network attributes [37, 57]. The type of layout depends
on the user task. If the user wishes to analyze the relationships between nodes
in the network, a topology-only layout is su�cient. However, if she wi shes to an-
alyze the interconnection of network structure and network attribut es (e.g., are
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people with similar characteristics friends?), a layout that takes both network
structure and network attributes into account is preferable.

Moreover, constraint-based network layout approaches can allow interactive
control and �ne-tuning of the layout [16], and may be used in conjunction with
multiple views and semantic zooming to allow interactive browsing and explo-
ration of large multivariate networks [15].

Multiple di�ering network layouts can be coupled with multiple v iews and
augmented with brushing and other highlighting techniques to understand the
relations between them [11]. This allows the user to compare and analyzethe
network from di�erent perspectives, and detect information which might have
been hidden while using a single layout.

Representation: Graphs and multivariate data can be represented visually in
various ways (e.g., node-link diagrams vs. adjacency matrices for graphs; scat-
terplot matrices vs. parallel coordinate plots for multivariate data, etc.). As one
representation may not reveal the intended information on the network, the user
may wish to change the representation in order to gain a better view of the data.
This is done using interactions altering visual encoding of parts of the network
or present alternative representations such as matrix views, tables, or even a
mixed representation such as in NodeTrix [32].

3.3 Data Level Interactions

Data-based interactions involve selecting which data to show (showing more, less
or completely di�erent data) or manipulating data values (deleting, in serting
data).

Selecting Data for Visualization

Filtering: For large graphs, the whole graph may not be shown on the screen.
The user then can decide either to reduce the size of the displayed data set
(�ltering) or to expand on demand the currently shown part of the data s et
(adding undisplayed data). Then, data level �ltering interaction enables display
of just interesting subsets of the data.

Such interaction can be performed directly in the network visualization (by
selecting nodes to hide) or using a query interface. The query interface can
range from a simple slider for attribute values, to a histogram-based �lter, right
through to �ltering via brushing in additional views on the data (mul tiple views).

Dynamic Querying: Sometimes there can be one or more important variables to
focus on within the visualization. A prominent example is time. The user may
wish to browse through time in the visualization of dynamic graphs. For this it
is useful to provide controls allowing the user to directly movethrough the range
of possible values. This is analogous to using sliders and other common controls
to provide panning and zooming for the space dimension.
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Adding undisplayed data:An alternative way of exploring large graphs is to show
a small part of the graph at the beginning of the analysis process (e.g., as aresult
of a search for interesting nodes) and then expand this selection on demand [27].
The expansion allows the user to add undisplayed data to the network. This can
be by navigating through the network topology, such as showing neighboring
nodes or connections between nodes on demand [28]. In hierarchic graphs(trees),
one can navigate along the hierarchy and show nodes on a lower level of hierarchy,
or show only nodes at a certain level [19].

The number of possible expansions of a graph might be very large, and the
user may not know which parts of the graph to expand. In such situations, it is
useful to show information on which elements to display when there are more
candidates than there is room to show. Such decisions are often based ona
degree of interest function. Such functions can be calculated in many di�erent
ways (e.g., [23,27,29,43]).

Search: Search-based interactions at the data level are most useful when not all
of the multivariate network data can be shown at once. They allow particular
entities of interest to be extracted and displayed or highlighted from the entire
data set. Speci�c examples are to:

{ search for nodes/edges with certain attribute values;
{ search for nodes/edges with certain topological properties;
{ search for subgraphs with speci�c structural properties (motifs) [67]; and
{ search for graphs|interactive user interfaces for de�ning query grap hs and

searching for them [66].

Search actions may be performed in various ways. They may involve construction
of textual or graphic queries, may be performed by example, or achievedby
�nding similar items to those in a selection drawn or otherwise speci�ed by the
user. Search interactions may result in other data level changes such as �ltering
and adding undisplayed data.

Pivoting: In the case that di�erent variables are represented by di�erent edge
and node types in a heterogeneous network, pivoting is an interaction approach
where the user can visualize a couple of variables at once and switch between
looking at various slices of the data. Usually this involves keeping somecommon
part of the network visible and as stable as possible during pivot actions, such
as in PivotGraph [69] or PivotPaths [13].

Changing Data

In some cases, the user may wish to change the input data such as data attributes
or graph structure. This can be done by direct data editing in the user interface
or by aggregation.
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Editing: Multiple di�erent ways to edit graphs exist:

{ Graph structure: the user may wish to edit the graph structure: delete or
add nodes or edges. This is usually done directly in the visual interface
by selecting nodes/edges to delete or by drawing new nodes or edges. The
system can then either show these changes directly or can show the impact
of these changes on the network structure [67].

{ Attributes: in multivariate networks, the user may additionally change at-
tribute values for certain nodes. Moreover, the user can run a speci�c algo-
rithm which creates new attribute values that can be explored or usedfor
navigation in the graph. This includes creating new attributes by combining
existing attributes (such as sum of two attributes) or by creating attributes
describing node or edge topological information (e.g., betweenness central-
ity).

Aggregation: Large graphs are often simpli�ed by aggregation. Aggregation
merges several nodes and/or edges to so-called supernodes or superedges, where
a supernode represents several nodes and a superedge represents several edges.
The user may choose to see one of the prede�ned graph levels (pre-de�ned ag-
gregation) or de�ne the aggregation interactively. Such aggregation can merge
user-selected nodes into one node [2] or can automatically merge nodesbased on
user-de�ned node attributes [69] or on topologic network properties [67].The ag-
gregation based on selected network attributes is specially useful for multivariate
networks. This allows for variable views on the graph and its structure.

Annotation: Annotation is an interaction where the user can add additional in-
formation to objects in the visualization in order to augment their understanding
of the data and indicate or signpost points of interest. This is analogous to us-
ing notes in order to make sense of complexity, although this is arguably more
valuable when it is done in-place by annotating the network directly. In this way
the annotations cause changes to the data which subsequently allows the user
to search, �lter or otherwise interact with the annotations directly .

History and Provenance: Interactive exploration and analysis of large graphs
includes many steps|interaction actions|and feedback loops. The perf ormed
interactions are then di�cult to remember and reproduce. This is facilitated
by tracking of user actions. GraphDice [6] records view changes and selection
changes and shows them as a set of miniatures. Hovering over a miniature tran-
siently changes the selection to use the one recorded in the history. Clicking on
the miniature sets the view and selection to the recorded one. The RelaNet Sys-
tem tracks and automatically aggregates all user actions [65]. It then shows them
to the user using a graphical representation: a tree whose nodes are visualization
states and edges are actions. The user can click on a node in the tree in order
to resume that previous visualization state. The user can then either replay the
actions or start a new exploration path (creating a new branch in the tree). All
actions can be stored, shared, and reviewed.
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Recorded actions can be analyzed algorithmically or shown to the user for
their visual inspection. The CZSaw system [38] keeps track of all interactions
and allows the user to explore and share them.

The tracking, reproducibility and analysis of user actions is still a large chal-
lenge in visual analytics. This problem belongs to the more general issue of
analytical provenance7 addressed by systems such as VisTrails [59].

4 Exemplars

To better illustrate e�ective interaction techniques and metho dologies for multi-
variate graphs, we here present four exemplars of existing InfoVis systems that
include such techniques. These exemplars are the GraphDice system by Bezeri-
anos et al. [6], the GraphTrail system by Dunne et al. [14], Parallel Node-Link
Bands by Ghani et al. [22], and the state transition networks by Pretorius and
van Wijk [52]. We used the following criteria when selecting these exemplars for
inclusion in the chapter:

{ Representative: Our objective was to select exemplars that capture a wide
range of representative interaction techniques.

{ Signi�cant: The included examples all provide interaction techniques that
are among the �rst of their kind.

{ Best practices: All exemplars demonstrate best practices in interaction for
multivariate graphs.

{ Familiar: Our selection is by necessity limited by our knowledge, experience,
and preconceptions of the general �eld of multivariate graph interactions.

In no way do we claim that this set of exemplars is exhaustive or optimal. There
may exist several other InfoVis tools that we could have selected instead of these
four. We only claim that our selection is representative and illustrative.

We use the term \analyst" to refer to a domain specialist performing analysis
tasks with the system, rather than a \data analyst".

4.1 GraphDice

GraphDice [6] is a multivariate graph visualization tool that supports naviga-
tion in data space similar to the scatterplot matrix navigation proposed in the
ScatterDice [18] tool. The key contribution of GraphDice is the integration of
attribute-based layout with interactive data space navigation, where both in-
trinsic (such as the age, gender, and annual income) as well as derived (layout
position, degrees, and centrality) attributes of actors in a social network form the
data space. This supports a smooth and 
uid visual exploration processwhere
users can seamlessly sculpt their queries across all attributes (see Figure 2).

In terms of speci�c interaction techniques for multivariate graphs, GraphDice
supports the following:
7 Seehttp://www.vacommunity.org/AnalyticProvenanceWorkshop for the �rst work-

shop on this issue

http://www.vacommunity.org/AnalyticProvenanceWorkshop
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Fig. 2. The GraphDice [6] multivariate visualization tool shown visua lizing an IEEE
InfoVis co-authorship network consisting of both intrinsic and derived attributes. The
analyst is in the process of transitioning between two di�erent node attributes; the
transition is shown as a smooth animation.

{ Smoothly changing visual mapping: The key feature of data space navi-
gation [18] is to smoothly change the mapping of attribute dimensions to po-
sitional (X and Y) visual variables using an animated transition. GraphDice
does not discriminate between intrinsic and computed attributes, thereby al-
lowing the analyst to transition from a geographic or computed graph layout
to other attributes such as degree, centrality, age, gender, income, etc.

{ Pivoting: Data space navigation in GraphDice also allows for pivoting a
multivariate graph to study di�erent slices, or facets, of the data. This inter-
action is inspired by PivotGraphs [69], and also incorporates node and link
aggregation to minimize overplotting and to summarize a large number of
data points. Similarly, GraphDice also summarizes multiple time points into
intervals that are visible during pivoting.

{ Query sculpting: Query sculpting is a faceted �ltering technique that is
closely integrated with the data space navigation and pivoting functionality
in GraphDice. The analyst can use lasso, bounding box, or interval selec-
tion on the main node-link display to create queries in the dataset.These
queries are maintained in a query control box, which also summarizesthe
size, distribution, and name of each query. Analysts can then use data space
navigation to pivot the query, allowing them to sculpt it by adding ad ditional
constraints on other attribute dimensions.

4.2 GraphTrail

The GraphTrail [14] visual analytics tool by Dunne et al. supports exploration
of graph data where the nodes and links are both multivariate|containing m ul-
tiple attributes, as already prominently discussed in this chapter|as well as
multimodal (called heterogeneousin the paper)|where the nodes or links are
of di�erent types, or modes. The work presents two case studies: (1) publication
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Fig. 3. GraphTrail [14] overview of a multivariate co-authorship datase t for the ACM
CHI conference. The screenshot shows examples of the tag cloud,hybrid bar chart,
and matrix chart supported by the tool.

data for the ACM CHI conference (Figure 3), where nodes contain attributes
such as year, title, name, locations, and date, and the modes are authors,papers,
and proceedings; and (2) a large-scale archeological graph of artifacts consisting
of 24 di�erent node modes and 35 link modes. The GraphTrail tool supports the
following speci�c interaction techniques for multivariate graphs:

{ Aggregation: The tool presents aggregated views of graphs in self-contained
charts such as bar charts, tag clouds, and tables instead of the raw graph
data as a traditional node-link diagram. The purpose is to use familiar and
readable visual summaries as opposed to the full graph dataset.

{ Visual history: While not strictly a multivariate graph interaction tech-
nique, GraphTrail provides an innate visual interaction history by maintain-
ing each exploration branch as a chain, or trail, of connected charts. This
allows the analyst to refer back to the exploration path, which may poten-
tially be branching, at any time.

{ Exploratory interactions: The tool supports three speci�c interaction
techniques for multivariate graph exploration:
{ Filtering and merging: Selecting subsets of a dataset for drill-down and
merging disparate subsets into a single chart using direct manipulation.
{ Pivoting: Transitioning between di�erent edge and node types (i.e., modes)
to explore multimodal relationship in the graph.
{ Cloning: Duplicating subsets and charts with dependencies to avoid having
to propagate upstream changes to connected child charts.
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