Automatic Tracker Selection w.r.t Object Detection Performance

Abstract : The tracking algorithm performance depends on video content. This paper presents a new multi-object tracking approach which is able to cope with video content variations. First the object detection is improved using Kanade- Lucas-Tomasi (KLT) feature tracking. Second, for each mobile object, an appropriate tracker is selected among a KLT-based tracker and a discriminative appearance-based tracker. This selection is supported by an online tracking evaluation. The approach has been experimented on three public video datasets. The experimental results show a better performance of the proposed approach compared to recent state of the art trackers.
Type de document :
Communication dans un congrès
IEEE Winter Conference on Applications of Computer Vision (WACV 2014), Mar 2014, Steamboat Springs CO, United States. 2014
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00974693
Contributeur : Duc Phu Chau <>
Soumis le : lundi 7 avril 2014 - 12:39:49
Dernière modification le : samedi 2 décembre 2017 - 01:27:28
Document(s) archivé(s) le : lundi 7 juillet 2014 - 11:15:35

Fichiers

wacv_review.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00974693, version 1

Collections

Citation

Duc Phu Chau, François Bremond, Monique Thonnat, Slawomir Bak. Automatic Tracker Selection w.r.t Object Detection Performance. IEEE Winter Conference on Applications of Computer Vision (WACV 2014), Mar 2014, Steamboat Springs CO, United States. 2014. 〈hal-00974693〉

Partager

Métriques

Consultations de la notice

146

Téléchargements de fichiers

156