A Mean-based Approach for Real-Time Planning

Abstract : In this paper, we introduce a new heuristic search algorithm based on mean values for real-time planning, called MHSP. It consists in associating the principles of UCT, a bandit- based algorithm which gave very good results in computer games, and especially in Computer Go, with heuristic search in order to obtain a real-time planner in the context of clas- sical planning. MHSP is evaluated on di erent planning problems and compared to existing algorithms performing on-line search and learning. Besides, our results highlight the capacity of MHSP to return plans in a real-time manner which tend to an optimal plan over the time which is faster and of better quality compared to existing algorithms in the literature.
Type de document :
Communication dans un congrès
International Conference on Autonomous Agents and Multiagent Systems, May 2010, Toronto, Canada. 2010
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00975972
Contributeur : Damien Pellier <>
Soumis le : mercredi 9 avril 2014 - 14:02:35
Dernière modification le : mercredi 29 novembre 2017 - 14:49:54
Document(s) archivé(s) le : lundi 10 avril 2017 - 11:34:42

Fichier

aamas10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00975972, version 1

Collections

Citation

Damien Pellier, Bruno Bouzy, Marc Métivier. A Mean-based Approach for Real-Time Planning. International Conference on Autonomous Agents and Multiagent Systems, May 2010, Toronto, Canada. 2010. 〈hal-00975972〉

Partager

Métriques

Consultations de la notice

88

Téléchargements de fichiers

109