
HAL Id: hal-00974810
https://inria.hal.science/hal-00974810v2

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A survey on signature-based algorithms for computing
Gröbner basis computations
Christian Eder, Jean-Charles Faugère

To cite this version:
Christian Eder, Jean-Charles Faugère. A survey on signature-based algorithms for computing Gröbner
basis computations. Journal of Symbolic Computation, 2016, pp.1-75. �10.1016/j.jsc.2016.07.031�.
�hal-00974810v2�

https://inria.hal.science/hal-00974810v2
https://hal.archives-ouvertes.fr

A survey on signature-based Gröbner basis computations

Christian Eder?1 and Jean-Charles Faugère2

1 University of Kaiserslautern
Department of Mathematics

PO box 3049
67653 Kaiserslautern

ederc@mathematik.uni-kl.de
2 INRIA, Paris-Rocquencourt Center, PolSys Project

UPMC, Univ. Paris 06, LIP6
CNRS, UMR 7606, LIP6

UFR Ingénierie 919, LIP6
Case 169, 4, Place Jussieu, F-75252 Paris
Jean-Charles.Faugere@inria.fr

Abstract. This paper is a survey on the area of signature-based Gröbner basis algorithms that was initiated
by Faugère’s F5 algorithm in 2002. We explain the general ideas behind the usage of signatures. We show
how to classify the various known variants by 3 different orderings. For this we give translations between
different notations and show that besides notations many approaches are just the same. Moreover, we give
a general description of how the idea of signatures is quite natural when performing the reduction process
using linear algebra. This survey shall help to outline this field of active research.

1 Introduction

Gröbner bases are a fundamental tool in computer algebra with many applications in various areas. In 1965
Buchberger introduced a first algorithmic approach for their computation [16]. Over the years many improve-
ments and optimizations were found, for example, criteria to remove useless elements during the computa-
tion [17,18,53].

In 2002 Faugère presented the F5 algorithm [33] which was a significant development in Gröbner basis com-
putation. This algorithm used for the first time signatures to detect efficiently useless data. The F5 algorithm
is well-known for computing no zero reduction, that means no useless computation if the input system is
regular.

Beginning 2008, many researchers worked on understanding the new criteria behind F5, which lead to new
insights, but also optimizations and new variants of the signature-based approach [3,22,23,29].

While the question of F5’s termination was still an open one until recently [45, 68, 69], many new variants
of F5 were introduced, for example, G2V [46] resp. GVW [47–49,83] or SB [70,71].

Moreover, first papers trying to classify all the different variants of signature-based Gröbner basis algorithms
came up [30,31,58,68,69,76].

At the moment the area of signature-based Gröbner basis algorithms is confusing and vast. More and more
papers are published proving statements already proven before, and even more publications can be found on
“new” variants that boil down to be a known one just with a different notation.

In this paper we try to give a rigorous survey on signature-based Gröbner basis theory, including all variants
known up to now. We lay an emphasis on understanding and we show how the variants presented over the
last years are mostly differ in small parts only. Moreover, we give the reader a vocabulary book at hand which
helps to understand how notations, varying for different authors, coincide.

Since this is a survey, we do not give proofs if they are long, complex, or do not help in understanding the
topic. We always explain the idea behind the proofs and refer to the related publication which includes a
complete proof. There the reader is then, with our descriptions and explanations, able to understand the

? The author was supported by the EXACTA grant (ANR-09-BLAN-0371-01) of the French National Research Agency.

proof in the used notation and language. Table 1 gives the outline of this paper and can be used as an index
for finding the variant the reader might be interested in. Moreover, Figure 1 gives a graphical overview on
the connection between the different algorithms that are explained in the following.

In Section 10 we give the problem of proving F5’s termination an in-depth discussion, where we also explain
how termination-ensuring variants as described in [4,28,51] are still useful from an algorithmic point of view.

Moreover, we present descriptions of signature-based computations using linear algebra for the reduction
process, see Sections 3 and 13. Besides [2] which is restricted to F5 this is the first known discussion on this
topic and shows how the ideas of signatures rather naturally come up in this setting.

Furthermore, we give in Section 14 detailed experimental results generated with various variants of signature-
based Gröbner basis algorithms presented in this survey. There we do not focus on timings, but on the charac-
teristics of the different variants, like size of the resulting Gröbner basis, size of the recovered syzyy module,
number of zero reductions and number of operations overall. The code those computations are done with is
implemented in SINGULAR [21] and available open-source. Thus the implementation is transparent and the
reader is able to understand the different outcomes in the various algorithms.

All in all, this is the first extensive classification of signature-based Gröbner basis algorithms and we hope that
it can be used as a useful handbook for researchers and students.

Name/case modification w.r.t. F5 [33](Section 8) Section Reference

MatrixF5 uses Macaulay matrices and linear algebra for re-
duction purposes, does not build S-pairs but gen-
erates all multiples of the generators for a given
degree step

3 [36]

RB generalized algorithm to compare Åadd and Årat,
special case of RB defined in Section 7

7.2 [31]

F5’ homogenizes inhomogeneous input, interreduces
intermediate Gröbner basis

8 [33]

F5” uses <d-pot instead of <pot 8 [33]

F5R interreduces intermediate Gröbner basis, uses it
only for reduction purposes

8.1 [72]

F5C interreduces intermediate Gröbner basis, uses it
for reduction purposes and for creation of new
S-pairs

8.2 [29]

F5A variant of F5C directly using a zero reduction as
signature for the syzygy module

8.2 [30]

iF5A variant of F5A recomputing signatures after in-
terreducing between two incremental steps, also
iG2V, . . .

8.2 [26]

Extended F5 criteria uses different module monomial orders 8.3 [5]

F5/2 adds field equations to the input systems for com-
putations over F2

9.1 [36]

bihomogeneous case uses maximal minors of Jacobian matrices to en-
large system of syzygies

9.2 [38]

SAGBI Gröbner bases uses the Reynolds operator on the syzygy crite-
rion

9.3 [43]

F5GEN generalized algorithm for different rewrite or-
ders, applicable with any compatible module
monomial order

10.1 [68,69]

Continued on the next page −→

2

Name/case modification w.r.t. F5 [33](Section 8) Section Reference

F5t uses the Macaulay bound, once it is exceeded the
algorithm transforms to Buchberger’s algorithm

10.2 [50,51]

F5B uses two lists of S-pairs: one for usual F5, another
one for computing a lower degree bound using
Buchberger’s chain criterion

10.2 [4]

F5+ distinguishes S-pairs needed for the Gröbner ba-
sis and those needed for F5’s correctness only,
once only the later ones are left it uses the idea
of F5B

10.2 [28]

Arri & Perry’s work introduces rewrite orderÅrat, works for any com-
patible module monomial order, directly uses
zero reduction as signature for syzygy module,
also known by AP

11.1 [3]

TRB generalized algorithm to compare F5 and GVW,
also introduces Årat as rewrite order, applicable
with any compatible module monomial order

11.2 [58]

GBGC generalized algorithm, usesÅrat but also general-
izes to use partial rewrite orders, applicable with
any compatible module monomial order, later on
further generalized to work on algebras of solv-
able type

11.3 [76,81]

G2V directly uses zero reduction as signature for
syzygy module, rewriting is done implicitly w.r.t.
Åadd

11.4 [46]

GVW generalizes G2V to be applicable with any com-
patible module monomial order, uses Årat since
2011 (and thus coincides with AP; also known as
GVWHS)

11.5 [47–49]

SB coincides with GVW and AP, <lt-pot only 11.6 [70]

SSG coincides with SB, GVW and AP 11.7 [44]

ImpG2V uses Buchberger’s Product and Chain criterion in
G2V (this is also introduced in the 2013 revision
of GVW)

12 [49,54]

F4/5 uses F4-style s-reduction 13 [2]

Table 1: Variants of F5 and their modifications (in the order of appear-
ance in this survey)

3

TRB
[58]

(2010)

GBGC
[76]

(2011)

RB
[31]

(2013)

F5
[33]

(2002)

F5”
[33]

(2002)

Extended
F5 Criteria

[5]

(2010)

F5GEN
[68, 69]

(2013)

F5/2
[36]

(2003)

F5B
[4]

(2005)

F5t
[50, 51]

(2009)

F5+
[28]

(2011)

SAGBI Gröb-
ner bases
[43]

(2009)

globally
invariant
(group
action)
[40]

(2012)

invariant
(group
action)
[41]

(2013)

MatrixF5
[36]

(2003)

F4/5
[2]

(2010)

bihomogeneous
case
[38]

(2010)

quasi-
homogeneous

case
[39]

(2013)

involutive bases
[54, 55]

(2013)

AP

[3]
(2009)

GVW(HS)
[48, 49, 83]

(2011)

on
solvable
algebras
[81]

(2012)

SB
[70]

(2012)

SSG
[44]

(2012)

G2V
[46]

(2010)

GVW(v1)
[47]

(2010)

iG2V
[26]

(2012)
ImpG2V
[54]

(2013)

F5’
[33]

(2002)

F5R
[72]

(2005)

F5C
[29]

(2009)

F5A
[30]

(2011)

iF5A
[26]

(2012)
iF5C
[26]

(2012)

Modifications not specific to
signature-based Gröbner

basis algorithms

Variants covered by
this survey

F4-style
reduction

Algorithmically
ensuring

termination

Exploit
algebraic
structures

Fig. 1. A good decade in signature-based Gröbner basis algorithms (status: March 2014)

4

2 Notations and terminology

In this section we introduce notations and basic terminology used in this survey. Readers already familiar
with signature-based algorithms might skip this section. Still note that notations itself play an important role
in the following, especially when comparing different variants of signature-based algorithms. We extend the
notation introduced in [31].

Let R be a polynomial ring over a field K . All polynomials f ∈ R can be uniquely written as a finite sum
f =

∑

κv x v∈M κv x v where κv ∈ K , x v ..=
∏

i x vi
i and M is minimal. The elements of M are the terms of

f . A monomial is a polynomial with exactly one term. A monomial with a coefficient of 1 is monic. Neither
monomials nor terms of polynomials are necessarily monic. We write f ' g for f , g ∈ R if there exists a
non-zero κ ∈K such that f = κg.

LetRm be a freeR-module and let e1, . . . , em be the standard basis of unit vectors inRm. All module elements
α ∈ Rm can be uniquely written as a finite sum α=

∑

ae i∈N
ae i where the a are monomials andN is minimal.

The elements of N are the terms of α. A module monomial is an element of Rm with exactly one term. A
module monomial with a coefficient of 1 is monic. Neither module monomials nor terms of module elements
are necessarily monic. Let α' β for α,β ∈ Rm if α= κβ for some non-zero κ ∈K .

Let ≤ denote two different orders – one for R and one for Rm: The order for R is a monomial order, which
means that it is a well-order on the set of monomials in R such that a ≤ b implies ca ≤ cb for all monomials
a, b, c ∈ R . The order for Rm is a module monomial order which means that it is a well-order on the set
of module monomials in Rm such that S ≤ T implies cS ≤ cT for all module monomials S, T ∈ Rm and
monomials c ∈ R . We require the two orders to be compatible in the sense that a ≤ b if and only if ae i ≤ be i
for all monomials a, b ∈ R and i = 1, . . . , m.

Consider a finite sequence of polynomials f1, . . . , fm ∈ R that we call the input (polynomials). We call f1, . . . , fm
a regular sequence if fi is a non-zero-divisor on R/ 〈 f1, . . . , fi−1〉 for i = 2, . . . , m. For α =

∑m
i=1 aie i , ai ∈ R

we define the homomorphism α 7→ α from Rm to R by α ..=
∑m

i=1 ai fi . An element α ∈ Rm with α = 0 is
called a syzygy. The module of all syzygies of f1, . . . , fm is denoted by syz (f1, . . . , fm).

Next we introduce the notion of signatures together with related structures in the plain polynomial setting.

Definition 2.1.

(a) The lead term lt (f) of f ∈ R \ {0} is the ≤-maximal term of f . The lead coefficient lc (f) of f is the
coefficient of lt (f). For a set F ∈ R we define the lead ideal of F by L(F) := 〈lt (f) | f ∈ F〉 .

(b) The lead term resp. signature s (α) of α ∈ Rm \ {0} denotes the ≤-maximal term of α. If ae i = s (α) then
we call ind (α) ..= i the index of α.

(c) For α ∈ Rm we define the sig-poly pair of α by (s (α) ,α) ∈ Rm ×R .
(d) α,β ∈ Rm are equal up to sig-poly pairs if s (α) = s (κβ) and α = κβ for some non-zero κ ∈ K . Corre-

spondingly, α,β are said to be equal up to sig-lead pairs if s (α) = s (κβ) and lt (α) = lt
�

κβ
�

for some
non-zero κ ∈K .

With these definitions every non-syzygy module element α ∈ Rm has two main associated characteristics –
the signature s (α) ∈ Rm and the lead term lt (α) ∈ R of its image α. Lead terms and signatures include
a coefficient for mathematical convenience, though an implementation of an signature-based Gröbner Basis
algorithm need not store the signature coefficients as we discuss in Sections 8 and 11.

We define some canonical module monomial orders that are useful in the following.

Definition 2.2. Let < be a monomial order on R and let aei , be j be two module monomials in Rm.

(a) aei <pot be j if and only if either i < j or i = j and a < b.
(b) aei <top be j if and only if either a < b or a = b and i < j.

These two orders can be combined with either a weighted degree or a weighted leading monomial:

(a) aei <d-pot be j if and only if either deg (aei) < deg
�

be j

�

or deg (aei) = deg
�

be j

�

and ae i <pot be j . In the
same way we define ae i <d-top be j .

(b) aei <lt-pot be j if and only if either lt (aei)< lt
�

be j

�

or lt (aei) = lt
�

be j

�

and ae i <pot be j . In the same way
we define ae i <lt-top be j .

5

Note that <lt-pot is also known as Schreyer’s order, for example, see [56].

The above introduced notation of the orders represent that the position in the module resp. the lead term in
the polynomial ring are preferred.

Example 2.3. Note that a polynomial can have infinitely many different module representations with distinct
signatures. Consider the three input polynomials f1 = x2 − y2, f2 = x yz − z3, and f3 = yz2 − x y in R =
Q[x , y, z]where< denotes the graded reverse lexicographical monomial order. Moreover, assume< to extend
to <pot on the set of monomials ofR3. For example, we can represent f2 by e2. Since f1e3 − f3e1 = 0 another
representation of f2 might be f1e3 + e2 − f3e1. Note that the two representations of f2 have two different
signatures, e2 and lt (f1)e3, respectively. We also want to point out that lt

�

s (α)
�

6= lt (α) is possible: In the

above example lt
�

s (e2)
�

= lt (f2), but lt
�

s (f1e3 + e2 − f3e1)
�

= lt (lt (f1) f3) 6= lt (f2).

Finally, we introduce the notion of Gröbner bases. For this, the reduction of polynomials is essential.

Definition 2.4. Let f ∈ R and let t be a term of f . Then we can reduce t by g ∈ R if there exists a monomial
b such that lt (bg) = t. The outcome of the reduction step is then f − bg and g is called the reducer. When g
reduces t we also say for convenience that bg reduces f . That way b is introduced implicitly instead of having to
repeat the equation lt (bg) = t.

The result of an reduction of f ∈ R is an element h ∈ R that has been calculated from f by a sequence of
reduction steps. Thus, reductions can always be assumed to be done w.r.t. some finite subset G ⊂R .

Definition 2.5. Let I = 〈 f1, . . . , fm〉 be an ideal in R . A finite subset G of R is a Gröbner basis up to degree d
for I if G ⊂ I and for all f ∈ I with deg(f) ≤ d f reduces to zero w.r.t. G. G is a Gröbner basis for I if G is a
Gröbner basis in all degrees.

In the very same way one can define Gröbner basis with the notion of standard representations:

Definition 2.6. Let f ∈ R and G ⊂ R finite. A representation f =
∑k

i=1 mi gi with monomials mi 6= 0, gi ∈ G
pairwise different is called a standard representation if

max
≤
{lt (mi gi) | 1≤ i ≤ k} ≤ lt (f) .

One can show that if for any f ∈ 〈G〉 with f 6= 0 f has a standard representation w.r.t. G and ≤ then G
is a Gröbner basis for 〈G〉. Moreover, note that the existence of a standard representation does not imply
reducibility to zero, see, for example, Exercise 5.63 in [10]).

Luckily, Buchberger also gave an algorithmic description of Gröbner bases using the notion of so-called S-
polynomials:

Definition 2.7. Let f 6= 0, g 6= 0 ∈ R and let λ = lcm (lt (f) , lt (g)) be the monic least common multiple of
lt (f) and lt (g). The S-polynomial between f and g is given by

spol (f , g) ..=
λ

lt (f)
f −

λ

lt (g)
g.

Theorem 2.8 (Buchberger’s criterion). Let I = 〈 f1, . . . , fm〉 be an ideal in R . A finite subset G of R is a
Gröbner basis for I if G ⊂ I and for all f , g ∈ G spol (f , g) reduces to zero w.r.t. G.

3 Matrix F5

Before we approach signature-based Gröbner basis algorithms theoretically let us look at a small Gröbner
basis computation. We start with a slightly simplified version of the F5 algorithm, the MatrixF5. With this

6

introduction to the topic we are able to give an easy description of the main ideas behind the classification of
signature-based algorithms which is discussed in detail later on. In order to keep this section plain and easy
we keep signature-based details at a minimum and focus on presenting their usefulness discarding useless
elements from the computation.

Descriptions of MatrixF5 can be also found, for example, in [6,43]. It is first publicly mentioned in [36] and
known for breaking challenge 1 of the hidden field equations (HFE) crypto system.

Algebraic systems are solved by computing a Gröbner basis for a corresponding ideal, [16, 18]. The link
between solving such systems and linear algebra is already very old, see, for example, [62, 64]. In 1999
Faugère introduced the F4 algorithm, [32]. A simplified description of this algorithm using signature-based
criteria is MatrixF5 which we present here. The important fact is that polynomial reduction coincides with
Gaussian elimination in MatrixF5 and thus the process of computing the basis can be illustrated nicely.

Let I = 〈 f1, . . . , fm〉 ⊂ R be the homogeneous input ideal. We want to compute a Gröbner basis for I w.r.t. a
given monomial order <. The idea is to incrementally construct Macaulay matrices Md which are generaliza-
tions of the Sylvester matrix for finitely many (> 2 possible), multivariate polynomials. In the above setting
the rows of Md represent the polynomials t j,k fk where t j,k are monomials in R such that deg(t j,k fk) ≤ d
for all 1 ≤ k ≤ m. The columns of Md are labelled by all possible terms x v such that deg(x v) ≤ d. More-
over, the columns are sorted, from left to right, by decreasing monomial order <. Thus a row of Md labelled
by t j,k fk =

∑

x v∈M , deg(x v)≤d κv x v has in column x v entry κv ∈ K . Note that by the this representation of
t j,k fk κv = 0 is possible. Once Md is generated, the row echelon form Nd of Md is computed. The rows of
Nd now correspond to polynomials in R that generate a Gröbner basis up to degree d for I . So, in contrast
to Gröbner basis algorithms in the vein of Buchberger’s description, MatrixF5 needs another parameter, a
degree bound D up to which the computations are carried out. We introduce the variant of this algorithm
using signature-based criteria to improve computations by an example.

Consider the three homogeneous input polynomials f1 = y2 + 4yz, f2 = 2x2 + 3x y + 4y2 + 3z2, and f3 =
3x2 + 4x y + 2y2 in R = F5[x , y, z] where < denotes the graded reverse lexicographical monomial order. By
the above description it is clear that the labels t j,k fk of the rows coincide with the corresponding signatures
t j,kek. We want to use these signatures to label the rows of the Macaulay matrices built in the following. Thus
we need to extend< onR3, say we use<pot. Let us assume we want to compute a Gröbner basis up to degree
D = 4.

The main idea of using Macaulay matrices is now to calculate all possible elements in I for a given degree d.
In Buchberger’s attempt (Theorem 2.8) one considers S-polynomials of degree d and has to find reducers of
these. Here we do not need to search for such elements, all possible reducers are already in Md . So we can
focus on the main question: How do signature-based criteria work to improve Gröbner basis computations?

Let us start with the lowest possible degree, d = 2. Building the Macaulay matrix M2 in Figure 2 we label the
rows by the corresponding signatures. Throughout the steps of reducing M2 we keep track in the label of the
rows what computational steps have been done.

One of the reduction steps differs, the last step: Looking at the label of the second row after reducing it with
the first row we see that there is a change:

e2 + e1 =⇒ e3 + 2e2 + 5e1.

Since the labels change also in the other reduction steps, the question is, what is special in this step ? Looking
at the lead term of the module element we see the difference: Before the reduction the label of the row has
a lead term of e2 w.r.t. <pot, afterwards it is e3. In none of the other reduction steps above the lead term
changed. And that is the general idea of the signature: We want to easily keep track of where the new rows
are coming from. Storing the complete module representation as done above, the overhead of computing a
Gröbner basis is too big (see also [66]). Thus, instead of keeping the full module representation, we only
store the lead term of it, the signature. Applied to our example above the last step would lead to the situation
illustrated in Figure 3.

In other words, we would loose the connection between the second row and e2 resp. f2. As we see in fol-
lowing, to remember this connection is crucial for the strength of signature-based criteria to remove useless
computations.

We agree to not do any such reduction. In terms of the Macaulay matrix this means that

7

3 4 2 0 0 0

2 3 4 0 0 3

0 0 1 0 4 0

















e3

e2

e1

M2 =

x2 x y y2 xz yz z2

3 4 2 0 0 0

2 3 0 0 4 3

0 0 1 0 4 0

















x2 x y y2 xz yz z2

e3

e2 + e1

e1

3 4 0 0 2 0

2 3 0 0 4 3

0 0 1 0 4 0

















x2 x y y2 xz yz z2

e3 + 3e1

e2 + e1

e1

0 2 0 0 1 3

2 3 0 0 4 3

0 0 1 0 4 0

















x2 x y y2 xz yz z2

e3 + e2 + 4e1

e2 + e1

e1

0 2 0 0 1 3

2 0 0 0 0 1

0 0 1 0 4 0

















x2 x y y2 xz yz z2

e3 + e2 + 4e1

e3 + 2e2 + 5e1

e1

Fig. 2. Computing the row echelon form of M2.

(a) rows are sorted from top to bottom by decreasing signatures, and
(b) the row we reduce with must be below the row to be reduced.

0 2 0 0 1 3

2 3 0 0 4 3

0 0 1 0 4 0

















x2 x y y2 xz yz z2

e3

e2

e1

0 2 0 0 1 3

2 0 0 0 0 1

0 0 1 0 4 0

















x2 x y y2 xz yz z2

e3

e3

e1

Fig. 3. Change of signature due to a reduction step.

Thus for our purpose to keep the signatures, the row echelon form of M2 received by restricting reductions is

0 2 0 0 1 3

2 3 0 0 4 3

0 0 1 0 4 0

















e3

e2

e1

N2 =

x2 x y y2 xz yz z2

e3

e2

e1

.

After computing the row echelon form N2 of the Macaulay matrix M2 we get two new polynomials, namely
f4 = 2x y + yz+3z2 and f5 = 2x2+3x y +4yz+3z2, corresponding to the first and the second row of N2. f3

8

and f4 have the same signature e3, thus we can say that there is a connection between them. The same holds
for f2 and f5.

3 4 2 0 0 0 0 0 0 0
0 3 4 2 0 0 0 0 0 0
0 0 0 0 3 4 2 0 0 0

2 3 4 0 0 0 0 3 0 0
0 2 3 4 0 0 0 0 3 0
0 0 0 0 2 3 4 0 0 3

0 0 1 0 0 4 0 0 0 0
0 0 0 1 0 0 4 0 0 0
0 0 0 0 0 0 1 0 4 0





































































xe3

ye3

ze3

xe2

ye2

ze2

xe1

ye1

ze1

M3 =

x3 x2 y x y2 y3 x2z x yz y2z xz2 yz2 z3

Fig. 4. Initial Macaulay matrix M3

3 4 2 0 0 0 0 0 0 0
0 3 4 2 0 0 0 0 0 0
0 0 0 0 3 4 2 0 0 0

2 3 0 0 0 4 0 3 0 0
0 2 3 0 0 0 4 0 3 0
0 0 0 0 2 3 0 0 4 3

0 0 1 0 0 4 0 0 0 0
0 0 0 1 0 0 4 0 0 0
0 0 0 0 0 0 1 0 4 0





































































xe3

ye3

ze3

xe2

ye2

ze2

xe1

ye1

ze1

M3 =

x3 x2 y x y2 y3 x2z x yz y2z xz2 yz2 z3

0 2 0 0 0 1 0 3 0 0
0 0 2 0 0 0 1 0 3 0
0 0 0 0 0 2 0 0 1 3

2 3 0 0 0 4 0 3 0 0
0 2 3 0 0 0 4 0 3 0
0 0 0 0 2 3 0 0 4 3

0 0 1 0 0 4 0 0 0 0
0 0 0 1 0 0 4 0 0 0
0 0 0 0 0 0 1 0 4 0





































































xe3

ye3

ze3

xe2

ye2

ze2

xe1

ye1

ze1

x3 x2 y x y2 y3 x2z x yz y2z xz2 yz2 z3

Fig. 5. Rewriting rows: f2 −→ f5(top), f3 −→ f4 (bottom)

At this point we have not done any reduction in M3 but just used the information stored in the signatures. Let
us rearrange the rows of M3 to see how near we are already to a row echelon form:

9

2 3 0 0 0 4 0 3 0 0

0 2 0 0 0 1 0 3 0 0

0 2 3 0 0 0 4 0 3 0

0 0 2 0 0 0 1 0 3 0

0 0 1 0 0 4 0 0 0 0

0 0 0 1 0 0 4 0 0 0

0 0 0 0 2 3 0 0 4 3

0 0 0 0 0 2 0 0 1 3

0 0 0 0 0 0 1 0 4 0









































































x3 x2 y x y2 y3 x2z x yz y2z xz2 yz2 z3

xe2

xe3

ye2

ye3

xe1

ye1

ze2

ze3

ze1

6 6

Next we can go on with degree 3. Generating M3 we get all multiples x fi , y fi and z fi for 1 ≤ i ≤ 3 as it
is shown in Figure 4. Looking at M3 more closely we see some relation to M2. The three steps highlighted
correspond to reduction steps that have already occured in degree 2:

xe2 − xe1 = x(e2 − e1)
ye2 − ye1 = y(e2 − e1)
ze2 − ze1 = z(e2 − e1).

Since we have done these reductions already it makes sense to not redo them again, but use the information
from M2. We know that f5 comes from f2, both share the same signature. So we just rewrite x f2, y f2, z f2 by
x f5, y f5, z f5 in M3, respectively. The very same holds for f3 and f4. Figure 5 illustrates this process.

Only rewriting f2 and f3 with “better” elements lead to this matrix in near row echelon form. Again, note
that not all elements in the above picture are allowed to reduce freely: The rows highlighted in green can
reduce any other row above them. So, for example, the row with signature ye2 can reduce the rows with
signatures xe3 and xe2, respectively. In none of these reductions the signature of any row changes. On the
other hand, the row labelled by signature ze3 is not allowed to reduce the row labelled by xe1. Otherwise the
signature might change. Nevertheless, this row is still allowed to reduce the one labelled with xe3. Thus we
highlighted this row in yellow to illustrate this restriction. The row labelled with xe3, and highlighted in red,
is not allowed to reduce any other row. xe3 is the highest signature in degree 3 w.r.t. <pot, thus any reduction
of another row would lead to a change in signatures.

Executing all not signature changing reduction steps we end up with a Gröbner basis up to degree 3 repre-
sented by the row echelon form

2 0 0 0 0 4 0 3 3 3

0 2 0 0 0 0 0 0 3 3

0 0 1 0 0 0 0 0 3 4

0 0 0 1 0 0 0 0 4 0

0 0 0 0 2 3 0 0 4 3

0 0 0 0 0 2 0 0 1 3

0 0 0 0 0 0 1 0 4 0
0 0 0 0 0 0 0 3 0 2
0 0 0 0 0 0 0 0 3 2





































































x3 x2 y x y2 y3 x2z x yz y2z xz2 yz2 z3

xe2

ye2

xe1

ye1

ze2

ze3

ze1

xe3

ye3

N3 =

.

Next we are computing a Gröbner basis for 〈 f1, f2, f3〉 up to degree 4. Again we generate the matrix M4
building all combinations of monomials of degree 2 and fi for 1 ≤ i ≤ 3. This time we note that M4 consists
of
�3

2

�

· 3 = 18 rows and
�3

4

�

= 15 columns. This means that when we are reducing M4 we might end up
with rows that reduced to zero (or rows that are multiples of others due to the restricted reduction process).

10

Nevertheless, these rows correspond to useless steps during a Gröbner basis algorithm. So how can we find
out which to remove?

A polynomial reduction to zero corresponds to a syzygy in R3. There are principal (or trivial syzygies) we
know already without any previous computations: f1e2 − f2e1, f1e3 − f3e1 and f2e3 − f3e2. Let us look at the
signatures of these syzygies w.r.t. <pot:

s (f1e2 − f2e1) = lt (f1)e2 = y2e2

s (f1e3 − f3e1) = lt (f1)e3 = y2e3

s (f2e3 − f3e2) = lt (f2)e3 = x2e3.

We have seen in the degree 3 case that we can rewrite elements with a given signature T by other elements
that have the same signature. Thus for T ∈ {y2e2, y2e3, x2e3} we can just use the above syzygies resp. corre-
sponding trivial relations in R . So the following 3 elements are exchanged, respectively, in M4

y2 f2 −→ f1 f2 − f2 f1,

y2 f3 −→ f1 f3 − f3 f1,

x2 f3 −→ f2 f3 − f3 f2.

This means that we would add rows that have only zero entries for y2e2, y2e3 and x2e3. Those rows do not
play any role during the reduction process of M4, so we can remove them directly from the matrix. In the
end we receive a matrix M4 of dimensions 15× 15, thus we know that when reducing M4 to its row reduced
echelon form N4, all rows are useful. Clearly, as we have done for M3, we try to rewrite the 15 rows remaining
in M4 that correspond to elements x j ykz` fi with 1≤ i ≤ 3 and j+ k+`= 2 with elements from N2 and N3 in
order to not repeat calculations already done at a lower degree. Computing the row echelon form of M4 we
then receive a Gröbner basis for 〈 f1, f2, f3〉 up to degree 4.

Let us try to summarize the main ideas behind using signatures when computing Gröbner bases:

É Try to rewrite data and reuse already done calculations.
É Keep track of this rewriting by not changing the signatures during the reduction process.
É If the rewritten data is trivial resp. corresponds to a syzygy (relations that are already known) then

discard this data.

Remark 3.1. Note that building Macaulay matrices as done in MatrixF5 is useful and efficient only if the cor-
responding polynomial system is dense. Otherwise it makes more sense to combine Buchberger’s S-polynomial
attempt with linear algebra. That means, one first searches for all S-polynomials in a given degree d and all
needed reducers and generates a corresponding matrix afterwards. This is the main idea behind Faugère’s
F4 algorithm ([32]). In Section 13 we present an efficient way of combining signature-based criteria for
discarding useless data with F4.

With this in mind we are able to give a more theoretical introduction to signature-based Gröbner basis com-
putations in the vein of Buchberger’s algorithm.

4 Gröbner bases with signatures

In this section we give an introduction to signature-based Gröbner basis algorithms from a mathematical point
of view. Thus the content is dedicated to a complete and correct description of the algorithms’ underlying ideas.
Motivated by the specialized row echelon forms we presented in Section 3 the notion of a polynomial reduction
process taking care of the signatures is introduced. Connections and differences to classic polynomial Gröbner
basis theory are explained in detail.

Readers interested in the optimized variants only might skip most of this section, but should at least consider
notations introduced in Section 2 and here as we agree on those throughout the paper.

11

4.1 Signature reduction

In order to keep track of the signatures when reducing corresponding polynomial data we need to adjust
Definition 2.4. Sloppy speaking we get a classic polynomial reduction together with a further condition.

Definition 4.1. Let α ∈ Rm and let t be a term of α. Then we can s-reduce t by β ∈ Rm if

(a) there exists a monomial b such that lt
�

bβ
�

= t and

(b) s (bβ)≤ s (α).

The outcome of the s-reduction step is then α− bβ and β is called the s-reducer. When β s-reduces t we also say
for convenience that bβ s-reduces α. That way b is introduced implicitly instead of having to repeat the equation
lt
�

bβ
�

= t.

Remark 4.2. Note that Condition (a) from Definition 4.1 defines a classic polynomial reduction step (see 2.4).
It implies that lt

�

bβ
�

≤ lt (α). Moreover, Condition (b) lifts the above implication to Rm so that it involves
signatures. Since we are interested in computing Gröbner Bases in R one can interpret an s-reduction of α
by β as classic polynomial reduction of α by β together with Condition (b). Thus an s-reduction represents a
connection between data in R and corresponding data in Rm when a polynomial reduction takes place.

Just as for classic polynomial reduction, if lt
�

bβ
�

' lt (α) then the s-reduction step is a top s-reduction step
and otherwise it is a tail s-reduction step. Analogously we define the distinction for signatures: If s (bβ)' s (α)
then the reduction step is a singular s-reduction step and otherwise it is a regular s-reduction step.

The result of s-reduction of α ∈ Rm is a γ ∈ Rm that has been calculated from α through a sequence of
s-reduction steps such that γ cannot be further s-reduced. The reduction is a tail s-reduction if only tail s-
reduction steps are allowed and it is a top s-reduction if only top s-reduction steps are allowed. The reduction
is a regular s-reduction if only regular s-reduction steps are allowed. A module element α ∈ Rm is s-reducible
if it can be s-reduced.

If α s-reduces to γ and γ is a syzygy then we say that α s-reduces to zero even if γ 6= 0.

Example 4.3. Assume an ideal I = 〈 f1, f2, f3〉 ⊂ R = Q[x , y, z, t] with f1 = x yz − z2 t, f2 = x2 y − y3 and
f3 = y3 − zt2 − t3. Furthermore, < denotes the graded reverse lexicographical monomial order which we
extend to <pot on the set of monomials of R3. Clearly, we have αi = e i with αi = fi for i ∈ {1,2, 3}. We start
with G = {α1,α2,α3}.
Looking at zα2 we can regular top s-reduce lt (zα2) with xα1 since lt (xα1) = lt (zα2) and s (xα1)<pot s (zα2).
Call the resulting element α4 = zα2 − xα1. We can see that we cannot further s-reduce α4 = −y3z + xz2 t:
The only possible candidate is α3 but s (zα3) = ze3 >pot ze2 = s

�

α4

�

. Note that α4 + zα3 would be a correct
classical polynomial reduction step, but it contradicts Condition (b) of an s-reduction. On the other hand,
adding α4 to G we are able to regular top s-reduce zα3 w.r.t. G , namely by α4. We see that whereas from a
pure polynomial point of view reducing α4 + zα3 is the same as zα3 + α4 taking the signatures into account
destroys this equality. Only the second operation is a valid s-reduction.

Again, we can regular top s-reduce xα4 with y2α1. This gives a new element α5 = xα4 + y2α1 whereas
α5 = x2z2 t − y2z2 t.

Looking at x2α4 = −x2 y3z+ x3z2 t one can use lt (xα5) to tail s-reduce. Note that this s-reduction is singular
due to s (xα5) = x2ze2 = s

�

x2α4

�

. In other words, x2α4− xα5 = (x2ze2− x3e1)− (x2ze2− x3e1+ x y2e1) =
−x y2e1. Thus we see that x2α4 s-reduces to a syzygy γ= x2α4 − xα5 − x2 yα1.

Remark 4.4.

(a) The implied condition lt
�

bβ
�

≤ lt (α) is equivalent to lt
�

α− bβ
�

≤ lt (α), so during s-reduction it is not
allowed to increase the lead term. For tail s-reduction we perform only those s-reduction steps that do not
change the lead term at all. Analogously, the condition s (bβ)≤ s (α) is equivalent to s (α− bβ)≤ s (α),
so during s-reduction it is not allowed to increase the signature. For regular s-reduction, we perform only
those s-reduction steps that do not change the signature at all.

12

(b) Note that by Lemma 15 in [30] the notion of “being singular top s-reducible” is equivalent to what is
sometimes in the literature also called “sig-redundant”.

Note that analogously to the classic polynomial reduction s-reduction is always with respect to a finite basis
G ⊆Rm. The s-reducers in s-reduction are chosen from the basis G .

4.2 Signature Gröbner bases

Having defined a polynomial reduction process taking signatures into account we are now able to define
signature Gröbner bases analogously to classic polynomial Gröbner bases.

Definition 4.5. Let I = 〈 f1, . . . , fm〉 be an ideal in R . A finite subset G of Rm is a signature Gröbner basis in
signature T for I if all α ∈ Rm with s (α) = T s-reduce to zero w.r.t. G . G is a signature Gröbner basis up to
signature T for I if G is a signature Gröbner basis in all signatures S such that S < T. G is a signature Gröbner
basis for I if it is a signature Gröbner basis for I in all signatures.

Lemma 4.6. Let I = 〈 f1, . . . , fm〉 be an ideal in R . If G is a signature Gröbner basis for I then {α |α ∈ G } is a
Gröbner basis for I .

Proof. For example, see Section 2.2 in [70]. ut

Convention 4.7. In the following, when denoting G ⊆ Rm “a signature Gröbner basis (up to signature T)” we
always mean “a signature Gröbner basis (up to signature T) for I = 〈 f1, . . . , fm〉”. We omit the explicit notion of
the input ideal whenever it is clear from the context.

As in the classic polynomial setting we want to give an algorithmic description of signature Gröbner bases.
For this we introduce the notion of S-pairs, similar to Definition 2.7.

Definition 4.8.

(a) Let α,β ∈ Rm such that α 6= 0, β 6= 0 and let λ = lcm
�

lt (α) , lt
�

β
��

be the monic least common multiple

of lt (α) and lt
�

β
�

. The S-pair between α and β is given by

spair (α,β) ..=
λ

lt (α)
α−

λ

lt
�

β
�β .

(b) spair (α,β) is singular if s
�

λ
lt(α)α

�

' s

�

λ

lt(β)β
�

. Otherwise it is regular.

Note that spair (α,β) ∈ Rm and spair (α,β) = spol
�

α,β
�

.

Theorem 4.9. Let T be a module monomial of Rm and let G ⊆ Rm be a finite basis. Assume that all regular
S-pairs spair (α,β) with α,β ∈ G and s (spair (α,β)) < T s-reduce to zero and all e i with e i < T s-reduce to
zero. Then G is a signature Gröbner basis up to signature T .

Proof. For example, see Theorem 2 in [71]. ut

Note the similarity of Theorem 4.9 and Buchberger’s Criterion for Gröbner bases (Theorem 2.8).

The outcome of classic polynomial reduction depends on the choice of reducer, so the choice of reducer can
change what the intermediate bases are in the classic Buchberger algorithm. Lemma 4.10 implies that all
S-pairs with the same signature yield the same regular s-reduced result as long as we process S-pairs in order
of increasing signature.

13

Lemma 4.10. Let α,β ∈ Rm and let G be a signature Gröbner basis up to signature s (α) = s (β). If α and β
are both regular top s-reduced then lt (α) = lt

�

β
�

or α= β = 0. Moreover, if α and β are both regular s-reduced

then α= β .

Proof. For example, see Lemma 3 in [71]. ut

Let us simplify our notations a bit using facts from the previous statements.

Notation 4.11.

(a) Due to Lemma 4.10 we assume in the following that G always denotes a finite subset ofRm with the property
that for α,β ∈ G with s (α)' s (β) it follows that α= β .

(b) Theorem 4.9 suggests to consider only regular S-pairs for the computation of signature Gröbner bases. Thus
in the following “S-pair” always refers to “regular S-pair”.

Definition 4.12. A signature Gröbner basis is minimal if no basis element top s-reduces any other basis element.

Lemma 4.13 implies that the minimal signature Gröbner basis for an ideal I ⊂ R is unique and is contained
in all signature Gröbner bases for I up to sig-lead pairs.

Lemma 4.13. Let A be a minimal signature Gröbner basis and let B be a signature Gröbner basis for 〈 f1, . . . , fm〉.
Then it holds for all α ∈ A that there exists a non-zero scalar κ ∈ K and a β ∈ B such that s (α) = κ s (β) and
lt (α) = κ lt

�

β
�

.

Proof. This is an easy corollary of Lemma 4.10. ut

5 Generic signature Gröbner basis computation

In the following we present a generic signature-based Gröbner basis algorithm genSB (Algorithm 1). This
algorithm works the same way as the classic Gröbner basis algorihm presented by Buchberger in [16]. The
main difference is that in genSB the computations are lifted fromR toRm in the way presented in sections 4.1
and 4.2.

genSB should be understood as a generic description which does not aim on performance. We see in Section 7
how we can vary genSB to receive a template that can be used as a common basis from which all known
efficient signature-based Gröbner basis algorithms can be derived from.

The classic Buchberger algorithm proceeds by reducing S-polynomials. If an S-polynomial reduces to a polyno-
mial h ∈ R , h 6= 0 then h is added to the basis so that the S-polynomial now reduces to zero by this larger basis.
The classic Buchberger algorithm terminates once all S-polynomials between elements of the basis reduce to
zero.

genSB does the very same with S-pairs using s-reductions. Based on Theorem 4.9, once all S-pairs s-reduced
to zero w.r.t. G , genSB terminates with a signature Gröbner basis.

Thinking about correctness and termination of Algorithm 1 Line 6 seems to be problematic: Only regular s-
reductions are done in genSB. Moreover, if a reduction ends with an element γ that is singular top s-reducible
w.r.t. G , γ is not even added to G . It turns out that singular top s-reductions are useless for the computation
of signature Gröbner bases.

Lemma 5.1. Let α ∈ Rm and let G be a signature Gröbner basis up to s (α). If α is singular top s-reducible w.r.t.
G then γ s-reduces to zero w.r.t. G .

Proof. If α is singular top s-reducible w.r.t. G then there exists β ∈ G and b ∈ R such that s (α) = s (bβ) and
lt (α) = lt

�

bβ
�

. If γ denotes the result of the reduction of α by bβ then s (γ) < s (α). Since G is a signature
Gröbner basis up to s (α) γ s-reduces to zero w.r.t. G . ut

14

Algorithm 1 Generic signature-based Gröbner basis algorithm genSB.
Require: Ideal I = 〈 f1, . . . , fm〉 ⊂ R , monomial order ≤ on R and a compatible extension on Rm, total order � on the

pairset P of S-pairs
Ensure: Signature Gröbner basis G for I , Gröbner basisH for syz (f1, . . . , fm)
1: G ← ;,H ← ;
2: P ← {e1, . . . , em}
3: while P 6= ; do
4: β ←min�P
5: P ←P \ {β}
6: γ← result of regular s-reducing β
7: if γ= 0 then
8: H ←H ∪{γ}
9: else if γ is not singular top reducible then

10: P ←P ∪ {spair (α,γ) |α ∈ G and spair (α,γ) is regular }
11: G ←G ∪ {γ}
12: return (G ,H)

Theorem 5.2. Given I = 〈 f1, . . . , fm〉 ⊂ R and a monomial order ≤ on R with a compatible extension on Rm

genSB is an algorithm that computes a signature Gröbner basis G for I and a moduleH generated by a Gröbner
basis for syz (f1, . . . , fm).

Proof. Correctness of genSB computing signature Gröbner basis for I is an easy generalization of Theorem 14
in [30]. Allowing any compatible module monomial order on Rm does not change the reasoning of the
corresponding proof there. On the other hand, using Lemma 5.1 and the fact that genSB computes G by
increasing signatures it is an easy exercise.H being a Gröbner basis for syz (f1, . . . , fm) is clear by Theorem 5.3.

If � orders P by increasing signatures then termination of genSB follows by Theorem 20 in [31]. Otherwise
it is possible that genSB adds several elements to G with the same signature: Assume an intermediate state
of G to consist of finitely many elements, thus P is finite, too. Next the S-pair aα− bβ regular s-reduces to
γ w.r.t. G .

(a) γ is top singular s-reducible and thus not added to G .

(b) There might exists δ ∈ G such that s (γ) = s (δ) but lt (γ) < lt
�

δ
�

. Note that lt (γ) ≥ 0 so for s (γ) there
are only finitely many elements in G .

In the second situation there must be some element ε added to G inbetween γ and δ such that such that
lt (eε) = lt

�

δ
�

and s (eε)< s (δ) for some monomial e in R . We need to show that there cannot be infinitely
many steps between δ and γ. First of all only finitely many steps of lower signature can be done due to our
above discussion: There are only finitely many elements in G per signature and there are only finitely many
signatures below s (γ) handled since R and Rm are Noetherian. On the other hand, at the moment δ was
added to G , there were only finitely many S-pairs of signature > s (δ) in P . As in the situation above, in
order to get a new element in a given signature T > s (δ) new elements of signature < T must be added to G .
Also for T only finitely many sig-poly pairs are possible. Moreover, between s (δ) and T genSB handles only
finitely many elements, again due to the Noetherianess ofR andRm. All in all, between two elements of the
same signature genSB executes finitely many steps. This completes the proof of genSB’s termination. ut

The key to prove that genSB computes a Gröbner basisH for the syzygy module is Theorem 5.3 which implies
that we can determine generators of the module of syzygies from looking at those S-pairs and e i that regular
s-reduce to zero.

Theorem 5.3. Let α ∈ Rm be a syzygy and let G be a signature Gröbner basis up to signature s (α). Then there
exists a β ∈ Rm with s (β) | s (α) such that β is an S-pair or has the form e i and such that β regular s-reduces
to zero.

Proof. The proof is clear by Definition 4.5. A variant of Theorem 5.3 is Proposition 2.2 in [48]. ut

Remark 5.4. Note that in [76] Sun and Wang where the first to introduce a description of signature-based
Gröbner basis algorithms where the order in which S-pairs are handled does not matter. Clearly, the above

15

description of genSB covers this, since we do not restrict �. We refer the reader interested in a proof of
Theorem 5.2 with an emphasis on the pair set order � to Theorem 2.2 in [76].

Note that due to � G might not be a signature Gröbner basis up to signature T when genSB has just handled
an S-pair in signature T . There might be S-pairs of signature < T which are still in P . Nevertheless, once
genSB terminates G is a signature Gröbner basis for I and thus a signature Gröbner basis up to signature T
for all T .

For the sake of efficiency one might choose � to order P by increasing signatures of the S-pairs. As we see
in Section 6 such an order respects the criteria to remove useless S-pairs best.

Definition 5.5. �s denotes the order� in a signature-based Gröbner basis algorithm which sortsP by increasing
signature.

Lemma 5.6. Let genSB with �s pick the next S-pair α to be regular s-reduced such that s (α) = T. Then G is a
signature Gröbner basis up to signature T .

Proof. Since genSB with �s handles S-pairs by increasing signature this is clear by Definition 4.5. ut

Corollary 5.7. genSB with �s computes a minimal signature Gröbner basis for the corresponding input.

Proof. A new element γ with γ 6= 0 is added to G only if γ is not singular top s-reducible w.r.t. G . The
minimality then follows by Lemma 5.6. ut

Algorithmic Property 5.8.

(a) Note that Corollary 5.7 does not hold for arbitrary pair set orders �: Assume S-pair α being regular
s-reduced by genSB to γ and γ 6= 0. W.l.o.g. we can assume that γ is not singular top s-reducible.3 If,
later on, genSB regular s-reduces an S-pair from P to β with s (β)< s (γ) such that lt

�

β
�

| lt (γ) then a
new S-pair ε = bβ −γ is handled. Hereby s (ε) = s (γ) but lt (ε)< lt (γ). So G can have several elements
in the same signature T .
Still, Lemma 4.10 is valid and makes sense: Once all S-pairs of signature T are handled by genSB (in any
given order �) G is a signature Gröbner basis up to signature T and γ can be further regular s-reduced,
namely to ε. Thus, in Section 4 and in the following we often consider signature Gröbner bases up to
some signature T . Due to our considerations here, the second part of Remark 5.4 and Lemma 5.6 this
makes sense.

(b) As one can easily see, Algorithm 1 does only rely on data provided by α and s (α), but it does not need
to store α completely. Thus instead of using α one can optimize an implementation of genSB by using
(s (α) ,α).
Moreover, if one is only interested in a Gröbner basis for f1, . . . , fm, genSB can be optimized in the sense
that one can restrictH to store only the initial module of the corresponding syzygy module: Using only
sig-poly pairs in Algorithm 1 we are no longer able to store the full module element γ in H at Line 8.
Still one can compute at the same time the initial submodule H of the syzygy module of f1, . . . , fm. In
order to do so, one needs to exchange Line 8 with

8: H ←H ∪{s (γ)}

The fact that one can use signature-based Gröbner basis algorithms to compute the initial module of the
module of corresponding syzygies was first mentioned in [46].

Signature-based Gröbner basis algorithms like genSB are in the vein of a bigger class of algorithms computing
the image and the kernel of a module homomorphism at the same time: In our setting the image is the
signature Gröbner basis G and the kernel is the syzygy moduleH . Other well-known, Gröbner basis related
algorithms of this type are, for example, the MMM algorithm by Marinari, Möller and Mora ([65]) and the
FGLM algorithm by Faugère, Gianni, Lazard and Mora ([35]). Recently, Sun gave a nice overview on the
connections between those algorithms in [73].

3 Otherwise there exists δ ∈ G with s (δ) = c s (γ) and lt
�

δ
�

= c lt (γ), thus we can just replace γ by δ in the above
situation.

16

6 S-Pair Elimination

Until now we have introduced signature Gröbner bases and their computation only to receive a Gröbner basis
for some ideal 〈 f1, . . . , fm〉 and the initial module of syz (f1, . . . , fm). As mentioned in Section 5 genSB should
be understood as a template and common basis for all signature-based Gröbner basis algorithms. Thus, it
is slow and not at all optimized. One main bottleneck of genSB is the high number of s-reductions to zero.
As for the classic Buchberger algorithm (see [16, 18]) we are searching for criteria to discard such useless
computations in advance like we have used known syzygies in MatrixF5 in Section 3.

Assume that genSB regular s-reduces an S-pair in signature T to γ ∈ Rm. Then three different situations can
appear:

(a) If γ is a syzygy then γ is added toH in Line 8.
(b) If γ is not syzygy but singular top s-reducible then by Lemma 5.1 γ will s-reduce to zero. Thus it is

discarded in Line 9.
(c) Otherwise γ is used to build new S-pairs with elements in G (Line 10) and later on itself added to G

(Line 11).

Definition 6.1. For the above three cases T is respectively a syzygy, singular or basis signature.

We are interested in the situations where elements are discarded. In the following we take a closer look at
syzygy and singular signatures.

6.1 Eliminating S-pairs by known syzygies

Clearly, we receive syzygies by s-reductions to zero in genSB, but there are also syzygies immediately known
without precomputations as we have already seen in the example computation of MatrixF5 in Section 3.

Definition 6.2. The Koszul syzygy between α,β ∈ G is ksyz (α,β) ..= βα − αβ . If s
�

βα
�

6' s (αβ) then the
Koszul syzygy is regular. By “Koszul syzygy” we always mean “regular Koszul syzygy”.

Trivial relations resp. principal syzygies are Koszul syzygies. Using those and already computed zero reductions
we are able to flag a given signature being predictably syzygy.

Definition 6.3. A signature T is predictably syzygy if there exists a syzygy σ ∈ Rm such that s (σ) < T and
s (σ) |T.

Being predictably syzygy gives us a nice characterization when computing Gröbner bases.

Lemma 6.4 (Syzygy criterion). Let α,β ∈ G , γ= spair (α,β) with s (γ) being predictably syzygy, and let G be
a signature Gröbner basis up to s (γ). Then γ s-reduces to zero w.r.t. G . Moreover, if S is a syzygy signature and
S|T then T is also a syzygy signature.

Proof. If γ is predictably syzygy then there exists a syzygy σ ∈ Rm such that s (σ) = s (γ). γ−σ = γ but
s (γ−σ)< s (γ). By Definition 4.5 γ−σ s-reduces to zero w.r.t. G , thus also γ behaves in this way. ut

The outcome of Lemma 6.4 is that whenever we handle an S-pair γ in a signature-based Gröbner basis algo-
rithm like genSB whose signature is divisible by the signature of a syzygy we can discard γ.

Remark 6.5. Restricting Lemma 6.4 to principal syzygies and the compatible module monomial order used to
<pot we get a statement equivalent to the F5 criterion presented in Theorem 1 in [33].

17

6.2 Uniqueness of S-pairs at a given signature

Next we are looking at the situation where the s-reduction of an S-pair ends with a non-syzygy element γ that
is singular top s-reducible w.r.t. G . We have already seen in Lemma 5.1 that we can discard such S-pairs in
the computations. The remaining question is how to detect such a situation.

Being singular top s-reducible is a special case of the situation where there are two or more S-pairs in the
same signature T . If so, we only have to regular s-reduce one of them as they all regular s-reduce to the
same thing by Lemma 4.10. Since s-reduction proceeds by decreasing the lead term, we can for example
try to speed up the process by choosing an S-pair γ in signature T whose lead term lt (γ) is minimal. If
s (spair (α,β)) = s (aα), then we get the same result from regular s-reducing spair (α,β) as for regular s-
reducing aα by Notation 4.11 (b).

All in all we get the following nice description of the singular criterion:

Lemma 6.6 (Singular criterion). For any signature T we need to handle exactly one aα ∈ Rm from

CT = {aα |α ∈ G , a is a monomial and s (aα) = T } (1)

computing a signature Gröbner basis.

Remark 6.7.

(a) Note that α might not be involved in any S-pair in signature T . In this situation at signature T no S-pair
is computed resp. s-reduced at all.

(b) Note that when computing signature Gröbner bases by signature-based algorithms with an arbitrary pair
set order � uniqueness of the elements in signature T is not guaranteed. A situation as pointed out in
Property 5.8 (a) might appear and thus after having already chosen and regular s-reduced an element
from CT the algorithm might come back to signature T and makes a new choice from CT .

(c) Lemma 6.6 corresponds to rewriting rows in MatrixF5 as done in Section 3. Choosing an element in
signature T mirrors searching already reduced row echelon forms Nd for better representations of the
row labelled by T .

What is now left to do is to make a good choice for aα from CT . For this we need to introduce the notion of
a rewriter in the following.

7 Rewrite bases

In Section 6.2 we have seen that per signature T we only need to take care of one element. In order to make
a choice of such an element we need to define an order on CT . For this the notion of so-called rewriters is
introduced in the following. In this section we present a first signature-based Gröbner basis algorithm using
S-pair elimination as presented in Section 6. This is then the fundamental algorithm we can derive all known,
efficient implementations from.

Similar attempts to achieve such a comprehensive representation of signature-based Gröbner basis algorithms
are given, for example, in [58, 76]. The algorithms presented there, called TRB and GBGC are included in
Algorithm 2, called RB. Note that in [31] there is already an algorithm called RB, here we generalized it
further.

7.1 Combining elimination criteria

Before we introduce the concept of rewriter, let us shortly recall the syzygy criterion: An element γ is discarded
if there exists a syzygy σ such that s (σ) | s (γ), or in other words, there exists a monomial s ∈ R such that
s (sσ) = s (γ). Thus we have again two elements of the same signature and need to decide which one to
handle. Of course, by Remark 6.7 we take sσ since we know that sσ = 0 already, so no further computations
need to be done in signature s (sσ). But this is nothing else but a rewording of Lemma 6.4, the syzygy criterion.
It follows that we can generalize the set CT to

CT = {aα |α ∈ G ∪H , a is a monomial and s (aα) = T } (2)

18

The only difference between Equation 1 and 2 is that α is now allowed to be in H , too. With this the two
criteria from Section 6.1 and 6.2 to find useless S-pairs unite to one single criterion. Furthermore, with this
only one question remains to be answered when implementing signature-based Gröbner basis algorithms:
How to choose the single element from CT ?

Since we have seen that all elements fromCT “rewrite” the same information for the input ideal I = 〈 f1, . . . , fm〉
at signature T the following naming conventions are reasonable.

Definition 7.1.

(a) A rewrite order Å is a partial order on G ∪H such that Å is a total order on G
(b) An element α ∈ G is a rewriter in signature T if s (α) | T. If for a monomial a ∈ R s (aα) = T we also say

for convenience that aα is a rewriter in signature T . The �-maximal rewriter in signature T is the canonical
rewriter in signature T. A multiple aα of a basis element α is rewritable if α is not the canonical rewriter
in signature s (aα).

Remark 7.2. Of course, the definition of a rewrite order in Definition 7.1 is rather generic and not practical.
For example, it does not even take care of the elements inH . Clearly, for optimized computations one want
sσ be the canonical rewriter in signature s (sσ) for σ ∈ H . Still, in terms of correctness, one do not need to
restrict Definition 7.1 (a) to this. We see in the following how explicitly defined rewrite orders can be used to
reach efficient implementations of signature-based criteria to discard useless S-pairs.

Example 7.3. Looking again at Example 4.3 we see that s (xα5) = s
�

x2α4

�

= x2ze2. Defining a rewrite order
Å by α Å β if s (α) ≤ s (β) we can see that x2α4 is rewritable since α5 is the canonical rewriter in signature
x2ze2 due to s

�

α4

�

= ze2 < xze2 = s (α5).

Definition 7.1 gives us a choice for CT , namely we can choose the canonical rewriter in signature T from CT .
Of course, using Equation 2 to find the canonical rewriter w.r.t. Å instead of using the syzygy criterion and
the rewritable criterion independently from each other we need to explain the following: If a syzygy exists for
signature T , then all S-pairs in signature T are removed. It turns out that in the general description of rewrite
bases we are giving here this need not be true at all. Of course it makes sense to define α Å β whenever
β ∈H . We come back to this fact once we are explicitly defining rewrite orders in Section 7.3.

Analogously to Section 3.2 in [31] we introduce next the important notion of a rewrite basis. Note that the
combination of the syzygy and the singular criterion lead to a much easier notation. We see in the following
a strong connection to signature Gröbner bases.

Definition 7.4. G is a rewrite basis in signature T if the canonical rewriter in T is not regular top s-reducible.
G is a rewrite basis up to signature T if G is a rewrite basis in all signatures S < T. G is a rewrite basis if G is
a rewriter basis in all signatures.

Lemma 7.5. If G is a rewrite basis up to signature T then G is also a signature Gröbner basis up to T .

Proof. The special case where a rewriter order is a total order on G fulfilling s (α) | s (β) =⇒ α Å β is
presented in Lemma 8 in [31]. Generalizing this proof to our setting is trivial. ut

7.2 An algorithm computing rewrite bases

Next we present an algorithm quite similar to Algorithm 1 that implements the above mentioned S-pair
elimination in the sense that it computes a rewrite basis. We show that depending on the chosen rewrite
order the size of the rewrite basis varies.

Algorithm 2 differs from genSB in three points:

(a) In Line 3 RB directly adds the known Koszul syzygies toH . This increases the number of possible canon-
ical rewriters in CT in a given signature T .

(b) In Line 7 RB uses Algorithm 3 to check if the S-pair β is rewritable or not. If so, RB discards β and
chooses the next S-pair in P . genSB does not provide any such check.

19

Algorithm 2 Rewrite basis algorithm RB.
Require: Ideal I = 〈 f1, . . . , fm〉 ⊂ R , monomial order ≤ on R and a compatible extension on Rm, total order � on the

pairset P of S-pairs, a rewrite order Å on G ∪H
Ensure: Rewrite basis G for I , Gröbner basisH for syz (f1, . . . , fm)
1: G ← ;,H ← ;
2: P ← {e1, . . . , em}
3: H ←

�

fie j − f je i | 1≤ i < j ≤ m
	

⊆Rm

4: while P 6= ; do
5: β ←min�P
6: P ←P \ {β}
7: if not Rewritable (β ,G ∪H ,Å) then
8: γ← result of regular s-reducing β
9: if γ= 0 then

10: H ←H + {γ}
11: else
12: P ←P ∪ {spair (α,γ) |α ∈ G and spair (α,γ) is regular }
13: G ←G ∪ {γ}
14: return (G ,H)

Algorithm 3 Rewritability check Rewritable for RB.
Require: S-pair aα− bβ ∈ Rm, finite subset G ∪H ∈Rm, rewrite order Å on G ∪H
Ensure: “True” if S-pair is rewritable; else “false”
1: if aα is rewritable then
2: return true
3: if bβ is rewritable then
4: return true
5: return false

(c) In Lines 12 and 13 RB takes the currently regular s-reduced γ, generates new regular S-pairs with it
and adds γ to G . Whereas genSB handles only not singular top s-reducible γ, RB runs these steps on all
non-syzygy γ.

Whereas the first two points are optimizations compared to genSB, the third change seems to be absurd. We
have already seen that singular top s-reducible elements are not needed for G , so why adding them? The
reason is that RB computes rewrite bases, and in order to fulfill the definition it has to add all these elements
to G nevertheless they are singular top s-reducible or not. Since RB depends on the chosen rewrite order Å
we need to store all elements, since they could lead to new canonical rewriters. We see in Section 7.3 how
different rewrite orders can affect RB quite a lot.

Analogously to Theorem 5.2 we receive the following statement.

Theorem 7.6. Given I = 〈 f1, . . . , fm〉 ⊂ R , a monomial order ≤ on R with a compatible extension on Rm, �s

onP and a rewrite order Å RB is an algorithm that computes a rewrite basis G for I and a moduleH generated
by a Gröbner basis for syz (f1, . . . , fm).

Proof. See [31]: Theorem 7 for correctness and Theorem 20 for termination. ut

Algorithmic Property 7.7.

(a) In [31] algorithm RB is presented for the first time. Here RB is presented more general in the sense
that different pair set orders are allowed. Moreover, generalizing the idea of rewritability to include the
syzygy criterion is new in the current presentation.

(b) If <pot is used then RB computes G and H incremental by increasing indices. Thus it makes sense to
optimize Algorithm 2 to recompute H once the computations in a new index k starts: At this point we
have a Gröbner basis G = {α1, . . . ,αk−1} ⊂ R for 〈 f1, . . . , fi−1〉. Defining αk = ek such that αk := fi we
can add for j < k α jαk −αkα j toH .

(c) Note that in spite of Theorem 5.2 we have to limit Theorem 7.6 for RB: Whereas one can show that
genSB terminates for any chosen pair set order � we restrict RB to �s. The problem is the interplay

20

between � and Å: It is possible to choose both in a way such that RB adds the same sig-poly pair to G .
This is possible due to the fact that RB does not check for singular top s-reducibility when adding new
elements to G (since this shall be handled by the more general and flexible rewritability criterion and
thus Å).
By the ideas of [76] it is noted in [48] that GVW can compute Gröbner bases by handling S-pairs in any
given order. This coincides with our descriptions of genSB and RB. Moreover, we show that not only
GVW can do so, but all known efficient implementations of RB, for example, also F5.

(d) Note that there is a strong connection between the signature and the so-called sugar degree. It is shown
in [25] that using �s combined with a degree compatible monomial order < a signature-based Gröbner
basis algorithm refines the sugar degree order of critical pairs.

(e) Since all known signature-based Gröbner basis algorithms are special cases of RB their correctness and
termination is clear with Theorem 7.6. Later on, we discuss the topic of termination further, especially
for F5 in Section 10. There we do not give full proofs, but refer the reader interested in more details on
proving termination to the corresponding papers. A small selection might be already mentioned here:
É [31,45,68,69] for F5 and variants.
É [3,31,48,68–70] for GVW, SB and variants.

Note that due to Lemma 5.6, Corollary 5.7 as well as the definition of rewritability in 7.1 choosing �s is the
best possible choice for an efficient computation of G and H . Thus we restrict ourselves in Theorem 7.6 to
this situation.

Moreover, let us agree in the remaining of the paper on the following:

Convention 7.8. If not otherwise stated we assume �=�s.

If RB can make use of the rewritability checks, is the resulting rewrite basis, and thus signature Gröbner basis
smaller?

Lemma 7.9. Given I = 〈 f1, . . . , fm〉 ⊂ R and a monomial order ≤ onR with a compatible extension onRm the
basis computed by genSB is always a subset of the one computed by RB up to sig-poly pairs.

Proof. Due to �s this follows directly from Corollary 5.7. ut

The optimization we achieve when switching from genSB to RB lies in the fact that genSB regular s-reduces
many more elements to zero w.r.t.G , whereas RB can detect, and thus discard, such an s-reduction in advance.

The following two lemmata are of importance when we compare different rewrite rules and specific imple-
mentations of RB.

Lemma 7.10 (Slight variant of Lemma 11 in [31]). Let α ∈ Rm, let G be a rewrite basis up to signature s (α)
and let t be a regular s-reducible term of α. Then there exists a regular s-reducer bβ which is

É not regular top s-reducible,
É not rewritable and
É not syzygy.

Proof. Let Mt be the set of all regular s-reducers of t. Let cγ ∈ Mt of minimal possible signature T , and let
bβ be the canonical rewriter in signature T . By definition, bβ is not rewritable. Since s (cγ)< s (α) bβ is not
regular top s-reducible.

Moreover, there cannot exist a dδ ∈ Mt such that dδ regular top s-reduces cγ as otherwise s (dδ) < T . By
Lemma 4.10 lt

�

bβ
�

= lt (cγ) and thus bβ ∈ Mt .

If there exists σ ∈ 〈H 〉 such that s (σ) = T then bβ −σ ∈ Mt since bβ ∈ Mt , but s (bβ −σ) < T . This is a
contradiction. ut

Lemma 7.11. Let G be a rewrite basis up to signature T , and let aα be the canonical rewriter in signature T .
Then RB s-reduces an S-pair in signature T if and only if aα is regular top s-reducible and T is not predictably
syzygy.

21

Proof. See Lemma 12 in [31]. ut

Remark 7.12. In [76] Sun and Wang explain a generalized criterion for signature-based Gröbner basis al-
gorithms which is used in [48] by Gao, Volny and Wang to generalize the original description of the GVW
algorithm given in [47]. For this a partial order on Rm ×R is defined. Note that this is included in our com-
bined crterion described in Section 7.1. This is very similar to the rewrite order we defined in 7.1. Still there
are some slight differences: Sun and Wang call a partial order onRm×R admissible if for any S-pair aα− bβ
that s-reduced to γ with s (γ) = s (aα) it holds that αÅ γ. Clearly, this is covered by our definition of a rewrite
order. Still an admissible partial order could lead to several chains of ordered elements in G which are not
connected to each other. This would mean that a possible canonical rewriter in siganture T in chain Ci cannot
be used to discard a useless S-pair which consists of a generator in chain C j . So for each chain Ci we would
receive an own set of rewriters in signature T :

CT,Ci
= {aα |α ∈ G ∪H , a is a monomial and s (aα) = T,α is in chain Ci } .

Note that correctness and also termination of RB is not effected by this, but the criterion is not as efficient as
it is using a total order Å on G .

All in all, the efficiency of RB depends on

(a) the order in which S-pairs are handled, and
(b) the strength of the detection of useless S-pairs.

We know already that�s is the best possible order forP in terms of the size of the resulting signature Gröbner
basis and the efficiency of the s-reduction steps. The second point, as well as the size of G also depend on the
chosen rewrite order. So as a final step on our way understanding signature-based Gröbner basis algorithms
we have to investigate the overall impact of rewrite orders.

7.3 Choosing a rewrite order

When thinking about a possible rewrite order to choose we should look again the set of all possible rewriters
in signature T :

CT = {aα |α ∈ G ∪H , a is a monomial and s (aα) = T } .

We want to choose the canonical rewriter aα in T for further considerations in RB and discard all other
elements. It is clear that we want to choose aα in terms of “being easier to s-reduce than the other elements
in CT ”. From the point of view of Gröbner basis computations there are two canonical selections:

(a) α has been added to G latest for all β ∈ G such that bβ ∈ CT . Here we hope that α is better s-reduced
w.r.t. G and thus aα might be easier to handle in the following.

(b) Let lt (aα) ≤ lt
�

bβ
�

for any bβ ∈ CT . Choosing aα as canonical rewriter in signature T we expect the
fewest possible s-reduction steps.

It turns out that all signature-based Gröbner basis algorithms known until now choose one of the above
options. Thus it makes sense to have a closer look at those.

Definition 7.13. Let α,β ∈ G ∪H during a computation of RB.

(a) We say that αÅadd β if β ∈H or α has been added to G before β is added to G . Break ties arbitrarily.

(b) We say that αÅrat β if s (α) lt
�

β
�

< s (β) lt (α) or if s (α) lt
�

β
�

= s (β) lt (α) and s (α)< s (β).

Remark 7.14.

(a) Using �s in RB αÅadd β for α,β ∈ G induces that s (α)< s (β).
(b) The suffix “rat” of Årat refers to the usual notation of this rewrite order, for example, in [31, 45]. There

the ratios of the signature and the polynomial lead term are compared:

s (α)
lt (α)

<
s (β)

lt
�

β
� .

22

Multiplying both sides of the inequality by lt (α) lt
�

β
�

we get the representation of Årat as in Defini-
tion 7.13 (b). We prefer the notation without ratios due to two facts: First of all we do not need to
extend < on the ratios and introduce negative exponents. Secondly, we can handle lt (α) = 0 for ele-
ments α ∈H .

Lemma 7.15. If there exists γ ∈ H such that γ ∈ CT then all S-pairs in signature T are discarded in RB using
either Åadd or Årat.

Proof. If γ ∈H ∩CT then for all α in G ∩CT it holds by definition that α Åadd γ. Furthermore, α Årat γ due
to s (α) lt

�

β
�

< s (β) lt (α) where lt
�

β
�

= 0. Thus no S-pair in signature T is handled by RB. ut

Corollary 7.16. If f1, . . . , fm ∈ R form a regular sequence then there is no s-reduction to zero while RB computes
a signature Gröbner basis for 〈 f1, . . . , fm〉 using <pot.

Proof. The homology of the Koszul complex K∗ associated to the regular sequence (f1, . . . , fm) has the property
that H`(K∗) = 0 for ` > 0. Thus, there exist only Koszul syzygies of the form αiα j − α jαi ∈ Rm where
G = {α1, . . . ,αk−1} is the intermediate Gröbner basis for 〈 f1, . . . , fi−1〉 and αk = ek ∈ Rm such that αk = fi . By
Property b those syzygies are added in Line 3 of Algorithm 2. It follows that any zero reduction, corresponding
to such a syzygy is detected in advance. ut

Corollary 7.17. If f1, . . . , fm ∈ R form a homogeneous regular sequence then there is no s-reduction to zero
while RB computes a signature Gröbner basis for 〈 f1, . . . , fm〉 using <d-pot.

Proof. This is clear by Corollary 7.16 and the fact that RB computes the signature Gröbner basis for the input
ideal by increasing polynomial degree. Thus at each new degree step d G is already a d ′-Gröbner basis for
〈 f1, . . . , fm〉 for all d ′ < d. ut

Another question to answer is why Rewritable is allowed to check both generators of an S-pair and not only
the one with higher signature.

Lemma 7.18. Assume RB computing a signature Gröbner basis for 〈 f1, . . . , fm〉 usingÅadd orÅrat. If Rewritable
returns “true” for input S-pair aα− bβ , s (aα)> s (bβ) due to bβ being rewritable then RB can discard aα− bβ .

Proof. If bβ is rewritable then there exists γ ∈ G ∪H , γ 6= β such that γ is the canonical rewriter in s (bβ). Let
s (cγ) = s (bβ) for some monomial c. Since β Å γ and Å is either Åadd or Årat it follows from Definition 7.13
that lt

�

bβ
�

≥ lt (cγ). Two situations can happen:

(a) If lt (cγ) = lt
�

bβ
�

then RB handles the S-pair aα− cγ.

(b) If lt (cγ) < lt
�

bβ
�

then there exists δi ∈ G and monomials di such that bβ =
∑`

i=1 diδi + cγ and
s (diδi)< s (bβ) for all i ∈ {1, . . . ,`} since G is a signature Gröbner basis up to s (bβ). Thus RB handles
for some k ∈ {1, . . . , k} aα−dkδk = λspair (α,δk) for some monomial λ≥ 1. Note that this case includes
γ ∈H . ut

Note that whereas we have to handle elements in H explicitly for Åadd there is no need to do so for Årat: If
β ∈H then for any α ∈ G s (α) lt

�

β
�

= 0≤ s (β) lt (α).

Lemma 7.19. If RB uses Årat as rewrite order then there exists no singular top s-reducible element in G .

Proof. RB only regular s-reduces an S-pair in a non-syzygy signature T if G is not already a rewrite basis in
signature T (see Lemma 7.11), i.e. only if the canonical rewriter aα in T is regular top s-reducible. Let bβ
be such a regular s-reducer of aα. Let aα− bβ regular s-reduce to γ. Assume there exists δ ∈ G such that
s (dδ) = T and lt

�

dδ
�

= lt (γ). Since aα is the canonical rewriter in signature T w.r.t. Årat it holds that

lt
�

dδ
�

≥ lt (aα)> lt (γ) .

This contradicts the existence of such an element δ ∈ G . ut

23

Corollary 7.20. Using Årat as rewrite order RB computes a minimal signature Gröbner basis.

Proof. Clear by Lemma 7.19. See also Section 3.3 for more details. ut

The question is now if there exist examples where RB using Åadd computes a signature Gröbner basis with
more elements than the one achieved by RB using Årat.

Example 7.21. Let K be the finite field with 7 elements and let R = K [x , y, z, t]. Let < be the graded
reverse lexicographical monomial order which we extend to <pot onR3. Consider the input ideal I generated
by f1 = yz − 2t2, f2 = x y + t2, and f3 = x2z + 3x t2 − 2y t2. We present the calculations done by RB using
Åadd in Figure 6.

αi ∈ G reduced from lt (αi) s (αi)

α1 e1 yz e1

α2 e2 x y e2

α3 spair (α2,α1) = zα2 − xα1 x t2 ze2

α4 e3 x2z e3

α5 spair
�

α4,α2

�

= yα4 − xzα2 y2 t2 ye3

α6 spair
�

α4,α3

�

= t2α4 − xzα3 z3 t2 t2e3

α7 spair (α6,α1) = yα6 − z2 t2α1 y2 t4 y t2e3

Fig. 6. Computations for RB in Example 7.21.

RB with Årat regular s-reduce the same S-pairs except the last one: In signature y t2e3 we have yα6, t2α5 ∈
Cy t2e3

. Åadd prefers yα6 over t2α5, thus the S-pair yα6 − z2 t2α1 is handled. Årat on the other hand has t2α5

as canonical rewriter in signature y t2e3 as lt
�

t2α5

�

= y2 t4 < yz3 t2 = lt (yα6). With this choice no S-pair in

signature y t2e3 is handled and thus RB terminates.

Note that the canonical rewriter in signature y t2e3 w.r.t.Årat is not regular top s-reducible. So by Lemma 7.11
RB does not reduce any S-pair in this signature. Åadd chooses its canonical rewriter yα6 wrong in the sense
that yα6 can be further reduced, but only until it reaches t2α5. Whereas this computation is important for
RB in order to compute a rewrite basis w.r.t. Åadd, it is not needed to achieve a signature Gröbner basis for I .

We conclude this section with the following summary: As we have seen RB is mainly parametrized by three
properties:

(a) the monomial order < and its extension to Rm,
(b) the pair set order � on P , and
(c) the rewrite order Å.

We see that even though there are so many different notions of signature-based Gröbner algorithms in the
literature, all those implementations boil down to variations of two of the above mentioned three orders: All
known algorithms have in common to use �s on P .4

Remark 7.22. Note that such attempts of generalizing the description of signature-based Gröbner basis al-
gorithms have already been done, for example, in [58, 68, 69, 76]. As we have already pointed out in the
introduction of this section all of these characterizations are similar and included in our attempt using RB.
The difference in notation are rather obvious (see also sections 8 – 11), thus we relinquish to give comparisons
further than the ones depicted already in Sections 6 and 7.

Next we discuss known and efficient implementations of signature-based Gröbner basis algorithms as variants
of RB. Note that all algorithms described in the following can be implemented with any compatible extension
to the monomial order. When algorithms were initially presented with a fixed module monomial order we
take care of this. Still, the only real difference of the implements boils down to the rewrite orders used.

4 There is some slight difference in the original presentation of F5 in [33] which is discussed in Property 8.3 (b).

24

8 Faugère’s F5 algorithm and variants

In 2002 Faugère presented the F5 algorithm ([33]). This was the first publication of a signature-based Gröbner
basis algorithm and introduced the notion of a signature.

In [31] the connection between RB and F5 is already given, so we give a short review and refer for details to
that paper. F5, as presented in [33] uses <pot as extension of the underlying monomial order <.5

Remark 8.1. In [31] it is assumed that F5 uses Åadd as its rewrite order. Note that this is not true for the
initial presentation of F5 in [33]: F5 uses <pot, so it computes incrementally a Gröbner basis for 〈 f1, . . . , fi〉
for increasing i. For each such index i the algorithm stores a list of so-called “rewrite rules”: RULEi . The S-pairs
are first taken by minimal possible degree d := deg(aα) for aα being a generator of an S-pair. Once this choice
is done this list of S-pairs, denoted by Pd is handled by subalgorithm SPOL. There S-pairs are checked by the
criteria and new rewrite rules are added to the end of the list RULEi . Once this step is done, the remaining
S-pairs in Pd are handed to the subalgorithm Reduction. Not until this point the S-pairs in Pd are sorted by
increasing signature. This leads to the following effects:

(a) If the input is homogeneous, F5 reduces S-pairs by increasing signature, but the rewrite rules are not
sorted by increasing signature.

(b) If the input is inhomogeneous then F5 need not even reduce S-pairs by increasing signatures as it is
pointed out in [25]. Note that this behaviour is still covered by RB and using a corresponding pair set
order �6=�s. Still, as discussed in sections 5 and 7 the best possible pair set order is �s and it is shown
in [25] that F5 can easily be equipped with it.

The fact about not handling S-pairs by increasing signatures we describe in more detail in Property 8.3 (b).
The problem of ordering the rewrite rules is more difficult: As described in [33], F5 might not use Åadd as
rewrite order: For F5 the canonical rewriter in signature T is the element in RULEi which was added last. But
at the time of concatenation the S-pairs are not sorted by increasing signature! So the following situation can
happen: Assume we have two S-pairs in degree d with signatures ze i and xe i . We can assume that in Pd they
are ordered like [. . . , xe i , . . . , ze i , . . .]. Let us assume that both S-pairs are not rewritable, so we reduce both.
Now, after Pd is sorted by increasing signature, F5 first reduces the S-pair with signature ze i to α, and later
on the one with signature xe i to β . Generating new S-pairs we could have two S-pairs in Pd+2 with signature
x yze i: spol (α,γ) and spol (β ,δ). In this situation, F5 would remove spol (β ,δ) and keep spol (α,γ) since the
signature ze i was added to RULEi after xe i had been added. So in our notation α is the canonical rewriter in
signature x yze i . Clearly, using Åadd β is the canonical rewriter in x yze i .

Since β was computed after α from the algorithm’s point of view β might the better element. So it makes
sense to optimize F5 as presented in [33] to use Åadd.

Moreover, note that in [31] the authors assume this optimization already. For a complete proof of termination
of F5 as presented in [33] we refer the reader to [45].

In the following we assume that F5 uses Åadd as rewrite order, then the only difference left from its original
description is now the fact that F5 checks the possible s-reducers bβ of an element α if they are not syzygy
and not rewritable.

Lemma 8.2 (Lemma 15 in [31]). Let α ∈ Rm, let t be a term of α and let G be a rewrite basis up to signature
s (α). Then t is regular s-reducible if and only if it is reducible in F5.

Proof. Follows also from Lemma 7.10. ut

So from Lemma 8.2 it follows that checking possible reducers by Rewritable in RB does not change the
algorithm’s behaviour and is thus optional. In Section 13 we see that the idea of checking the s-reducers by
the criteria comes from a linear algebra point of view.

Let us underline the following characteristics of F5.

5 Strictly speaking this is not completely true, F5 as presented in [33] uses <pot’ defined by ae i <pot’ be j if and only if
i > j or i = j and a < b. The only difference is to prefer the element of lower index instead of the one of higher index.
In order to unify notations we assume in the following that F5 means “F5 uses <pot as module monomial order”.

25

Algorithmic Property 8.3.

(a) Note that, even so we assume the optimization of F5’s rewrite order as described in Remark 8.1, F5
still does not completely implement Åadd but a slightly different rewrite order: The requirement α Å β
whenever β ∈H from Åadd is relaxed to β = ksyz

�

e i , e j

�

for 1≤ i < j ≤ m. Thus non-Koszul syzygies in
H have the same priority as elements in G . The idea to improve computations by using zero reductions
directly instead was introduced first in an arXiv preprint of [3] by Arri and Perry in 2009 as well as in [46]
by Gao, Guan and Volny.

(b) Note that in [33] the F5 algorithm is described in the vein of using linear algebra for the reduction steps
(see Section 13 for more details). Instead of ordering the pair set by increasing signatures it is ordered
by increasing degree of the corresponding S-polynomial. A subset Pd of S-pairs at minimal given degree
d is then handled by the REDUCTION procedure. There, all these S-pairs (corresponding to degree d
polynomials) are sorted by increasing signature. As already discussed in [25], for homogeneous input
this coincides with using �s since then the degree of the polynomial part and the degree of the signature
are the same. For inhomogeneous input F5’s attempt might not coincide with �s. In [45] Galkin has
given a proof for termination of F5 taking care of this situation. Note that in such a situation one might
either prefer to use �s (as pointed out in [25]) or saturate resp. desaturate the elements during the
computation of the algorithm.

(c) Furthermore, thinking in terms of linear algebra also explains why in [33] higher signature reductions
lead to new S-pairs which are directly added to the TODO list in subalgorithm TOPREDUCTION and not
prolonged to the situation when a new element is added G as it is done in RB: Assuming homogeneous
input, in a Macaulay matrix Md (see, for example, Section 3) all corresponding rows are already stored.
Thus a higher signature S-pair (in RB et al. due to single polynomial s-reduction prolonged to a later
step) corresponds to a reduction of a row by some other one below. All possible S-pairs of degree d are
handled at once thus one can directly execute the new S-pair without generating it later on.

Clearly, the F5 criterion and the Rewritten criterion are just special cases of the syzygy criterion (Lemma 6.4)
and the singular criterion (Lemma 6.6), respectively. For even more details on how to translate notions like
“canonical rewriter” to F5 equivalents like “rewrite rules” we refer to [31] Section 5.

Moreover, F5 implements the s-reduction process different to the description in RB: Instead of prolonging
an s-reduction α− bβ with a reducer bβ of signature s (bβ) > s (α) to the generation of the S-pair bβ − α
later on, F5 directly adds bβ−α to the todo list of the current degree in REDUCTION. Assuming homogeneous
input this makes sense. Again, we see in Section 13 that this is coming from an F4-style implementation of
the s-reduction process.

In the last decade several optimizations and variants of F5 where presented. Using RB we can easily categorize
them.

Variants & Specifications 8.4. In [33] three variants of F5 are mentioned shortly without going into detail
about their modifications:

(a) F5’ denotes a variant of F5 similar to F5R (see Section 8.1) resp. F5C (see Section 8.2): For inhomo-
geneous input one can optimize computations by homogenizing the computations of the intermediate
Gröbner basis Gi for 〈 f1, . . . , fi〉. Before adding the homogenized fi+1 one dehomogenizes Gi and interre-
duces Gdeh

i to Bi . This Bi can then be used for checks with the syzygy criterion as well as for reduction
purposes. We refer to sections 8.1 and 8.2 for details on signature handling in this situation.

(b) F5” denotes the variant of F5 using <d-pot as compatible module monomial order. Thus, instead of an
incremental computation w.r.t. the initial generators f1, . . . , fm the algorithm handles elements by increas-
ing degree. Note that in case of regular input F5” computes no zero reduction, whereas this is possible
for <lt-pot.

(c) The variant MatrixF5 which uses linear algebra for reduction purposes is described in Section 3 in detail.

Note that besides the variants presented in the following there are even more publications about optimizations
and generalizations of the F5 algorithm for computing Gröbner bases, for example, see [39–41]. Also the main
results in these publications are presented for F5, they do not depend on the Gröbner basis algorithm used.
Here we are giving a survey especially for signature-based Gröbner basis algorithms, thus taking care of not
signature-based tailored research is out of scope of this publication.

Moreover, there are first works in using signature-based criteria for computing involutive bases ([54,55]).

26

8.1 F5R – Improved lower-index s-reduction

In 2005 Stegers reviewed F5 in [72]. There he introduced a new variant of F5 improving the reduction
process. Due to the incremental structure of RB when using <pot one first computes a signature Gröbner
basis for 〈 f1, f2〉, then for 〈 f1, f2, f3〉, and so on. Since the intermediate bases need not be minimal Stegers
suggested to use in step k of the algorithm not Gk−1 for reduction pruposes. Instead it is preferable to reduce
the corresponding Gröbner basis Gk−1 = {α | α ∈ Gk−1} to the reduced Gröbner basis Bk−1 for 〈 f1, . . . , fk−1〉.
Since for all elements handled by RB in iteration step k the signature has an index k and all elements in Gk−1
have signature index at most k−1 s-reductions are always allowed when using <pot and the signatures need
not be checked.

Note that Bk−1 is only used for the reduction purposes, new S-pairs are still generated using elements in Gk−1
since otherwise the signatures would not be correct.

8.2 F5C – Improved S-pair generation

Based on Stegers’ idea, Eder and Perry presented in 2009 the F5C algorithm in [29]. Whereas F5R uses the
reduced Gröbner basis Bk−1 for 〈 f1, . . . , fk−1〉 only for reduction purposes, F5C extends this to the generation
of new S-pairs in iteration step k.

Once RB finishes computing Gk−1 one reduces the corresponding Gröbner basis Gk−1 to Bk−1 as described
above. Let Bk−1 := {g1, . . . , gm′}, then one introduces G ′k−1 = {e1, . . . , em′}. Moreover, one has to redefine the
homomorphism α 7→ α to go from Rm′ to R by sending e i to gi for all i ∈ {1, . . . , m′}.
Starting iteration step k, RB now computes the signature Gröbner basis for 〈g1, . . . , gm′ , fk〉. Of course, at that
point another extension of the homomorphism α 7→ α has to be done, since now we are mappingRm′+1→R:
We define that em′+1 := fk.

It is shown in Theorem 32 and Corollary 33 of [29] that with this resetting of the signatures the number of
useless s-reductions is not increased, but instead the number of S-pairs generated in step k is decreased.

Variants & Specifications 8.5.

(a) Due to Property 8.3 (a) one also wants to implement F5C using Åadd in order to use zero reductions
directly. In 2011, Eder and Perry denoted this variant F5A in [30].

(b) In [26] Eder improves the idea of F5C slightly: By symbolically generating S-pairs of elements in G ′k−1
(they all already reduce to zero) signatures useful for discarding S-pairs in iteration step k can be made
available a bit earlier. Thus, in terms of RB, H is initialized not only with the signatures of the Koszul
syzygies but also with the signatures of other, already known syzygies. The idea presented there can
be used in any incremental signature-based Gröbner basis algorithm. The corresponding variants are
denoted, for example, iF5C and iG2V.

8.3 Extended F5 criteria

In 2010, Ars and Hashemi published [5] in which they generalized the F5 criterion and the Rewritten criterion
in the sense of using different extensions of the monomial order < on Rm. These variants are achieved by
using RB not with <pot but one of the following two orders proposed in [5].

Definition 8.6. Let < be a monomial order on R and let aei , be j be two module monomials in Rm.

(a) aei <1 be j if and only if6 either

a lt (e i) < b lt
�

e j

�

or

a lt (e i) = b lt
�

e j

�

and lt (e i) < lt
�

e j

�

.

6 Note that for <1 to be a total order we need to ensure that lt (e i) 6= lt
�

e j

�

whenever i 6= j. Having the input ideal
I = 〈 f1, . . . , fm〉 this can be achieved by an interreduction of the fis before entering RB.

27

(b) aei <2 be j if and only if either

deg (ae i) < deg
�

be j

�

or

deg (ae i) = deg
�

be j

�

and a < b or

deg (ae i) = deg
�

be j

�

and a = b and i < j.

Ars and Hashemi implemented the original F5 algorithm and their variants of it in the computer algebra system
MAGMA and give timings for several Gröbner basis benchmarks. Their variants seem to be more efficient than
the original F5 algorithm in most of the examples. Still there exist input, for example the SCHRANS-TROOST

benchmark, for which <pot seems to be more efficient. Using a framework like RB such behaviour can be
tested easily.

9 Exploiting algebraic structures

In this section we present variants of F5 that use knowledge of underlying algebraic structures in order to
improve the computations. Note that there exist more variants doing this besides the 3 ones we are discussing
here, see, for example, [39–41] (see also Figure 1). The improvements in those variants are not specific to
signature-based Gröbner basis algorithms, thus we waive to discuss them here.

It is clear that in the future a lot more improvements in this direction can be expected. Exploiting algebraic
structures helps to find more syzygies on the one hand and to increase the independence of polynomials on
the other hand. Both has a positive influence on the computation of (signature) Gröbner bases.

9.1 F5/2 – Improved computations over F2

An easy way to improve F5’s performance over small finite fields is to add the field equations to H . When
breaking the first hidden field equations (HFE) challenge in 2003 ([36]) the variant F5/2 was used which
adds to f1, . . . , fm the field equations x2

i − x i = 0 in F2. With this the rewritable signature criterion is more
powerful since Koszul syzygies generated by those supplementary equations have low signatures. The HFE
challenge consists of 80 equations in degree 2. A Gröbner basis computation of such a system was intractable
beforehand.

9.2 An F5 variant for bihomogeneous ideals generated by polynomials of bidegree (1, 1)

In 2012 Faugère, Safey El-Din and Spaenlehauer published a variant of F5 dedicated to multihomogeneous,
in particular, bihomogeneous systems generated by bilinear polynomials ([38]). The main result is to exploit
the algebraic structure of bilinear systems to enlargeH .

In Corollary 7.16 we see that RB and thus also F5 computes no reduction to zero if the input sequence
is regular. Whereas a randomly chosen homogeneous polynomial system is regular, this is not the case for
multihomogeneous polynomial systems. Those systems appear, for example, in cryptography or coding theory.
Due to the non-regularity F5 does not remove all zero reductions.

Let f1, . . . , fm ∈ K [x0, . . . , xnx
, y0, . . . , yny

] be bilinear polynomials, let Fi denote the sequence f1, . . . , fi and
let Ii denote the ideal 〈Fi〉. The main result is that the kernel of the Jacobian matrices jacx (Fi) and jacy (Fi)
w.r.t. x0, . . . , xnx

and y0, . . . , yny
, respectively, correspond to those reductions to zero F5 does not detect. In

general, all elements in these kernels are vectors of maximal minors of the corresponding Jacobian matrices.

Assuming the incremental structure of F5 by using <pot it is shown that the ideal Ii−1 : fi is spanned by Ii−1
and the maximal minors of jacx (Fi−1) (for i−1> ny) and jacy (Fi−1) (for i−1> nx). The lead ideal of Ii−1 : fi
corresponds to the zero reductions associated to fi . In order to get rid of them one needs to get results for the
ideals generated by the maximal minors of the Jacobian matrices. In [38] it is shown that in general Gröbner
bases for these ideals w.r.t. the graded reverse lexicographical order are linear combinations of the generators.
Thus, once a Gröbner basis of Ii−1 is known (which we can assume due to the incremental structure of F5)

28

one can efficiently compute a Gröbner basis of Ii−1 : fi . It follows that for generic bilinear systems this variant
of F5 does not compute any zero reduction.

It follows that for RB all one has to do is to add the computation of the maximal minors of the jacobian
matrices and add the corresponding syzygies resp. signatures toH in Line 3 of Algorithm 2.

9.3 An F5 variant for SAGBI Gröbner bases

Faugère and Rahmany presented in 2009 an adjusted variant of F5 for computing so-called SAGBI Gröbner
bases ([43]). A SAGBI Gröbner basis is the analogon of a Gröbner basis for ideals in K -subalgebras. We
introduce notation as much as needed to explain the changes in F5, in particular, MatrixF5. For more details
on the theory of SAGBI bases we refer, for example, to [60].

In this subsection let G ⊂ GL(n,K) be a subgroup of n× n invertible matrices overK . Moreover, we assume
that K has characteristic zero or p such that p and |G| are coprime.

Definition 9.1.

(a) A polynomial f ∈ R is called invariant (w.r.t. G) if f (Ax) = f (x) for all A ∈ G. The set of all polynomials
of R invariant w.r.t. G is denoted RG .

(b) For |G|<∞ the Reynolds operator (for G) is the map R :R →RG defined by R(f) = 1
|G|

∑

A∈G f (Ax).

Proposition 9.2 ([20]). Let R be the Reynolds operator for a finite group G ⊂ GL(n,K). Then the following
properties hold:

(a) R is K -linear.
(b) f ∈ R =⇒R(f) ∈ RG .
(c) f ∈ RG =⇒R(f) = f .

Even if RG might not be finite dimensional as K -vector space, there exists a decomposition in finite dimen-
sional homogeneous components, RG = ⊕d≥0RG

d .7 For any term t ∈ R R(t) is a homogenous invariant,
called orbit sum. Clearly, the set of orbit sums is a vector space basis for RG .

Here we assume that f1, . . . , fm are homogeneous, invariant polynomials in R and I resp. IG represent the
ideal generated by f1 . . . , fm in R resp. RG

Definition 9.3.

(a) A subset F ⊆ IG is a SAGBI Gröbner basis for IG (up to degree d) if {lt (f) | f ∈ F} generates the lead ideal
of IG as an ideal over the algebra

lt (f) | f ∈ RG
�

(up to degree d).
(b) Let f , g, p ∈ RG such that f 6= 0 6= p. f SG-reduces to g modulo p if there exists a term t of f such that

there exists an s in the set of lead terms of RG such that s lt (p) = t and g = f − lc(t)
lc(p)lc(R(s))R(s)p.

Clearly, one can speak of SG-reduction w.r.t. a finite subset F ⊆ RG . With this a SAGBI Gröbner basis can be
defined similar to a usual Gröbner basis:

Proposition 9.4. Let F be a subset of an ideal IG ⊆RG . The following are equivalent:

(a) F is a SAGBI Gröbner basis for IG .
(b) Every h ∈ IG SG-reduces to zero w.r.t. F .

Note that a SAGBI Gröbner basis might not be finite.

Instead of using elimination techniques in order to compute a SAGBI Gröbner basis for a given ideal IG ⊆RG

one can use the ideas of Thiéry who presented in [82] a variant of Buchberger’s algorithm.

Faugère and Rahmany use in [43] the MatrixF5 description of F5 to present the modifications: Let f1, . . . , fm ∈
RG be the homogeneous input elements. First one defines the so-called invariant Macaulay matrix Md,i gen-
erated by R(t j,k) fk for 1 ≤ k ≤ i and terms t j,k such that deg(t j,k) = d − deg(fk). Two modifications to the
usual Macaulay matrix have to be made:

7 Note that R = ⊕d≥0Rd and that the action of G preserves the homogeneous components.

29

(a) Instead of labelling the rows of Md,i by t j,kek one uses R(t j , k)ek.
(b) Instead of labelling the columns by the usual monomials m` they are indexed by R(m`).

Besides this no further changes need to be done. The variant of MatrixF5 presented here assumes <pot as
module monomial order and Åadd as rewrite order. One checks for any row labelled by R(t j,k)ek if fk is the
canonical rewriter in signature s

�

t j,kek

�

and removes the row otherwise. In the description of MatrixF5 this is
equivalent to the existence of a row with corresponding lead term t j,k in a matrix that was previously reduced
to row echelon form.

10 F5 and the quest of termination

Until 2012 there was still no complete proof of F5’s termination given. Thus a lot of variants of F5 where
published in the meantime which have small adjustments in order to ensure termination.

The main problem with the proof of F5’s termination given in [33] is Theorem 2: It assumes that if the input
of F5 is a regular sequence of homogeneous elements then F5 does enlarge the lead ideal after each call of
the subalgorithm REDUCTION. In Section 8 of [33] an example of F5 computing a Gröbner basis for a regular
sequence of three homogeneous elements is given. In the last call of REDUCTION only one element, r10, is
added to G with lt (r10) = y6 t2. In degree d = 7 F5 has already added element r8 to G with lt (r8) = y5 t2.
Thus the statement of Theorem 2, on which the proof of termination of F5 in [33] is based on, is not true.

10.1 Proving F5’s termination

At least since Galkin’s proof in [45] termination of F5 is clear. Several other publications include proofs of
F5’s termination, most of them are only slight variants or simplifications of Galkin’s (see [68,69]), some are
proving termination for slight variants of F5 (see [31]). The main idea is based on partitioning G into sets

Rr :=

�

αi

�

�

�

�

s (αi)
lt (αi)

= r

�

for given ratios r. The proof of F5’s termination is then done in two steps:

(a) One shows that there are only finitely many non-empty sets Rr .
(b) #Rr <∞ for any non-empty set Rr .

As one can easily see, this attempt can be used for any signature-based Gröbner basis algorithm related to
RB, thus also termination of GVW and variants (see Section 11) can be handled in the same way.

In [68] and [69] Pan, Hu and Wang present another attempt in proving F5’s termination. For this they do
not only focus on F5 but give generalized algorithms in order to use known termination of algorithms like
GVW (see Section 11.5). They give a generalized F5 algorithm called F5GEN for which they can easily prove
termination in the vein of Eder and Perry’s proof of termination of general signature-based Gröbner basis
algorithms given in [30]. Both publications use the notation introduced by G2V resp. GVW and then further
adopted by Huang in [58]. We refer to the corresponding sections (11.2 and 11.5, respectively) for a dictionary
translating the notation given here to theirs. Moreover, note that [69] takes care of the problem with the
insertion of rewrite rules in the original F5 algorithm discussed in Remark 8.1: Instead of using lists RULEi for
rewrite rules they directly check rewritability by the order of elements in G as done in RB, too. F5GEN now
has a generalized insertion strategy for new elements in G , called INSERT_F5GEN. This mirrors the usage of
different rewrite orders Å as explained in Section 7. Whereas [69] focusses on F5, [68] covers also GVW and
variants.

In [31] Eder and Roune give an easier proof for F5’s termination assuming that F5 uses Åadd as rewrite order,
see Remark 8.1.

10.2 Variants of F5 to ensure termination algorithmically

The following variants are still not deprecated, they generate lower degree bounds for an earlier termination
of F5. All the changes presented here can easily be transfered to RB. Furthermore, note that all the following

30

ideas for modifying F5 to ensure termination assume homogeneous input. The main difference to proving
F5’s termination directly as explained in Section 10.1 is that the variants presented next provide algorithmic,
termination ensuring modifications to F5.

F5t – Using the Macaulay bound. In [50] and [51] Gash presents the variant F5t which makes use of the
Macaulay bound M (see, for example, [9,62,63]) for regular sequences. Once the degree of the polynomials
treated in the algorithm exceed 2M redudant elements (i.e. elements α such that lt (α) is already in the lead
ideal of the current partly computed Gröbner basis) are added to a different set D. Whenever F5 returns such a
redundant element α, α is reduced (not s-reduced!) completely w.r.t. G ∪D. All corresponding signatures and
rewrite rules are marked to be invalid. Any newly computed S-pair with one generator out of D is handled
without signature-based criteria checks and just completely reduced (again, not s-reduced!) w.r.t. G ∪ D.
Whereas termination and correctness are ensured in this approach, performance really becomes a problem.
Depending on the input it often introduces an enormous number of zero reductions for elements generated
out of D. Moreover, as for F5B, taking care of two different lists of elements at the same time, is a bottleneck,
too.

Using Buchberger’s chain criterion. In 2005, Ars defended his PhD thesis ([4]). There a different variant of
F5 is presented which was later on denoted by F5B in [28]. In this variant a degree bound of the algorithm is
computed with the help of Buchberger’s chain criterion. Besides the usual pair setP a second setP ∗ is stored.
Whereas P is still used for the actual computations with F5 P ∗ has only the purpose to find a degree bound
d for the algorithm. Whenever new S-pairs are computed the ones which are not detected by Buchberger’s
chain criterion are added toP ∗. After updatingP ∗ d is set to the highest degree of any S-pair inP ∗. Once the
degrees of all S-pairs inP exceed d then by Buchberger’s chain criterion the polynomial part of the computed
signature Gröbner basis up to degree d is already a Gröbner basis for the input ideal.

Algorithmic Property 10.1. F5B uses linear algebra instead of polynomial s-reduction. We refer to Section 13
for further details on such an implementation of the reduction process.

F5+ – Keeping track of redundancy. In 2011, as a last termination dedicated variant before Galkin’s proof
in [45], Eder, Gash and Perry present F5+ in [28]. The main contribution is the distinction between so-called
“GB-critical pairs” and “F5-critical pairs”. A GB-critical pair corresponds to an S-pair aα− bβ whereas lt (α)
and lt

�

β
�

are not already in the lead ideal of the current state of the computed Gröbner basis. An F5-critical
pair is an S-pair which does not correspond to a GB-critical pair, i.e. at least one generator is redundant.
Whereas GB-critical pairs are needed to be checked for the resulting Gröbner basis, F5-critical pairs seem to
be superfluous, but this is not always the case: Due to the rewritable signature criterion it might happen that
an GB-critical pair is discarded and instead a corresponding F5-critical pair is s-reduced later on. Only since
the F5-critical pair is taken care of the algorithm’s correctness is ensured. This means that even if at a given
degree d there is no GB-critical pair left, one might need to s-reduce corresponding F5-critical pairs in this
degree. The idea is now to store all, by F5’s signature-based criteria discarded GB-critical pairs in a second
list P ∗, and keep all usual critical pairs (resp. S-pairs) in P . As long as the degree of the currently handled
elements in P is smaller or equal to the maximal degree of elements in P ∗ the algorithm needs to carry on
due to the above discussion. Once the degree exceeds the maximal degree of an element in P ∗ Buchberger’s
chain criterion is used: If all elements inP ∗ can be removed by it then the algorithm can terminate. This is due
to the fact that in P ∗ all for the resulting Gröbner basis needed, but due to rewritings discarded GB-critical
pairs are stored. Once it is ensured (by Buchberger’s chain criterion) that those reduce to zero, we know that
we already reached a Gröbner basis of the input.

Algorithmic Property 10.2. F5+ starts checking P ∗ only once the degree of elements in P exceeds the max-
imal degree of all GB-critical pairs removed by F5’s signature-based criteria, not before. Since F5B does not
take care of the connection between F5-critical pairs and GB-critical pairs, it has to check P ∗ in each step.

Moreover, F5+ stores and checks in P ∗ only GB-critical pairs that are also discarded by F5’s signature-based
criteria. Only for such a GB-critical pair a corresponding F5-critical pair might be necessary for the correctness
of the algorithm.

31

Variants & Specifications 10.3. For a generic system F5B might find a lower degree bound than F5+. Moreover,
note that both variants are able to terminate the algorithm once a constant is found: Due to checking P ∗ by
Buchberger’s chain criterion all other S-pairs are removed at this point.

11 Signature-based Gröbner basis algorithms using Årat

Besides F5 all other known signature-based Gröbner basis algorithms use Årat.
8 We can easily see that those

instantiations of RB, like GVW or SB, mostly coincide and just differ in notation.

11.1 Arri and Perry’s work – AP

Aberto Arri released in 2009 a first preprint of his paper with John Perry, [3]. There the first mention of
Årat can be found. The paper reviews F5’s criteria given in [33] and presents a signature-based Gröbner basis
algorithm depending on one criterion only. There it is also called “F5 criterion” but it is equivalent to choosing
the canonical rewriter in signature T from CT w.r.t. Årat.

Vocabulary 11.1. The notions “S -reduction” and ”S -Gröbner basis” coincide with s-reduction and signature
Gröbner basis, respectively.

Algorithmic Property 11.2.

(a) AP implements RB with Årat and can use any compatible module monomial order <.
(b) AP is (nearly simultaneously with G2V, see Section 11.4) the first signature Gröbner basis algorithm

adding signatures of zero reductions directly toH .
(c) AP’s S -reduction is (also nearly simultaneously with G2V’s implementation of s-reduction, see Sec-

tion 11.4) the first one without checking the reducers with the signature-based criteria (see also Lemma 7.11).

11.2 The TRB algorithm – top reductional basis

Lei Huang was one of the first researchers comparing different signature-based Gröbner basis algorithms.
In 2010 he presented his TRB algorithm in [58], where the name comes from the wording “top reductional
basis”.

Vocabulary 11.3. A top reductional prime element coincides with the notion “not regular top s-reducible” given
in Section 4.1 and a top reductional basis is just a signature Gröbner basis.

The TRB algorithm does not focus on efficiency, but is a more general algorithmic presentation of signature-
based compuations and included in RB: In [58] specialzations of TRB are given that coincide with other
known algorithms, like TRB-F5, TRB-EF59 and TRB-GVW.10 Moreover, the most optimized variant TRB-MJ
is presented which coincides with RB using Årat and �s. Hereby “MJ” stands for “minimal joint multiplied
pair” which corresponds to choose at a given signature T the canonical rewriter with minimal possible lead
term, that means using Årat.

11.3 The GBGC algorithm – generalized criteria

In 2011, Sun and Wang presented the GBGC algorithm in [76]. This algorithm is also a general one and
included in RB. This is, besides RB, the only signature-based Gröbner basis algorithm that considers different
pair set orders �. As already mentioned in Remark 7.12 GBGC is presented to use partial orders on G as
rewrite orders which is not efficient for discarding useless S-pairs.

8 There are some minor exceptions we take care of in the followng, too.
9 See Section 8.3.

10 See Section 11.5.

32

Vocabulary 11.4.

(a) The “generalized criterion” the algorithm’s name comes from can be directly translated to choosing the
canonical rewriter in signature T in CT w.r.t. a given rewrite order Å.

(b) Note that whereas we decide to call the element maximal w.r.t. a rewrite order the canonical rewriter in
a given signature, in [76] the minimum is chosen. More particular, α Å β chosen there coindices with
1
α Årat

1
β . So GBGC still implements RB with Årat, there is just a slight difference in notation.

Algorithmic Property 11.5. GBGC implements the test for regular s-reduction considering the coefficients of
the signatures. Thus, a reduction of a term t of α with some bβ such that s (α) = s (bβ) is called super-regular
if the coefficients of s (α) and s (bβ) differ. This definition comes initially from [46]. By the definitions in
Section 4.1 we call this a singular top s-reduction.

The following lemma shows that there is no need to consider coefficients of signatures at all, i.e. there cannot
exist a super-regular top reduction without a regular top s-reduction.

Lemma 11.6. In RB there cannot exist a super-regular reduction of a term t without a regular s-reduction of t.

Proof. See Fact 24 in [30]. ut

Thus GBGC can be completely described by RB.

Variants & Specifications 11.7.

(a) In [78] Sun and Wang use a signature Gröbner basis resulting from a computation of RB to decide the
ideal membership problem for I . This is straightforward since the polynomial part of G is already a
polynomial Gröbner basis. The other fact is that signatures can be used for the representation problem
of an element in I . Also this is straightforward, since if you compute with the full module element α ∈
Rm the signature Gröbner basis G stores already the full information. If one is using RB with sig-poly
pairs [78] proposes just an algorithm to recover the full module representation of elements in the Gröbner
basis.

(b) In 2012, Sun, Wang, Ma and Zhang have presented the SGB algorithm in [81]. SGB is a signature-based
Gröbner basis algorithm for computations in algebras of solvable type (for example, see [59]) like the
Weyl algebra or quantum groups. As a rewrite order Årat is used, which they denote as “GVW-order”11.
Besides adjusting the polynomial arithmetic for the corresponding algebras no changes with respect of
the signature-based tools have to be made.

11.4 The G2V algorithm

The G2V algorithm refers to Gao, Guan and Volny and was first presented in 2010. Its description is published
in [46]. A high-level implementation in SINGULAR is available under

http://www.math.clemson.edu/~sgao/code/g2v.sing.

As mentioned already in Property 8.3 (a) G2V was, after the description in [3], the first algorithm who used
non-Koszul syzygies directly in the syzygy criterion. The algorithm is described in the vein of F5’s description
in [33] and thus based on using <pot as module monomial order, which leads to an incremental Gröbner basis
algorithm.

In [46] the authors describe for the first time how G2V and thus signature-based Gröbner basis algorithms in
general can be used to compute a Gröbner basis for the syzygy module, by considering not only the signatures,
but the full module representations. Still, this leads to the overhead of carrying out all computations in Rm,
too.

Algorithmic Property 11.8. The two most important new features in G2V compared to F5 as presented in [33]
are
11 More details on the changes in GVW’s rewrite order over the years can be found in Section 11.5.

33

http://www.math.clemson.edu/~sgao/code/g2v.sing

(a) to take coefficients into account for signatures, and
(b) to implement no real rewrite rule as done for F5.

Whereas the first point enables so-called “super-regular reductions” that might be not possible in F5 it turns out
that this not the case: As already mentioned in Section 11.3 and proven in Fact 24 in [30] resp. Lemma 11.6,
whenever there exists a super-regular s-reduction then there exists also a regular s-reduction. It follows that
when it comes to signatures, coefficients need not be taken into account at all.

In order to discuss the second difference, let us first introduce some vocabulary.

Vocabulary 11.9. In [46] notation is a bit different:

(a) Instead of considering sig-poly pairs (s (α) ,α), pairs (u, v) ∈ R2 are considered. This is possible since
G2V is presented only for <pot, thus an incremental computation of G is achieved. So any signature
s (α) ∈ Rm is always of the type s (α) = sek where s ∈ M and k is the currently highest index of an
element considered. So one can remove ek without any problem, since all signatures share this module
generator for the current incremental step. So one gets a representation (s,α) ∈ R2 corresponding to
(u, v).

(b) Next pairs (u1, v1) and (u2, v2) are considered. Let λ = lcm (lt (v1) , lt (v2)) and define t i := λ
lt(vi)

. Then
(t1 (u1, v1) , t2 (u2, v2)) is called the J-pair of (u1, v1) and (u2, v2). This corresponds to the notion of our
S-pairs. “J” denotes “joint”, thus also parts of the J-pair have special notation: In the above setting t i vi
are called J-polynomials and t i lt (ui) are J-signatures.

The other difference to F5 mentioned in Property 11.8 is not so obvious at the first look. Whenever a new
cγ may be added to P the authors state in the pseudo code of the algorithm to “store only one J-pair for
each distinct J-signature”. This clearly is a rewritable signature criterion, but no explicit statement on which
element shall be kept and which shall be removed. Looking into the SINGULAR code of G2V provided by the
authors (see link above) one can see that in the procedure INSERTPAIRS the newly generated element by cγ
is taken whereas aα, previously added to P , is removed if s (aα) = s (cγ). Thus G2V implements Åadd as
rewrite rule and not Årat. The reason we keep G2V in this section is that it is the historical predecessor of
GVW which uses (in its current version) Årat (see below).

One difference left is the fact that in the provided code for G2V only one generator of an S-pair resp. J-pair
is stored in P . Thus an S-pair reduction aα− bβ might not take place, but instead there might exist a better
reducer cγ instead of bβ . This is an implicit statement of the rewritable criterion on the second generator of
the S-pair.

Lemma 11.10. After adding aα from the S-pair aα − bβ to P in G2V, if there exists another regular top s-
reducer cγ of aα which is not rewritable then bβ is rewritable.

Proof. If there exists another regular s-reducer γ ∈ G which is, at the moment aα is started to be regular
s-reduced, not rewritable, then instead of aα − bβ the regular s-reduction aα − cγ takes place for some
monomial c. Since lt

�

bβ
�

= lt (cγ) and s (bβ), s (cγ)< s (aα) three situations may happen:

(a) If s (cγ) = s (bβ) then we can assume w.l.o.g. that γ is the canonical rewriter in signature s (bβ). Thus
bβ is rewritable.

(b) If s (cγ) > s (bβ) then the S-pair cγ − bβ has been already s-reduced to an element δ ∈ G . Since
s (δ) = s (cγ) and G2V uses Åadd δ is the canonical rewriter in signature s (cγ) and thus cγ is rewritable,
a contradiction to our assumption.

(c) If s (bβ) > s (cγ) then the S-pair bβ − cγ has been already reduced to an element δ ∈ G , this time
s (δ) = s (bβ). By the same argument as above bβ is rewritable. ut

All in all, G2V (as presented in [46])implements RB with <pot and Åadd.

Algorithmic Property 11.11. Lemma 11.10 might suggest that G2V as presented in [46] makes use of the
rewritability. Looking at the SINGULAR code provided it turns out that this is not the fact: In procedure FIND-
REDUCTOR a reducer of the same index is searched for in G . This search starts from the initially added element
of current index to G . Thus the first possible regular top s-reducer found might not be a “better” choice, where
“better” is meant in terms of the rewrite order Åadd.

34

11.5 The GVW algorithm

Later in 2010, Gao, Volny and Wang published [47] in which they describe the algorithm GVW.12 In this first
presentation GVW generalizes G2V in the sense that compatible module monomial orders can be used freely
instead of restricting to only <pot. Still, Åadd is used as rewrite order in this version of GVW.

The work of Huang (see Section 11.2) and Sun and Wang (see Section 11.3) resulted in an algorithm denoted
GVWHS in Volny’s PhD thesis ([83]) in 2011. GVWHS uses Årat as rewrite order, besides this fact it coincides
with GVW.

In 2011 and later, the initial GVW paper [47] has been updated to [48]. There GVW already uses Årat as
rewrite order.

Vocabulary 11.12.

(a) In the current state13 of the GVW paper defining the canonical rewriter w.r.t. Årat is called eventually
super top-reducible resp. covered by G . Moreover, note that a strong Gröbner basis in the setting of the
GVW paper14 coincides with the union G ∪H here.

(b) With the above definition of a strong Gröbner bases, speaking of detecting all useless S-pairs resp. J-
pairs the “uselessness” needs to be understood in terms of G ∪H : Clearly, a zero reduction of an S-pair
is not useless in these terms since it leads to a new syzygy that is not a multiple of an element of H
already. Thus one needs to be careful and not mix this up with the uselessness of an S-pair w.r.t. a usual
polynomial Gröbner basis resp. a signature Gröbner basis G .

Let us sum up the historic development of GVW: G2V implements RB with <pot and Åadd. GVW is introduced
as G2V with the option to use different compatible module monomial orders, but still implementing Åadd.
Due to the work of Huang ([58]) and Sun and Wang ([76]), GVW nowadays is understood as the algorthim
Volny denotes in his PhD thesis as GVWHS: RB with no restriction on the compatible module monomial order
and Årat as rewrite order.

Note that in [49] the 2013 revision of GVW a new step in considering more principal syzygies is added. We
discuss this in Section 12.

11.6 The SB algorithm

Roune and Stillman presented the SB algorithm at ISSAC’12 ([70]). As Eder and Roune have already pointed
out in [31] SB is RB implemented with Årat as rewrite order. The RB algorithm presented here is only a slight
generalization of the one given in [31], allowing different pair set orders and reduce the syzygy criterion to
a special case of the rewritable signature criterion.

Remark 11.13. Note that Roune and Stillman lay an emphasis on implementational aspects and data struc-
tures. For this purpose an extended version of their ISSAC’12 paper is available ([71]) in which different data
representations are compared and discussed extensively.

11.7 The SSG algorithm

In 2012 Galkin described in [44] the SSG algorithm, where “ssg” stands for “simple signature-based”. Com-
paring SSG to RB both coincide once we choose Årat as rewrite order. In [44] Galkin defines a partial order
<H on sig-poly pairs (H denotes the set of all sig-poly pairs) in the following way:

(s (α) ,α) <H

�

s (β) ,β
�

⇐⇒ s (β) lt (α) < s (α) lt
�

β
�

.

12 Please note that there are different versions of the GVW paper which refer to [47] [48] and [49] respectively.
13 March 2014
14 Note that usually the term strong Gröbner basis denotes special Gröbner bases in polynomial rings over Euclidean

domains like Z.

35

Moreover, syzygies are treated to be smaller w.r.t.<H then any non-syzygy. From this it follows that (s (α) ,α)<H
�

s (β) ,β
�

coincides with 1
α Årat

1
β . In part 4 (b) of the pseudo code of the SSG algorithm the rewritable sig-

nature criterion is then implemented in the following way (adjusted to our notation):

P ←P \
§

α ∈ P | ∃β ∈ G such that
1
β
Årat

1
α

and s (β) | s (α)
ª

With the above described connection between <H and Årat one directly sees that this is just RB’s rewrite
procedure using Årat.

12 Using Buchberger’s criteria in signature-based Gröbner basis algorithms

A natural question coming to one’s mind is how RB’s rewrite criterion is related to Buchberger’s Product and
Chain criterion, [16,17,61]. Both predict useless computations in advance, but how do both attempts relate
to each other? Does one include the other, or are there cases where one side is not able to cover the other
side completely? It turns out that one can easily combine both classes of criteria, even more one can show
that the rewrite criterion includes Buchberger’s criteria “most of the time”. It is more or less a question about
how much overhead one wants to add to RB in order to track principal syzygies on the go. For a detailed
discussion on the algebraic nature of this relation we refer to [27].

In 2008 [50] Gash presented a first discussion on using Buchberger’s Product and Chain criterion in signature-
based algorithms. Moreover, Gerdt and Hashemi presented an improved variant of G2V in [54] making use
of these criteria. In 2013, Gao, Volny and Wang presented a revised version of GVW in [49] that adds another
step to store more principal syzygies. We shortly cover these variants in the following.

12.1 Buchberger’s criteria

Let us give a short review of Buchberger’s Product and Chain criterion:

Lemma 12.1 (Product criterion [16,17]). Let f , g ∈ R with lcm (lt (f) , lt (g)) = lt (f) lt (g). Then spol (f , g)
reduces to zero w.r.t. { f , g}.

In the above situation we also say that the S-polynomial spol (f , g) fulfills the Product criterion.

Lemma 12.2 (Chain criterion [17, 61]). Let f , g, h ∈ R , and let G ⊂ R be a finite subset. If it holds that
lt (h) | lcm (lt (f) , lt (g)), and if spol (f , h) and spol (h, g) have a standard representation w.r.t. G resp., then
spol (f , g) has a standard representation w.r.t. G.

The question is now how do those criteria relate to the rewrite criterion in signature-based Gröbner basis
algorithms. Gash gave a first proof that the Product criterion can be used in a signature-based algorithm
without any problem due to the fact that the reductions w.r.t. {α,β} are regular s-reductions when considering
α= f and β = g in Lemma 12.1. Furthermore Gash proved that a version of Lemma 12.2 where the signatures
corresponding to f , g, and h are restricted can be used in RB.

In 2014 Eder presented in [27] a proof that the Chain criterion is completely included in the rewrite criterion
of RB, without any further restrictions. Moreover, the problem of being not able to predict all zero reductions
that are found by the Product criterion is explained there in detail. A small counterexample for RB using
<lt-pot is given. Furthermore, it is still an open question whether RB using <pot completely covers the Product
criterion. So it seems that the relation between Buchberger’s criteria and signature-based ones are depending
on the chosen module monomial order.

Also the question of using Buchberger’s criteria in RB is answered, there are two possible implementations of
a combination of the criteria: The first one explicitly, the second one more subtle.

36

12.2 ImpG2V – a Gebauer-Möller-like G2V

In [54] Gerdt and Hashemi present ImpG2V, a variant of G2V. In their variant they add 3 new conditions to be
checked which coincides with the three steps in Gebauer-Möller’s implementation of Buchberger’s algorithm,
see [53]. Moreover, they show that adding these conditions can be done without corrupting signatures, thus
ImpG2V is still a correct and terminating signature-based Gröbner basis algorithm with the rewrite criterion
implemented as usual (see Theorem 4.1 in [54]).

Note that due to the results in [27] it is not needed to check the Chain criterion explicitly since it is completely
covered by the rewrite criterion.

12.3 GVW’s 2013 revision

In 2013 Gao, Volny and Wang revised GVW again, with the current status being presented in [49]. In this
version of GVW a new step is inserted, namely an additional computation of principal syzygies even though
the regular s-reduced γ might not fulfill γ = 0. In [49] this is Step 4b (b1) of Figure 3.1. In our notation
this would be after Line 11 of Algorithm 2. Even though γ is not zero, all new possible principal syzygies are
generated and added toH . AfterwardsH is interreduced. This has two impacts:

(a) On the one hand new syzygies might be added such that more useless computations can be predicted and
removed in advance. Clearly, with this attempt also all useless computations predicted by Buchberger’s
Product criterion (representing exactly some of these principal syzygies) are detected, too.

(b) On the other hand a lot of these new principal syzygies added to H may have signatures that are just
multiples of signatures already available inH . Thus the overhead might be rather high compared to the
benefits.

Clearly, GVW’s attempt adding all possible principal syzygies does not give more information to the rewrite
criterion than testing for Buchberger’s Product criterion directly and adding the corresponding signature to
H accordingly. In terms of efficient implementations it seems that checking the Product criterion explicitly
introduces less overhead than generating new principal syzygies whenever a new element γ is added to G .

Whereas the first variant adds 1 syzygy resp. signature to H when it is needed, the second one always tries
to recover all such relations and afterwards checks, which ones can be removed fromH being just multiples
of each other.

13 s-reductions using linear algebra

As already pointed out in Section 8 F5 is presented in [33] in the vein of implemeting the s-reduction process
using linear algebra. MatrixF5, presented in Section 3, is efficient once the system of polynomial equations
is dense. Clearly, this is not always the case, and thus, selecting S-pairs to be reduced is more convenient
compared to building full Macaulay matrices at a given degree d. The first presentation of such an S-pair
generating algorithm using linear algebra for reduction purposes is the F4 algorithm ([32]). Here we present
a variant of F4 that uses signature-based criteria to detect reductions to zero resp. rows reducing to zero in ad-
vance. This leads to smaller changes in the implementation of some subalgorithms of F4 corresponding to the
switch from usual polynomial reduction to s-reduction. Albrecht and Perry describe a possible implementation
of this, called F4/5 in [2].

Algorithmic Property 13.1. Note that the variant F4/5 described in [2] differs from F5 by more than replacing
the polynomial s-reduction by linear algebra:

(a) Instead of incrementally computing the Gröbner basis for 〈 f1, . . . , fm〉 computations are done by increas-
ing degrees: Whereas F5 proceeds by index first, F4/5 prefers the degree of the polynomials over the
index. This corresponds to switching from <pot to <d-pot.

(b) Instead of sorting the generators by decreasing index, they are ordered by increasing index (see also
Footnote 5).

(c) Due to the switch from <pot to <d-pot the rewrite rules RULEi might not be sorted by increasing degree
when only appending new rules as done in [33]. Thus the subalgorithm ADD RULE takes care of sorting

37

RULEi by increasing degree. Note that as mentioned in Remark 8.1 this still need not ensure a sorting of
RULEi by increasing signature.

Giving a full description of the ideas behind the F4 algorithm out of scope of this survey, we refer the readers
interested to [32]. Here we explain in detail an F4-style variant of RB. With this any known implementation
of signature-based Gröbner basis algorithms described in sections 8 and 11 can be modified in the same way
to use linear algebra for reduction purposes.

Algorithm 4 Rewrite basis algorithm using linear algebra F4-RB.
Require: Ideal I = 〈 f1, . . . , fm〉 ⊂ R , monomial order ≤ on R and a compatible extension on Rm, total order � on the

pairset P of S-pairs, a rewrite order Å on G ∪H
Ensure: Rewrite basis G for I , Gröbner basisH for syz (f1, . . . , fm)
1: G ← ;,H ← ;, d ← 0
2: P ← {e1, . . . , em}
3: H ←

�

fie j − f je i | 1≤ i < j ≤ m
	

⊆Rm

4: while P 6= ; do
5: d ← d + 1
6: Pd ← Select (P)
7: P ←P \Pd

8: Ld ← {aα, bβ | aα− bβ ∈ Pd}
9: Ld ← Symbolic Preprocessing(Ld ,G)

10: Md ←matrix gen. by rows corr. to aα for aα ∈ Ld (sorted by signatures)
11: Nd ← row echelon form of Md computed without row swapping
12: Gd ← {γ | γ corresponding to a row in Nd}
13: G+d ← {γ ∈ Gd | lt (γ) 6= lt (aα) for aα ∈ Ld , s (γ) = s (aα)}
14: while G+d 6= ; do
15: γ←min<G+d
16: G+d ←G

+
d \ {γ}

17: if γ= 0 then
18: H ←H + {γ}
19: else
20: P ←P ∪ {spair (α,γ) |α ∈ G and spair (α,γ) is regular }
21: G ←G ∪ {γ}
22: return (G ,H)

The main difference between RB and F4-RB is the usage of linear algebra for the reduction process in the
later one. Instead of fulfilling s-reductions on each new S-pair, F4-RB implements a variant of F4’s reduc-
tion process: In Line 6 we no longer need to choose only one single S-pair as done in RB but a subset of P
can be taken at once. The generators of those symbolic S-pairs are then stored in Ld (Line 8). Subalgorithm
Symbolic Preprocessing is then precomputing all possible reducers of the elements in Ld . Due to the addi-
tional structure of the signatures one has to change this part slightly compared to an implementation in the
F4 Algorithm. This is discussed in Property 13.3. After all elements needed to execute in the dth reduction
step of the algorithm are stored in Ld a corresponding matrix Md w.r.t. < is constructed: The rows of Md
represent the elements aα for aα ∈ Ld , the columns represent the corresponding monomials in R ordered
w.r.t. <. As in the MatrixF5 Algorithm each row has a signature, namely s (aα). As mentioned already in
Section 4.1 s-reductions on the polynomial side correspond to fixing an order on the rows in Md . Thus the
computation of the row echelon form of Md in Line 11 is done without row swapping.

Variants & Specifications 13.2.

(a) As already mentioned in Property 5.8 (b) for an efficient implementation one would use (s (α) ,α) in-
stead of α in F4-RB. Algorithm 4 as presented here works with full module elements, that means when
computing the row echelon form one needs to keep track of all corresponding module operations in aα
for each such row in Md . Focussing on the computation of a Gröbner basis and using only (s (aα) , aα)
this overhead disappears completely due to the fact that row swappings are not allowed and thus the
signatures corresponding to rows in Md do not change throughout the whole process.

38

(b) In F4 all polynomials corresponding to rows in Nd are added to the Gröbner basis which lead term is not
already included in the lead ideal. Signatures lead to s-reductions. We have seen already in Section 7
that elements γ might be added to G even so there exists some α ∈ G such that lt (α) | lt (γ). Thus we
cannot discard those elements. In Line 13 we choose the elements γ that need to be added to G (or H
if γ = 0): If the polynomial lead term corresponding to a signature s (aα) has not changed during the
computation of the row echelon form Nd of Md then we do not need to add this element to G . In any
other case, we do so.

In Algorithm 5 we state the pseudo code of a signature respecting variant of Symbolic Preprocessing from [32].

Algorithm 5 Symbolic Preprocessing respecting signatures.
Require: a finite subset U of Rm, a finite subset G of Rm

Ensure: a finite subset U of Rm

1: D←
¦

lt
�

β
�

| β ∈ U
©

2: C ←
¦

monomials of β | β ∈ U
©

3: while C 6= D do
4: m←max< (C \ D)
5: D← D ∪ {m}
6: V ← ;
7: for γ ∈ G do
8: if ∃c ∈M such that m= lt (cγ) and not Rewritable (cγ,G ∪H ,Å) then
9: V ← V ∪ {cγ}

10: eε← element of minimal signature in V
11: U ←U ∪{eε}
12: C ← C ∪ {monomials of eε}
13: return U

Algorithmic Property 13.3. Algorithm 5 has undergone several small changes compared to the version pre-
sented in [32]:

(a) From lines 7 to 9 the algorithm loops over all elements γ ∈ G searching for a possible, not rewritable
reducer of the monomial m. If successful we add the multiplied reducer to an intermediate set V . Instead
to the original Symbolic Preprocessing algorithm we do not stop after finding a first possible reducer
her. The idea is to take in Line 10 the single reducer eε of minimal signature from V . The smaller the
signature of eε the bigger is the probbility that eε might be an allowed reducer of some other row in Md
for term lt (eε).

(b) Let aα ∈ U such that m is a monomial in aα and aα is of maximal signature for all such elements inU .
Note that it is still possible that s (eε) > s (aα). If m = lt (aα) this corresponds to the creation of a new
S-pair spair (ε,α) = eε − aα. Note that in Algorithm 2 the generation of this S-pair is postponed: There
only regular s-reductions are computed in Line 8, spair (ε,α) is generated in Line 12 first. Moreover, note
that there does not exist another reducer e′ε′ such that m−e′ε′ corresponds to a regular s-reduction since
eε is chosen to be minimal w.r.t. its signature.

(c) Due to Lines 8 and 10 the reducer for m is uniquely defined. This choice depends on the chosen rewrite
order Å as well as the module monomial order <. Furthermore, one can exchange Line 10 by another
choice, for example, the element in V which is most sparse or the one which has the lowest coefficient
bound. Thus using the ideas of [15] is possible. Note that such changes may put a penalty on the efficiency
of the algorithm due to introducing many more S-pairs as the chosen reducer might not be of minimal
possible signature. Still, correctness and termination are not affected.

An optimization of F4 given in [32] is the usage of the Simplify subalgorithm: Simplify tries to exchange
generators of S-polynomials and found reducers in Symbolic Preprocessing with “better ones”: Polynomial
products uf ∈ R are tried to be exchanged by elements u

t g where lt (g) = lt (t f) for a divisor t of u. In [32]
the normal strategy for choosing critical pairs is used, that means, computations are done by increasinig
polynomial degree and thus g can be found in a previously constructed matrix Md in degree d := deg(t f). g

39

might not be added to the intermediate Gröbner basis as lt (f) | lt (g). Still, g might be further reduced than
f and thus one can prevent the algorithm in degree deg(uf) from redoing reduction steps already performed
in degree d by exchanging uf by u

t g.

Due to the signatures this is not so easy in our setting: What if a simplification of aα by a
bβ leads to s

�

a
bβ
�

>
s (aα)? In Property 13.3 (c) we have seen that the rewrite order Å as well as the module monomial order
< uniquely define the reducer of a monomial m. This definition incorporates the ideas of Simplify in the
signature-based world.

Variants & Specifications 13.4. Let us finish with the following notes on the idea of simplification in F4-like
signature-based Gröbner basis algorithms.

(a) Besides the way Simplify is presented in [32] other ways of choosing a better reducer are possible.
In [15] Brickenstein gives various choices. In the signature-based world this is reflected by the different
implementations of the rewrite order Å and the module monomial order <.

(b) If we assume <pot as module monomial order then we can make use of the incremental behaviour of the
computations: Assume that we are computing the Gröbner basis for 〈 f1, . . . , fi〉 having already computed
one for 〈 f1, . . . , fi−1〉, say Gi−1. Now we can implement F4’s Simplify routine without any changes for
elements in Gi−1: All reducers from Gi−1 have a lower signature due to its index < i. Thus, as already
described in [33] we do not need to check them by any criterion. Moreover, simplifying any such reducer
by another element from a computation during a previous iteration step the corresponding signature
still has index < i. Furthermore, assuming F5C (see Section 8.2) we can assume Gi−1 to be reduced
to Bi−1 which optimizes the choice of reducers even more. Since adding Simplify to F4-RB respectively
Symbolic Preprocessing is straight forward in this situation we do not give explicit pseudo code for this.

(c) Moreover, exchanging G+d with Gd in the argument of the while loop in Line 14 of Algorithm 4 one can
trigger a Simplify-like process: Since all non-zero elements are added to G , only the S-pairs generated
by the best reduced elements are not rewritten. Of course this feature is paid dearly for by generating all
the useless S-pairs in first place due to the redundant elements in G .

14 Experimental results

In the following we present experimental results of Gröbner basis benchmarks and random systems. All sys-
tems are computed over a field of characteristic 32003, with graded reverse lexicographical monomial order.
The random systems are defined by 3 parameters on the input generators:

HRandom (# vars=# equations, minimal degree,maximal degree) (homogeneous)

Random (# vars=# equations, minimal degree,maximal degree) (affine)

Polynomials are random dense in the corresponding number of variables. The systems are available under

https://github.com/ederc/singular-benchmarks.

The implementation is done in the computer algebra system SINGULAR ([21]). Signature-based Gröbner basis
algorithms are officially available in SINGULAR starting version 4-0-015.

We do not add timings since we do not want to start a fastest implementation contest. We are interested in
presenting the size of the basis, the number of syzygies found and used, the number of reductions as well as
the complete number of operations, that means, multiplications. Those are the numbers that are unique to
the different variants of signature-based Gröbner basis implementations. Any real new variant might compute
numbers different to those presented in the following.

All algorithms using <pot are implemented with the ideas of F5’ resp. F5C, that means, inbetween the incre-
mental steps of computing the signature Gröbner basis the intermediate bases are reduced and new signatures
are generated (see Section 8.2). This leads to three facts:

15 All examples in this survey are computed with the commit 5d25c42ce5a7cfe24a13632fa0f7cc6b85961ccb available
under https://github.com/Singular/Sources.

40

https://github.com/ederc/singular-benchmarks
https://github.com/Singular/Sources

(a) The number of elements in H increases. The number is usually much higher than the ones for the
computation w.r.t. <lt-pot or <d-pot.

(b) The difference in the size of the resulting signature Gröbner basis between usingÅadd andÅrat diminishes:
Since both computations are starting the last iteration step with the same number of elements (using the
reduced Gröbner basis) only differences during the last incremental step are captured. Thus mostly the
differences in the size of G are much bigger for the computations w.r.t. <lt-pot.

(c) When counting the number of reduction steps as well as the number of overall operations, one needs to
distinguish between the s-reductions done by RB and the number of usual reductions done inbetween
two incremental steps when interreducing the intermediate Gröbner bases. In the tables below we give
for computations w.r.t. <pot the values for s-reductions as well as the values for all reductions including
the interreduction steps. Clearly, for <lt-pot and <d-pot there is no interreduction due to non-incremental
execution.

Remark 14.1.

(a) Note that the behaviour for computations w.r.t. <d-top is not optimal. Choosing this module monomial
order leads to very long running times in most of the cases. Thus we do not include the corresponding
results.

(b) The differences when adding Buchberger’s Product and Chain criterion to RB as described in Section 12
are subtle and do not change the overall behaviour of RB. In order not to overload our tables with even
more variants of RB we do not cover those differences here. With the information and discussions given
in this survey the reader is able to understand the differences to experimental results given in [27,49,54]
which focus on this setting.

We have to distinguish different ways of computation in the following:

(a) RB can fulfill only top s-reductions or full s-reductions (including tail s-reductions).
(b) The examples can be affine or homogeneous.

Note that the differences between only top s-reductions and full s-reductions are only found in the number
of s-reductions and the number of operations. Therefore the other tables do not include a differentiation
between those two. Next we present the results for homogeneous respectively affine input. These values have
two different ways of being used:

(a) The reader new to signature-based Gröbner basis algorithms can get a feeling for the behaviour of this
kind of algorithm. One can easily compare the results presented here with the outcome of SINGULAR’s
Gebauer-Möller implementation.

(b) For researchers trying to improve signature-based Gröbner basis algorithms those numbers are good
reference points in order to see what kind of optimizations are achieved.

The corresponding figures after the corresponding tables give a graphical overview of the behaviour of the
different variants for the random systems w.r.t. increasing number of generators.

Moreover note that we stopped the computations for affine random systems at 12 resp. for homogeneous
random systems at 13 generators for variants using only top s-reductions since running time was too long.
For full s-reductions we could go on until 14 generators.

41

14.1 Experimental results for homogeneous systems

Benchmark
<pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat

cyclic-7 36 36 145 145 36 36

cyclic-8 244 244 672 672 244 244

eco-10 247 247 367 367 247 247

eco-11 502 502 749 749 502 502

f-633 3 3 9 9 3 3

f-744 190 190 259 259 190 190

katsura-11 0 0 353 353 0 0

katsura-12 0 0 640 640 0 0

noon-8 0 0 294 294 0 0

noon-9 0 0 682 682 0 0

HRandom(6, 2, 2) 0 0 26 26 0 0

HRandom(7, 2, 2) 0 0 49 49 0 0

HRandom(7, 2, 4) 0 0 80 80 0 0

HRandom(7, 2, 6) 0 0 635 635 0 0

HRandom(8, 2, 2) 0 0 102 102 0 0

HRandom(8, 2, 4) 0 0 345 345 0 0

HRandom(9, 2, 2) 0 0 181 181 0 0

HRandom(10, 2,2) 0 0 339 339 0 0

HRandom(11, 2,2) 0 0 590 590 0 0

HRandom(12, 2,2) 0 0 1083 1083 0 0

HRandom(13, 2,2) 0 0 1867 1867 0 0

HRandom(14, 2,2) 0 0 3403 3403 0 0

Table 2. # zero reductions (homogeneous)

Benchmark
<pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat

cyclic-7 758 658 871 848 949 751

cyclic-8 3402 2614 4074 3658 5534 3884

eco-10 677 508 541 478 934 567

eco-11 1423 1016 1092 965 2372 1168

f-633 60 58 61 59 61 57

f-744 616 465 377 348 745 573

katsura-11 700 700 553 553 2188 2161

katsura-12 1383 1384 1076 1076 6020 6020

noon-8 1384 1390 1384 1389 1384 1389

noon-9 3743 3750 3743 3749 3743 3749

HRandom(6, 2,2) 52 52 39 39 62 62

HRandom(7, 2,2) 101 101 67 67 124 124

HRandom(7, 2,4) 333 333 249 249 349 349

HRandom(7, 2,6) 4066 4066 2928 2928 4247 4247

HRandom(8, 2,2) 185 185 128 128 242 242

HRandom(8, 2,4) 1397 1397 997 997 1507 1507

HRandom(9, 2,2) 365 365 223 223 479 479

HRandom(10, 2,2) 676 676 426 426 932 932

HRandom(11, 2,2) 1326 1326 767 767 1832 1832

HRandom(12, 2,2) 2492 2492 1463 1463 3557 3557

HRandom(13, 2,2) 4879 4879 2708 2708 6973 6973

HRandom(14, 2,2) 9259 9259 5142 5142 13524 13524

Table 3. Size of G (homogeneous)

Benchmark
<pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat

cyclic-7 7260 7260 187 187 439 338

cyclic-8 103285 103 285 761 761 3691 2599

eco-10 30508 30 508 412 412 1111 848

eco-11 118110 118 110 804 804 2978 1750

f-633 122 122 37 37 40 40

f-744 16616 16 616 316 316 654 641

katsura-11 24976 24 976 408 408 2728 2670

katsura-12 92235 92 235 706 706 9065 9148

noon-8 406 406 322 322 84 84

noon-9 666 666 718 718 120 120

HRandom(6,2, 2) 231 231 41 41 57 57

HRandom(7,2, 2) 780 780 70 70 119 119

HRandom(7,2, 4) 3160 3160 123 123 152 152

HRandom(7,2, 6) 162735 162 735 681 681 950 950

HRandom(8,2, 2) 2278 2278 130 130 243 243

HRandom(8,2, 4) 41328 41 328 402 402 573 573

HRandom(9,2, 2) 8256 8256 217 217 485 485

HRandom(10,2, 2) 24976 24 976 384 384 964 964

HRandom(11,2, 2) 90951 90 951 645 645 1896 1896

HRandom(12,2, 2) 294528 294 528 1149 1149 3728 3728

HRandom(13,2, 2) 1 070916 1 070916 1945 1945 7285 7285

HRandom(14,2, 2) 3 667986 3 667986 3494 3494 14 258 14 258

Table 4. Size ofH (homogeneous)

42

Benchmark
only top s-reductions full s-reductions

<pot <lt-pot <d-pot <pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat

cyclic-7 217.161 216.798 218.257 218.127 218.094 217.630 216.844 216.492 217.267 217.134 217.347 216.939

(incl. interred) 217.455 217.209 216.936 216.619

cyclic-8 222.575 221.346 222.755 222.331 223.638 222.325 222.529 221.303 221.916 221.529 222.981 221.696

(incl. interred) 222.967 222.156 222.730 221.727

eco-10 218.901 218.565 219.569 219.507 219.232 218.859 219.938 218.986 218.564 218.503 219.946 219.075

(incl. interred) 219.038 218.726 219.972 219.053

eco-11 221.519 220.976 221.909 221.851 221.735 221.123 222.996 221.290 221.126 221.034 222.772 221.531

(incl. interred) 221.644 221.149 223.014 221.352

f-633 29.767 29.604 210.321 210.236 29.658 29.397 29.484 29.522 210.086 29.801 29.433 29.044

(incl. interred) 29.864 29.713

f-744 216.895 216.857 217.256 217.150 217.248 217.157 217.175 216.763 217.055 216.936 217.347 217.162

(incl. interred) 217.126 217.121 217.208 216.811

katsura-11 218.953 218.708 222.403 222.384 220.638 220.527 222.393 222.257 222.018 222.067 222.040 221.985

(incl. interred) 222.556 222.514 222.815 222.712

katsura-12 221.496 221.110 224.661 224.596 223.183 223.063 225.507 225.319 224.257 224.287 224.521 224.455

(incl. interred) 225.692 225.654 225.977 225.840

noon-8 215.745 214.634 216.310 215.662 215.745 214.634 218.166 218.023 218.230 218.094 218.165 218.022

(incl. interred) 215.747 214.638

noon-9 218.303 216.820 218.756 217.843 218.303 216.820 220.787 220.606 220.835 220.660 220.787 220.606

(incl. interred) 216.822

HRandom(6, 2,2) 210.039 210.229 211.126 211.126 210.764 210.966 210.137 210.364 210.537 210.537 210.707 210.880

(incl. interred) 210.982 211.094 210.408 210.599

HRandom(7, 2,2) 212.189 212.308 213.279 213.279 213.046 213.209 212.103 212.294 212.298 212.298 213.015 213.122

(incl. interred) 213.227 213.327 212.435 212.589

HRandom(7, 2,4) 216.664 216.701 216.782 216.782 217.093 217.202 215.190 215.298 214.911 214.911 216.557 216.796

(incl. interred) 217.314 217.365 215.268 215.370

HRandom(7, 2,6) 223.748 223.763 223.614 223.614 224.113 224.175 222.136 222.130 221.400 221.400 223.783 223.906

(incl. interred) 224.421 224.458 222.217 222.211

HRandom(8, 2,2) 214.104 214.290 215.300 215.300 215.342 215.462 214.073 214.232 214.127 214.127 215.306 215.408

(incl. interred) 215.431 215.538 214.534 214.652

HRandom(8, 2,4) 220.898 220.923 221.097 221.097 221.574 221.644 219.426 219.468 218.918 218.918 221.209 221.402

(incl. interred) 221.660 221.694 219.593 219.631

HRandom(9, 2,2) 216.135 216.239 217.331 217.331 217.719 217.804 216.200 216.315 215.758 215.758 217.685 217.745

(incl. interred) 217.586 217.679 216.703 216.785

HRandom(10, 2, 2) 218.291 218.369 219.271 219.271 220.099 220.156 218.249 218.339 217.491 217.491 220.072 220.120

(incl. interred) 219.893 219.949 218.889 218.947

HRandom(11, 2, 2) 220.217 220.299 221.169 221.169 222.524 222.563 220.448 220.510 219.105 219.105 222.490 222.507

(incl. interred) 222.013 222.057 221.078 221.118

HRandom(12, 2, 2) 222.508 222.552 223.200 223.200 224.955 224.980 222.636 222.679 221.024 221.024 224.928 224.949

(incl. interred) 224.358 224.380 223.367 223.394

HRandom(13, 2, 2) 224.684 224.805 225.310 225.310 227.409 227.427 224.937 224.966 222.506 222.506 227.370 227.373

(incl. interred) 226.562 226.606 225.651 225.669

HRandom(14, 2, 2) 226.989 227.011 224.273 224.273 229.792 229.801

(incl. interred) 227.844 227.856

Table 5. # s-reductions (incl. interreductions) (homogeneous)

43

Benchmark
only top s-reductions full s-reductions

<pot <lt-pot <d-pot <pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat

cyclic-7 224.276 223.871 224.024 223.996 223.851 223.467 224.050 223.598 224.257 224.133 224.319 223.866

(incl. interred) 224.429 224.076 224.130 223.709

cyclic-8 231.011 229.800 229.796 229.543 230.427 229.361 230.890 229.641 230.162 229.738 231.363 230.127

(incl. interred) 231.287 230.374 231.086 230.066

eco-10 224.459 224.148 224.120 224.102 223.676 223.394 225.484 224.560 224.046 223.975 225.292 224.480

(incl. interred) 224.582 224.294 225.514 224.619

eco-11 227.765 227.229 226.904 226.895 226.556 226.111 229.186 227.564 227.216 227.098 228.630 227.505

(incl. interred) 227.881 227.392 229.203 227.619

f-633 212.149 212.024 212.776 212.744 212.029 211.764 212.069 212.166 212.716 212.607 212.120 211.809

(incl. interred) 212.228 212.109

f-744 221.443 221.480 221.888 221.799 221.654 221.656 221.767 221.414 221.798 221.695 221.842 221.683

(incl. interred) 221.613 221.664 221.795 221.452

katsura-11 227.790 227.539 229.423 229.366 228.251 228.072 229.937 229.809 229.268 229.314 229.290 229.208

(incl. interred) 230.118 230.064 230.408 230.315

katsura-12 230.965 230.650 232.378 232.238 231.579 231.352 233.522 233.337 232.214 232.240 232.537 232.421

(incl. interred) 233.729 233.679 234.073 233.947

noon-8 220.100 219.657 220.365 219.983 220.142 219.681 222.212 222.292 222.249 222.327 222.212 222.292

(incl. interred)

noon-9 222.901 222.234 223.042 222.455 222.901 222.234 225.142 225.212 225.165 225.234 225.142 225.212

(incl. interred)

HRandom(6, 2,2) 214.628 214.812 215.453 215.453 215.403 215.585 214.626 214.827 214.614 214.614 215.180 215.340

(incl. interred) 215.502 215.615 214.932 215.096

HRandom(7, 2,2) 217.592 217.729 218.409 218.409 218.430 218.566 217.448 217.602 217.275 217.275 218.217 218.316

(incl. interred) 218.505 218.608 217.806 217.927

HRandom(7, 2,4) 223.387 223.432 223.509 223.509 223.906 224.003 222.172 222.241 221.820 221.820 222.992 223.136

(incl. interred) 223.763 223.808 222.246 222.312

HRandom(7, 2,6) 233.815 233.837 233.676 233.676 234.197 234.256 232.492 232.495 231.905 231.905 233.185 233.239

(incl. interred) 234.120 234.142 232.541 232.544

HRandom(8, 2,2) 220.337 220.506 221.167 221.167 221.455 221.544 220.288 220.398 219.965 219.965 221.233 221.315

(incl. interred) 221.430 221.532 220.723 220.806

HRandom(8, 2,4) 229.458 229.498 229.617 229.617 230.086 230.171 228.285 228.307 227.830 227.830 229.250 229.361

(incl. interred) 229.869 229.904 228.397 228.418

HRandom(9, 2,2) 223.220 223.348 223.913 223.913 224.515 224.572 223.209 223.282 222.474 222.474 224.250 224.295

(incl. interred) 224.351 224.436 223.656 223.710

HRandom(10, 2,2) 226.107 226.187 226.596 226.596 227.576 227.609 226.082 226.133 225.097 225.097 227.301 227.332

(incl. interred) 227.328 227.377 226.589 226.625

HRandom(11, 2,2) 228.985 229.069 229.278 229.278 230.684 230.703 229.008 229.041 227.607 227.607 230.351 230.362

(incl. interred) 230.234 230.277 229.512 229.535

HRandom(12, 2,2) 231.888 231.953 232.059 232.059 233.791 233.802 231.914 231.936 230.326 230.326 233.462 233.472

(incl. interred) 233.203 233.232 232.468 232.483

HRandom(13, 2,2) 234.837 234.975 234.881 234.881 236.959 236.966 234.856 234.870 232.855 232.855 236.581 236.583

(incl. interred) 236.137 236.198 235.405 235.415

HRandom(14, 2,2) 237.720 237.729 235.562 235.562 239.738 239.741

(incl. interred) 238.315 238.321

Table 6. # multiplications (incl. interreductions) (homogeneous)

44

14.2 Experimental results for affine systems

Benchmark
<pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat

cyclic-7 36 36 145 145 36 36

cyclic-8 244 244 672 672 244 244

eco-10 0 0 367 367 367 367

eco-11 0 0 749 749 749 749

f-633 1 1 9 9 3 3

f-744 1 1 259 259 188 188

katsura-11 0 0 353 353 0 0

katsura-12 0 0 640 640 0 0

noon-8 0 0 294 294 0 0

noon-9 0 0 682 682 0 0

Random(6,2, 2) 0 0 26 26 0 0

Random(7,2, 2) 0 0 49 49 0 0

Random(8,2, 2) 0 0 102 102 0 0

Random(9,2, 2) 0 0 181 181 0 0

Random(10,2, 2) 0 0 339 339 0 0

Random(11,2, 2) 0 0 590 590 0 0

Random(12,2, 2) 0 0 1083 1083 0 0

Random(13,2, 2) 0 0 1867 1867 0 0

Random(14,2, 2) 0 0 3403 3403 0 0

Table 7. # zero reductions (affine)

Benchmark
<pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat

cyclic-7 779 679 871 848 949 751

cyclic-8 3559 2775 4074 3658 5534 3884

eco-10 522 405 541 478 782 671

eco-11 1055 774 1092 965 1717 1415

f-633 60 58 61 59 61 57

f-744 468 442 377 348 502 464

katsura-11 762 743 553 553 2188 2161

katsura-12 1473 1474 1076 1076 6020 6020

noon-8 1384 1390 1384 1389 1384 1389

noon-9 3743 3750 3743 3749 3743 3749

Random(6,2, 2) 58 58 39 39 62 62

Random(7, 2, 2) 113 113 67 67 124 124

Random(8, 2, 2) 212 212 128 128 242 242

Random(9, 2, 2) 365 366 223 223 479 479

Random(10, 2, 2) 677 677 426 426 932 932

Random(11, 2, 2) 1327 1357 767 767 1832 1832

Random(12,2, 2) 2502 2537 1463 1463 3557 3557

Random(13,2, 2) 4879 4879 2708 2708 6973 6973

Random(14,2, 2) 9259 9259 5142 5142 13 924 13934

Table 8. Size of G (affine)

Benchmark
<pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat

cyclic-7 10 011 10 011 187 187 439 338

cyclic-8 186 966 189 420 761 761 3691 2599

eco-10 21 528 21 528 412 412 2809 2531

eco-11 73 153 71 253 804 804 6869 5914

f-633 120 120 37 37 40 40

f-744 20 503 19 701 316 316 641 628

katsura-11 40 755 35 511 408 408 2728 2670

katsura-12 134 940 134 940 706 706 9065 9148

noon-8 406 406 322 322 84 84

noon-9 666 666 718 718 120 120

Random(6, 2, 2) 378 378 41 41 57 57

Random(7, 2, 2) 1326 1326 70 70 119 119

Random(8, 2, 2) 4465 4465 130 130 243 243

Random(9, 2, 2) 8256 8385 217 217 485 485

Random(10, 2,2) 25 200 25 200 384 384 964 964

Random(11, 2,2) 91 378 104 653 645 645 1896 1896

Random(12, 2, 2) 302 253 330 078 1149 1149 3728 3728

Random(13, 2, 2) 1070 916 1 070916 1945 1945 7285 7285

Random(14, 2, 2) 3667 986 3 667986 3494 3494 15122 15 122

Table 9. Size ofH (affine)

45

Benchmark
only top s-reductions full s-reductions

<pot <lt-pot <d-pot <pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat

cyclic-7 217.136 216.774 218.247 218.117 218.093 217.630 216.792 216.492 216.977 216.881 216.984 216.829

(incl. interred) 217.383 217.133 216.854 216.569

cyclic-8 222.533 221.343 222.742 222.312 223.598 222.286 222.454 221.273 221.810 221.439 222.693 221.504

(incl. interred) 222.890 222.093 222.669 221.730

eco-10 217.827 216.397 220.148 220.124 220.251 220.114 219.858 217.368 219.964 219.807 220.017 219.773

(incl. interred) 218.181 217.170 219.911 217.633

eco-11 220.872 218.652 222.605 222.567 222.720 222.563 223.620 219.822 222.497 222.307 222.511 222.290

(incl. interred) 221.208 219.755 223.651 220.177

f-633 29.644 29.426 210.828 210.768 210.131 29.833 29.401 29.202 29.977 29.713 29.386 29.031

(incl. interred) 29.730 29.526

f-744 215.037 214.422 217.500 217.526 217.500 217.579 215.305 214.829 216.996 216.872 217.123 217.089

(incl. interred) 215.535 215.361 215.601 215.100

katsura-11 218.856 218.627 222.411 222.395 220.837 220.730 222.191 222.055 221.081 221.280 221.994 221.944

(incl. interred) 222.478 222.438 222.620 222.537

katsura-12 221.302 221.254 224.540 224.528 223.412 223.288 224.980 224.867 223.689 223.741 224.488 224.437

(incl. interred) 225.391 225.372 225.648 225.575

noon-8 215.693 214.519 216.097 215.308 215.691 214.529 217.602 217.408 217.758 217.582 217.667 217.479

(incl. interred) 215.694 214.523

noon-9 218.197 216.651 218.523 217.422 218.202 216.650 220.203 219.962 220.312 220.084 220.243 220.003

(incl. interred) 218.198 216.652

Random(6, 2, 2) 210.008 210.189 213.068 213.068 210.752 210.946 211.008 211.274 211.696 211.696 211.659 211.814

(incl. interred) 211.342 211.434 211.218 211.451

Random(7, 2, 2) 212.137 212.267 215.076 215.076 213.018 213.169 213.110 213.322 213.393 213.393 214.010 214.110

(incl. interred) 213.632 213.752 213.382 213.559

Random(8, 2, 2) 213.984 214.212 217.269 217.269 215.297 215.406 215.168 215.345 215.285 215.285 216.353 216.435

(incl. interred) 215.911 216.021 215.561 215.698

Random(9, 2, 2) 216.106 216.210 219.294 219.294 217.656 217.729 217.438 217.562 216.906 216.906 218.755 218.805

(incl. interred) 218.019 218.225 217.876 217.968

Random(10,2, 2) 218.013 218.096 221.381 221.381 220.021 220.070 219.532 219.629 218.703 218.703 221.156 221.193

(incl. interred) 220.089 220.170 220.071 220.139

Random(11,2, 2) 220.117 220.165 223.397 223.397 222.418 222.450 221.859 221.923 220.377 220.377 223.591 223.605

(incl. interred) 222.409 222.476 222.391 222.436

Random(12,2, 2) 222.039 222.087 225.447 225.447 224.833 224.854 224.089 224.134 222.169 222.169 226.028 226.044

(incl. interred) 224.512 224.597 224.737 224.766

Random(13,2, 2) 226.472 226.501 223.917 223.917 228.463 228.465

(incl. interred) 227.079 227.097

Random(14,2, 2) 228.496 228.517 225.697 225.697 230.897 230.886

(incl. interred) 229.255 229.268

Table 10. # s-reductions (incl. interreductions) (affine)

46

Benchmark
only top s-reductions full s-reductions

<pot <lt-pot <d-pot <pot <lt-pot <d-pot

Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat Åadd Årat

cyclic-7 224.253 223.830 224.008 223.989 223.866 223.482 224.065 223.612 224.220 224.105 224.229 223.832

(incl. interred) 224.366 223.986 224.122 223.679

cyclic-8 230.906 229.738 229.788 229.534 230.435 229.367 230.885 229.649 230.261 229.837 231.273 230.076

(incl. interred) 231.169 230.276 231.091 230.092

eco-10 222.815 221.728 224.428 224.509 224.608 224.492 225.262 222.866 225.001 224.889 224.996 224.758

(incl. interred) 223.141 222.336 225.302 223.062

eco-11 226.502 224.807 227.357 227.421 227.574 227.433 229.367 225.900 228.161 227.961 228.087 227.867

(incl. interred) 226.823 225.662 229.398 226.194

f-633 211.817 211.694 213.360 213.352 212.530 212.196 211.772 211.676 212.636 212.487 211.998 211.737

(incl. interred) 211.870 211.751

f-744 219.292 218.824 222.257 222.351 222.040 222.231 219.776 219.329 221.737 221.626 221.839 221.774

(incl. interred) 219.701 219.571 220.018 219.574

katsura-11 227.943 227.683 229.565 229.518 228.714 228.531 229.884 229.747 228.906 229.074 229.449 229.381

(incl. interred) 230.080 230.010 230.353 230.264

katsura-12 231.121 230.819 232.451 232.365 232.092 231.867 233.503 233.263 232.052 232.173 232.712 232.620

(incl. interred) 233.642 233.586 234.102 233.946

noon-8 220.056 219.653 220.264 219.887 220.114 219.689 221.588 221.714 221.678 221.798 221.623 221.747

(incl. interred) 220.057 219.654

noon-9 222.844 222.216 222.945 222.356 222.854 222.218 224.490 224.615 224.546 224.667 224.511 224.634

(incl. interred)

Random(6, 2, 2) 215.986 216.176 218.567 218.567 216.548 216.683 216.617 216.799 217.303 217.303 216.988 217.122

(incl. interred) 216.883 217.001 216.823 216.982

Random(7, 2, 2) 218.938 219.090 221.285 221.285 219.618 219.708 219.548 219.674 219.885 219.885 219.970 220.057

(incl. interred) 219.896 220.017 219.792 219.900

Random(8, 2, 2) 221.745 221.956 224.219 224.219 222.720 222.777 222.463 222.556 222.706 222.706 222.990 223.056

(incl. interred) 222.865 222.990 222.758 222.834

Random(9, 2, 2) 224.760 224.885 226.994 226.994 225.853 225.887 225.443 225.505 225.278 225.278 225.952 225.990

(incl. interred) 225.888 226.020 225.756 225.807

Random(10,2, 2) 227.602 227.690 229.876 229.876 229.022 229.043 228.360 228.404 228.060 228.060 228.986 229.012

(incl. interred) 228.820 228.889 228.709 228.743

Random(11,2, 2) 230.564 230.645 232.708 232.708 232.214 232.226 231.334 231.362 230.725 230.725 231.979 231.989

(incl. interred) 231.836 231.880 231.692 231.715

Random(12,2, 2) 233.432 233.515 235.602 235.602 235.437 235.444 234.272 234.291 233.523 233.523 235.028 235.037

(incl. interred) 234.771 234.821 234.674 234.688

Random(13,2, 2) 237.253 237.266 236.278 236.278 238.084 238.085

(incl. interred) 237.651 237.661

Random(14,2, 2) 240.141 240.149 239.080 239.080 241.140 241.132

(incl. interred) 240.582 240.588

Table 11. # multiplications (incl. interreductions) (affine)

14.3 Observations

From the experimental results stated here one can make several observations when it comes to signature-
based Gröbner basis algorithms:

47

x

operations (log 2) for HRandom(x , 2, 2)

6 7 8 9 10 11 12 13 14
12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

(<pot | Åadd | top)
(<pot | Årat | top)
(<lt-pot | Åadd | top)
(<lt-pot | Årat | top)
(<d-pot | Åadd | top)
(<d-pot | Årat | top)
(<pot | Åadd | full)
(<pot | Årat | full)
(<lt-pot | Åadd | full)
(<lt-pot | Årat | full)
(<d-pot | Åadd | full)
(<d-pot | Årat | full)

Fig. 7. Number of multiplications for homogeneous random examples by increasing number of generators, all of degree 2

48

x

operations (log 2) for HRandom(x , 2, 2)

6 7 8 9 10 11 12 13 14
12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

(<pot | Åadd | top)
(<pot | Årat | top)
(<lt-pot | Åadd | top)
(<lt-pot | Årat | top)
(<d-pot | Åadd | top)
(<d-pot | Årat | top)
(<pot | Åadd | full)
(<pot | Årat | full)
(<lt-pot | Åadd | full)
(<lt-pot | Årat | full)
(<d-pot | Åadd | full)
(<d-pot | Årat | full)

Fig. 8. Number of multiplications for affine random examples by increasing number of generators, all of degree 2

49

(a) For homogeneous input systems the number of zero reductions computed by RB using <pot and <d-pot
is the very same: This is clear due to the fact that RB computes for each new degree d d-Gröbner bases
step by step. Clearly, those numbers mostly differ for affine input systems, see Table 7. Even though the
number of zero reductions for RB using <lt-pot is mostly higher than those numbers for <pot resp. <d-pot,
due to <lt-pot RB can handle S-pairs more freely (not incremental, not degree-wise) and thus performs
better with almost always less s-reductions and operations overall.

(b) Full s-reductions mostly behave better than top s-reductions. Performing tail s-reductions in earlier stages
of the algorithm leads to fewer reduction steps overall. In figures 7 and 8 one can see this behaviour quite
good.

(c) As we can see also in figures 7 and 8 the differences between using Åadd and Årat vanish for bigger
computations: In each figure 12 variants are presented, but we can only see 6 lines: both rewrite order
behave the same. Even though we can see in the above tables that Årat usually leads to smaller bases and
generates less S-pairs, the choice of reducers w.r.t. Åadd is better in terms of sparsity.

(d) Overall one can see the <lt-pot seems to be the best choice as module monomial order when it comes to
the number s-reductions resp. the number of operations executed: Its numbers are always smaller than
the ones for the corresponding setting of Å with other module monomial orders.

Thus the chosen rewrite order Å seems to be not as important as generally accepted. The main differences
lay in the module monomial order.

15 Concluding remarks

In this survey we covered all known variants of signature-based Gröbner basis algorithms. We gave a complete
classification based on a generic algorithmic framework called RB which can be implemented in various
different ways. The variations are based on 3 different orders:

(a) < denotes the monomial order as well as the compatible module monomial order. We have seen in
Section 14 that this order has the biggest impact.

(b) Å denotes the rewrite order. If RB handles various elements of the same signature, only one needs to
be further s-reduced. The rewrite order give a unique choice which element is chosen and which are
removed. In Section 14 we have seen that the outcomes of using different implementations of Å, namely
Åadd and Årat are nearly equivalent when it comes to the number of operations.

(c) � denotes the order in which S-pairs are handled in RB. Nearly all known efficient implementations use
�s, so S-pairs are handled by increasing signature.

Thus any known algorithm, like F5 or GVW can be implemented with any of the above 3 choices, so the
difference are rather small. Even so some of those algorithms are presented in a restricted setting, for example
G2V for <pot only, they all can be seen as different, specialized implementatons of RB and thus are just slight
variants of each other and not complete new algorithms as possibly assumed. We covered all variants known
and gave a dictionary for translating different notations used in the corresponding publications. Thus this
survey can also be used as a reference for researcher interested in this topic.

Important aspects when optimizing RB and further open questions are the following:

(a) Ensuring termination algorithmically as presented in Section 10.2 can lead to earlier termination and
thus improved behaviour of the algorithm by using different techniques to detect the completeness of G .

(b) Exploiting algebraic structures is an area of high research at the moment (Section 9). Developments in
this direction might have a huge impact on the computations of (signature) Gröbner bases in the near
future and are promising in decreasing the complexity of computations.

(c) Using linear algebra for the reduction process as illustrated in Section 13 is another field where a lot more
optimizations can be expected. At the moment, restrictions to s-reductions lead to restrictions swapping
rows during the Gaussian Elimination. Getting more flexible and possibly able to use (at least some of)
the ideas from [42] is still an open problem.

(d) If we are only interested in computing a Gröbner basis for some input system, can one generalize the
usage of signatures and find an intermediate representation between sig-poly pairs (s (α) ,α) ∈ Rm ×R
and full module representations α ∈ Rm? Where is the breaking point of using more terms from the
module representation in order to interreduce the syzygy elements even further and not adding too
much overhead in time and memory?

50

Even though quite different notations are used by researchers, the algorithms are two of a kind, mostly they
are even just the same. We hope that this survey helps to give a better understanding on signature-based
Gröbner basis algorithms. Moreover, we would like to give researchers new to this area a guide to find their
way through the enormous number of publications that have been released on this topic over the last years.
Even more, we hope to encourage experts with this survey to collaborate and to push the field of Gröbner
basis computations even further.

References

1. Albrecht, M., Cid, C., Faugère, J.-C., and Perret, L. On the relation between the MXL family of algorithms and Gröbner
basis algorithms. http://www-salsa.lip6.fr/~jcf/Papers/ACFP12.pdf, 2012. (in press).

2. Albrecht, M. and Perry, J. F4/5. http://arxiv.org/abs/1006.4933, 2010.
3. Arri, A. and Perry, J. The F5 Criterion revised. Journal of Symbolic Computation, 46(2):1017–1029, June 2011.

Preprint online at arxiv.org/abs/1012.3664.
4. Ars, G. Applications des bases de Gröbner à la cryptographie. PhD thesis, Université de Rennes I, 2005.
5. Ars, G. and Hashemi, A. Extended F5 Criteria. Journal of Symbolic Computation, MEGA 2009 special issue,

45(12):1330–1340, 2010.
6. M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. PhD

thesis, Université Paris 6, 2004.
7. Bardet, M. On the Complexity of a Gröbner Basis Algorithm. INRIA Algorithms seminar 2002–2004, 2004.
8. Bardet, M., Faugère, J.-C., and Salvy, B. On the complexity of Gröbner basis computation of semi-regular overdeter-

mined algebraic equations. http://www-salsa.lip6.fr/~jcf/Papers/43BF.pdf, November 2004.
9. Bardet, M., Faugère, J.-C., Salvy, B., and Yang, B.Y. Asymptotic expansion of the degree of regularity for semi-regular

systems of equations. http://www-salsa.lip6.fr/~jcf/Papers/BFS05.pdf, May 2005.
10. Becker, T., Weispfenning, V., and Kredel, H. Gröbner Bases. Graduate Texts in Mathematics, Springer Verlag, 1993.
11. Bigatti, A. M., Caboara, M., and Robbiano, L. Computing Inhomogeneous Gröbner Bases. Journal of Symbolic Com-

putation, 46:498–510, 2011.
12. Bigatti, A. M., La Scala, R., and Robbiano, L. Computing toric ideals. Journal of Symbolic Computation, 27:351–365,

1999.
13. Bini, D. A. and Mourrain, B. Polynomial Test Suite. . 2012. http://www-sop.inria.fr/saga/POL/.
14. Bosma, W., Cannon, J., and Playoust, C. The Magma algebra system. I. The user language. Journal of Symbolic

Computation, 24(3-4):235–265, 1997. http://magma.maths.usyd.edu.au/magma/.
15. Brickenstein, M. Slimgb: Gröbner bases with slim polynomials. Revista Matemática Complutense, 23(2):453–466,

2010. the final publication is available at www.springerlink.com.
16. Buchberger, B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen

Polynomideal. PhD thesis, University of Innsbruck, 1965.
17. Buchberger, B. A criterion for detecting unnecessary reductions in the construction of Gröbner bases. In EUROSAM

’79, An International Symposium on Symbolic and Algebraic Manipulation, volume 72 of Lecture Notes in Computer
Science, pages 3–21. Springer, 1979.

18. Buchberger, B. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. pages 184–232, 1985.
19. Collart, S., Kalkbrener, M., and Mall, D. Converting Bases with the Groebner Walk. Journal of Symbolic Computation,

24:265–469, 1997.
20. Cox, D. A., Little, J., and O’Shea, D. B. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics, Springer,

3rd edition, 2007.
21. Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. SINGULAR 4-0-0 — A computer algebra system for polynomial

computations, 2014. http://www.singular.uni-kl.de.
22. Eder, C. A new attempt on the F5 Criterion. The Computer Science Journal of Moldova, 16:4–14, 2008.
23. Eder, C. On the criteria of the F5 Algorithm. preprint math.AC/0804.2033, 2008.
24. Eder, C. Signature-based algorithms to compute standard bases. PhD thesis, University of Kaiserslautern, Germany,

2012. https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2975.
25. Eder, C. An analysis of inhomogeneous signature-based Gröbner basis computations. Journal of Symbolic Computation,

59:21–35, 2013.
26. Eder, C. Improving incremental signature-based Groebner bases algorithms. ACM SIGSAM Communications in Com-

puter Algebra, 47(1):1–13, 2013. http://arxiv.org/abs/1201.6472.
27. Eder, C. Predicting zero reductions in Gröbner basis computations. submitted to Journal of Symbolc Computation,

preprint at http://arxiv.org/abs/1404.0161, 2014.
28. Eder, C., Gash, J., and Perry, J. Modifying Faugère’s F5 Algorithm to ensure termination. ACM SIGSAM Communications

in Computer Algebra, 45(2):70–89, 2011. http://arxiv.org/abs/1006.0318.
29. Eder, C. and Perry, J. F5C: A Variant of Faugère’s F5 Algorithm with reduced Gröbner bases. Journal of Symbolic

Computation, MEGA 2009 special issue, 45(12):1442–1458, 2010. dx.doi.org/10.1016/j.jsc.2010.06.019.

51

http://www-salsa.lip6.fr/~jcf/Papers/ACFP12.pdf
http://arxiv.org/abs/1006.4933
arxiv.org/abs/1012.3664
http://www-salsa.lip6.fr/~jcf/Papers/43BF.pdf
http://www-salsa.lip6.fr/~jcf/Papers/BFS05.pdf
http://www-sop.inria.fr/saga/POL/
http://www.singular.uni-kl.de
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2975
http://arxiv.org/abs/1201.6472
http://arxiv.org/abs/1404.0161
http://arxiv.org/abs/1006.0318
dx.doi.org/10.1016/j.jsc.2010.06.019

30. Eder, C. and Perry, J. Signature-based Algorithms to Compute Gröbner Bases. In ISSAC 2011: Proceedings of the 2011
international symposium on Symbolic and algebraic computation, pages 99–106, 2011.

31. Eder, C. and Roune, B. H. Signature Rewriting in Gröbner Basis Computation. In ISSAC 2013: Proceedings of the 2013
international symposium on Symbolic and algebraic computation, pages 331–338, 2013.

32. Faugère, J.-C. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra,
139(1–3):61–88, June 1999. http://www-salsa.lip6.fr/~jcf/Papers/F99a.pdf.

33. Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In IS-
SAC’02, Villeneuve d’Ascq, France, pages 75–82, July 2002. Revised version from http://fgbrs.lip6.fr/jcf/
Publications/index.html.

34. Faugère, J.-C. Algebraic cryptanalysis of HFE using Gröbner bases. 2003. INRIA Research Report, n 4738.
35. Faugère, J.-C., Gianni, P. M., Lazard, D., and Mora, T. Efficient Computation of Zero-Dimensional Gröbner Bases by

Change of Ordering. Journal of Symbolic Computation, 16(4):329–344, 1993.
36. Faugère, J.-C. and Joux, A. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner

Bases. 2729:44–60, 2003.
37. Faugère, J.-C., Safey El Din, M., and Spaenlehauer, P.-J. Computing Loci of Rank Defects of Linear Matrices using

Grobner Bases and Applications to Cryptology. In ISSAC ’10: Proceedings of the 2010 international symposium on
Symbolic and algebraic computation, ISSAC ’10, pages 257–264, New York, NY, USA, 2010. ACM. Best Student Paper
Award.

38. Faugère, J.-C., Safey El Din, M., and Spaenlehauer, P.-J. Gröbner Bases of Bihomogeneous Ideals Generated by Poly-
nomials of Bidegree (1,1): Algorithms and Complexity. Journal of Symbolic Computation, 46(4):406–437, 2011.
Available online 4 November 2010.

39. Faugère, J.-C., Safey El Din, M., and Verron, T. On the complexity of Computing Gröbner Bases for Quasi-homogeneous
Systems. In Proceedings of the 38th international symposium on International symposium on symbolic and algebraic
computation, ISSAC ’13, pages 189–196, New York, NY, USA, 2013. ACM.

40. Faugère, J.-C. and Svartz, J. Solving polynomial systems globally invariant under an action of the symmetric group
and application to the equilibria of n vertices in the plane. In Proceedings of the 37th international symposium on
International symposium on symbolic and algebraic computation, ISSAC ’12, pages 170–178, New York, NY, USA,
2012. ACM.

41. Faugère, J.-C. and Svartz, J. Gröbner Bases of ideals invariant under a Commutative group : the Non-modular Case.
In Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation,
ISSAC ’13, pages 347–354, New York, NY, USA, 2013. ACM.

42. Faugère, J.-C. and Lachartre, S. Parallel Gaussian Elimination for Gröbner bases computations in finite fields. In M.
Moreno-Maza and J.L. Roch, editor, Proceedings of the 4th International Workshop on Parallel and Symbolic Computa-
tion, PASCO ’10, pages 89–97, New York, NY, USA, July 2010. ACM.

43. Faugère, J.-C. and Rahmany, S. Solving systems of polynomial equations with symmetries using SAGBI-Gröbner
bases. In ISSAC ’09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation, ISSAC
’09, pages 151–158, New York, NY, USA, 2009. ACM.

44. Galkin, V. Simple signature-based Groebner basis algorithm. http://arxiv.org/abs/1205.6050, 2012.
45. Galkin, V. Termination of original F5. http://arxiv.org/abs/1203.2402, 2012.
46. Gao, S., Guan, Y., and Volny IV, F. A new incremental algorithm for computing Gröbner bases. In ISSAC ’10: Proceedings

of the 2010 international symposium on Symbolic and algebraic computation, pages 13–19. ACM, 2010.
47. Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases. http://eprint.iacr.org/

2010/641, 2010.
48. Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases (rev. 2011). http://www.math.

clemson.edu/~sgao/papers/gvw.pdf, 2011.
49. Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases (rev. 2011). http://www.math.

clemson.edu/~sgao/papers/gvw_R130704.pdf, 2013.
50. Gash, J. M. On efficient computation of Gröbner bases. PhD thesis, University of Indiana, Bloomington, IN, 2008.
51. Gash, J. M. A provably terminating and speed-competitive variant of F5 – F5t. submitted to the Journal of Symbolic

Computation, 2009.
52. Gebauer, R. and Möller, H. M. Buchberger’s algorithm and staggered linear bases. In Proceedings of the fifth ACM

symposium on Symbolic and algebraic computation, SYMSAC ’86, pages 218–221, New York, NY, USA, 1986. ACM.
53. Gebauer, R. and Möller, H. M. On an installation of Buchberger’s algorithm. Journal of Symbolic Computation, 6(2-

3):275–286, October/December 1988.
54. Gerdt, V. P. and Hashemi, A. On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases.

Program. Comput. Softw., 39(2):81–90, March 2013.
55. Gerdt, V. P., Hashemi, A., and M.-Alizadeh, B. Involutive Bases Algorithm Incorporating F5 Criterion. J. Symb. Comput.,

59:1–20, 2013.
56. Greuel, G.-M. and Pfister, G. A SINGULAR Introduction to Commutative Algebra. Springer Verlag, 2nd edition, 2007.
57. Hashemi, A., Benyamin, M.-A., and Riahi, M. Invariant G2V algorithm for computing SAGBI-Gröbner bases. Science

China Mathematics, pages 1–15, 2012.

52

http://www-salsa.lip6.fr/~jcf/Papers/F99a.pdf
http://fgbrs.lip6.fr/jcf/Publications/index.html
http://fgbrs.lip6.fr/jcf/Publications/index.html
http://arxiv.org/abs/1205.6050
http://arxiv.org/abs/1203.2402
http://eprint.iacr.org/2010/641
http://eprint.iacr.org/2010/641
http://www.math.clemson.edu/~sgao/papers/gvw.pdf
http://www.math.clemson.edu/~sgao/papers/gvw.pdf
http://www.math.clemson.edu/~sgao/papers/gvw_R130704.pdf
http://www.math.clemson.edu/~sgao/papers/gvw_R130704.pdf

58. Huang, L. A new conception for computing Gröbner basis and its applications. http://arxiv.org/abs/1012.
5425, 2010.

59. Kandri-Rody, A. and Weispfenning, V. Non-Commutative Gröbner Bases in Algebras of Solvable Type. Journal of
Symbolic Computation, 9(1):1–26, 1990.

60. Kapur, G. and Madlener, K. A completion procedure for computing a canonical basis for a k-subalgebra. Computers
and Mathematics, pages 1–11, 1989.

61. Kollreider, C. and Buchberger, B. An improved algorithmic construction of Gröbner-bases for polynomial ideals.
SIGSAM Bull., 12:27–36, May 1978.

62. D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In J. A. van Hulzen,
editor, EUROCAL’83, European Computer Algebra Conference, volume 162 of Springer LNCS, pages 146–156, 1983.

63. Macaulay, F. S. On some Formulæ in Elimination. Proceedings of the London Mathematical Society, 33(1):3–27, 1902.
64. Macaulay, F. S. The algebraic theory of modular systems. Cambridge University Press, 1916.
65. Marinari, M. G., Möller, H. M., and Mora, T. Gröbner Bases Of Ideals Defined By Functionals With An Application To

Ideals Of Projective Points. Appl. Alg. in Eng. Comm. and Comp., 4:103–145, 1993.
66. Möller, H. M., Mora, T., and Traverso, C. Gröbner bases computation using syzygies. In ISSAC 92: Papers from the

International Symposium on Symbolic and Algebraic Computation, pages 320–328, 1992.
67. Mora, T. Solving Polynomial Equation Systems II:Macaulay’s Paradigm and Gröbner Technology: Macaulay’s Paradigm

and Gröbner Technology: v. 2 (Encyclopedia of Mathematics and its Applications). Cambridge University Press, 2005.
68. Pan, S., Hu, Y., and Wang, B. The Termination of Algorithms for Computing Gröbner Bases. http://arxiv.org/

abs/1202.3524, 2012.
69. Pan, S., Hu, Y., and Wang, B. The Termination of the F5 Algorithm Revisited. In ISSAC 2013: Proceedings of the 2013

international symposium on Symbolic and algebraic computation, pages 291–298, 2013.
70. Roune, B. H. and Stillman, M. Practical Gröbner Basis Computation. In ISSAC 2012: Proceedings of the 2012 interna-

tional symposium on Symbolic and algebraic computation, 2012.
71. Roune, B. H. and Stillman, M. Practical Gröbner Basis Computation. http://arxiv.org/abs/1206.6940, 2012.
72. Stegers, T. Faugère’s F5 Algorithm revisited. Master’s thesis, Technische Univerität Darmstadt, revised version 2007.
73. Sun, Y. Signature-Based Gröbner Basis Algorithms — Extended MMM Algorithm for computing Gröbner bases. http:

//arxiv.org/abs/1308.2371, 2013.
74. Sun, Y. and Wang, D. K. A New Proof of the F5 Algorithm. http://www.mmrc.iss.ac.cn/mmpreprints/, 2009.
75. Sun, Y. and Wang, D. K. A New Proof for the correctness of the F5(F5-like) algorithm. http://arxiv.org/abs/

1004.0084, 2010.
76. Sun, Y. and Wang, D. K. A generalized criterion for signature related Gröbner basis algorithms. In ISSAC 2011:

Proceedings of the 2011 international symposium on Symbolic and algebraic computation, pages 337–344, 2011.
77. Sun, Y. and Wang, D. K. Solving detachability problem for the polynomial ring by signature-based Gröbner basis

algorithms. http://arxiv.org/abs/1108.1301, 2011.
78. Sun, Y. and Wang, D. K. The F5 algorithm in Buchberger’s style. J. Syst. Sci. Complex., 24(6):1218–1231, 2011.
79. Sun, Y. and Wang, D. K. A new proof for the correctness of the F5 algorithm. Sci. China Math., 56(4):745–756, 2013.
80. Sun, Y. and Wang, D. K. Extending the GVW algorithm to compute Gröbner bases. Submitted to Sci. China Math.,

2013.
81. Sun, Y., Wang, D. K., Ma, D. X., and Zhang, Y. A signature-based algorithm for computing Gröbner bases in solvable

polynomial algebras. In ISSAC 2012: Proceedings of the 2011 international symposium on Symbolic and algebraic
computation, pages 351–358, 2012.

82. Nicolas M. Thiéry. Computing minimal generating sets of invariant rings of permutation groups with sagbi-gröobner
basis. In DM-CCG, pages 315–328, 2001.

83. Volny, F. New algorithms for computing Gröbner bases. PhD thesis, Clemson University, 2011.
84. Wichmann, T. Der FGLM-Algorithmus: verallgemeinert und implementiert in SINGULAR. Diploma thesis at the uni-

versity of Kaiserslautern, 1997.
85. Zobnin, A. I. Generalization of the F5 algorithm for calculating Gröbner bases for polynomial ideals. Programming

and Computer Software, 36:75–82, 2010. http://dx.doi.org/10.1134/S0361768810020040.

53

http://arxiv.org/abs/1012.5425
http://arxiv.org/abs/1012.5425
http://arxiv.org/abs/1202.3524
http://arxiv.org/abs/1202.3524
http://arxiv.org/abs/1206.6940
http://arxiv.org/abs/1308.2371
http://arxiv.org/abs/1308.2371
http://www.mmrc.iss.ac.cn/mmpreprints/
http://arxiv.org/abs/1004.0084
http://arxiv.org/abs/1004.0084
http://arxiv.org/abs/1108.1301
http://dx.doi.org/10.1134/S0361768810020040

	A survey on signature-based Gröbner basis computations

