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ABSTRACT

We present a new method for first person sketch-based editing of
terrain models. As in usual artistic pictures, the input sketch de-
picts complex silhouettes with cusps and T-junctions, which typi-
cally correspond to non-planar curves in 3D. After analysing depth
constraints in the sketch based on perceptual cues, our method best
matches the sketched silhouettes with silhouettes or ridges of the
input terrain. A specific deformation algorithm is then applied to
the terrain, enabling it to exactly match the sketch from the given
perspective view, while insuring that none of the user-defined sil-
houettes is hidden by another part of the terrain. As our results
show, this method enables users to easily personalize an existing
terrain, while preserving its plausibility and style.

Keywords: First person editing, terrain, sketch-based modelling,
silhouettes

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—

1 INTRODUCTION

Terrain is a key element in any outdoor environment. Applica-
tions of virtual terrain modelling are very common in movies,
video games, advertisement and simulation frameworks such as
flight simulators. Two of the most popular terrain modelling meth-
ods are procedural [9, 20, 17, 21] and physics-based techniques
[21, 25, 4, 22, 24, 16]. The former are easy to implement and fast to
compute, while the latter produce terrains with erosion effects and
geologically sound features. However, the lack of controllability in
these methods is a limitation for artists.

Sketch-based or example-based terrains have been very popular
recently in addressing these issues [5, 28, 29, 10, 12, 27, 11]. How-
ever, many of these methods assume that the user sketch is drawn
from a top view, which makes shape control from a viewpoint of
interest very difficult. Others only handle a restricted category of
mountains, with flat silhouettes. Lastly, terrains fully generated
from sketches typically lack details. Dos Passos et al. [6] recently
presented a promising approach where example-based terrain mod-
elling and a first person point-of-view sketch are combined. How-
ever their method does not support local terrain editing and cannot
handle typical terrain silhouettes with T-junctions. Moreover, ter-
rain patches are often repeated which may spoil the plausibility of
the results from other viewpoints.
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Figure 1: A typical artist sketch (top left), is used to edit an existing
terrain (right). Results are shown on the second row from the same
two viewpoints. Note the complex silhouettes with T-junctions,
matched to features of the input terrain. The bottom image shows a
rendering of the resulting terrain, from a closer viewpoint.

In this work, we address the problem of intuitive shape control of
a terrain from a first person viewpoint, while generating a detailed
output, plausible from anywhere. To achieve the intuitive shape
control goal, we stick to the sketch-based approach, but allow the
user to input complex silhouettes with cusps and T-junctions, as
those typically used to represent terrains (see Figure 1). To get
plausible, detailed results from anywhere, we focus on editing an
existing terrain rather than starting from scratch. This approach
captures the coherent small details from the existing terrain, while
avoiding the patch blending and repetition problems that are typi-
cal of example-based methods. The use of an existing terrain also
enables matches of sketched silhouettes with plausible, non planar
curves on the terrain.

In practice, the user edits the input terrain by over-sketching it
from a first person viewpoint. The user strokes, forming a graph of
curves with T-junctions, represent the desired silhouettes for the ter-



rain. The input terrain is then deformed such that its silhouettes ex-
actly match the strokes in the current perspective view. This means
that each stroke segment is to be some silhouette of the output ter-
rain, and that no other part of the deformed terrain should hide
them. Previous sketch-based modelling methods have successfully
use feature curves to deform surfaces [26, 30]. Our work explores
the use of terrain features for sketch-based terrain editing.

First, we order the sketched strokes by inferring their relative
depth from the height of their end-points and from the T-junctions
detected in the sketch. Next, features of the input terrain such as sil-
houette edges and ridges are assigned to each stroke and extended
if necessary, to cover the length of the stroke. This assignment is
the solution of a minimization problem expressing the similarity
between a terrain feature and a stroke in the drawing plane, and the
amount of deformation caused by their matching. The selected fea-
tures then become constraints for an iterative diffusion-based ter-
rain deformation method. Our main contributions are:

• An algorithm for ordering strokes in a complex, perspective
sketch with respect to their distance from the camera.

• A method for matching terrain features with user-specified sil-
houettes, drawn from a given first-person viewpoint.

• A deformation method for matching silhouette constraints
while preventing them from being hidden by other parts of
the terrain.

Related work is discussed in Section 2. Then we present an
overview of our solution in Section 3. This is followed by a de-
scription of stroke ordering in Section 4, generation of feature con-
straints in Section 5 and terrain deformation in Section 6. We dis-
cuss results in Section 7 before concluding.

2 RELATED WORK

Most terrain modelling systems use one or a combination of the
following: procedural terrain generation, physics-based simulation,
sketch-based or example-based methods. See [23] for a detailed
survey.

Procedural terrain modelling methods are based on the fact that
terrains are self-similar, i.e. statistically invariant under magnifica-
tion [18]. These methods are the popular choice for landscape mod-
elling due to their easy implementation and efficient computation.
They mainly consist of pseudo-randomly editing height values on a
flat terrain by using either adaptive subdivision [9, 20, 17] or noise
[20, 21]. Adaptive subdivision progressively increases the level of
detail of the terrain by iteratively interpolating between neighbour-
ing points and displacing the new intermediate points by increas-
ingly smaller random values. Noise synthesis techniques are often
preferred because they offer better control. Superposing scaled-
down copies of a band-limited, stochastic noise function generates
noise-based terrains. For more information on fractal terrain gen-
eration methods, see Ebert et al. [7]. Fractal-based approaches
can generate a wide range of large terrains with unlimited level
of details. However, they are limited by the lack of user control
or non-intuitive parameter manipulation, and the absence of ero-
sion effects such as drainage patterns. To address the last issue,
fractal terrains can be improved using physics-based erosion sim-
ulation [21, 25, 4, 22, 24, 16]. Alternatively, river network gen-
eration can be incorporated in the procedural method [15, 11]. In
particular, Genevaux et al. [11] create procedural terrains from a
hydrographically and geomorphologically consistent river drainage
network, generated from a top-view sketch. However, this method
only captures terrains resulting from hydraulic erosion, and there is
no mechanism for controlling their silhouettes from a first person
viewpoint.

Physically-based techniques generate artificial terrains by sim-
ulating erosion effects over some input 3D model. Musgrave et
al. [21] present the first methods for thermal and hydraulic ero-
sion based on geomorphology rules. Roudier et al. [25] introduce
a hydraulic erosion simulation that uses different materials at var-
ious locations resulting in different interactions with water. Chiba
et al. [4] generate a vector field of water flow that then controls
how sediment moves during erosion. This process produces hierar-
chical ridge structures and thus enhances realism. Nagashima [22]
combines thermal and fluvial erosion by using a river network pre-
generated with a 2D fractal function. Neidhold et al. [24] present
a physically correct simulation based on fluids dynamics and in-
teractive methods that enable the input of global parameters such
as rainfall or local water sources. Kristof et al. [16] propose fast
hydraulic erosion based on Smooth Particle Hydrodynamics. The
main drawback of all these methods is that they only allow indirect
user-control through trial and error, requiring a good understand-
ing of the underlying physics, time and efforts to get the expected
results.

Sketching interfaces and more generally feature-based editing
have been increasingly popular for terrain modelling. These meth-
ods can be combined with some input terrain data to generate ter-
rains with plausible details.

Cohen et al. [5] and Watanabe et al. [28] present the first ter-
rain modelling interfaces that take as input a 2D silhouette stroke
directly drawn on a 3D terrain model. They only handle a single
silhouette stroke, interpreted as a flat feature curve. McCrae and
Singh [19] use stroke-based input to create paths which deform ter-
rains. However user strokes are interpreted as path layouts and not
as terrain silhouettes. Multi-grid diffusion methods enable gener-
ation of terrains that simultaneously match several feature curves,
either drawn from a top view [12] or from an arbitrary viewpoint
[2]. The main limitation is that generated terrains typically lack
realistic details.

In contrast, Zhou et al. [29] use features (actually, sketch maps
painted from above) to drive patch-based terrain synthesis from real
terrain data. Closer to our concerns, Gain et al. [10] deform an
existing terrain from a set of sketched silhouettes and boundary
curves. The algorithm deforms the terrain based on the relative
distance to the feature-curves in their region of influence, and on
wavelet noise to add details to the silhouettes. In this work we rather
use a diffusion-based deformation method to propagate feature con-
straints, avoiding the need for boundary curves. Lastly, Tasse et al.
[27] present a distributed texture-based terrain generation method
that re-uses the same sketching interface. Unfortunately, all these
methods interpret each sketched silhouette as a planar feature curve,
which reduces the realism of the result.

Dos Passos et al. [6] propose a different approach to address
this issue. Given a set of sketched strokes drawn from a first per-
son point-of-view, copies of an example terrain are combined such
that the silhouettes of the resulting terrain match the strokes. This
gives a realistic, varying depth to silhouettes. To achieve this, the
algorithm assumes each stroke represents a terrain silhouette. A
stroke is matched with a portion of a silhouette, selected from a set
of silhouettes viewed from several standing viewpoints around the
example terrain. Terrain slices representing portions of matched sil-
houette are cut from the example terrain and then combined through
a weighted sum to produce a smooth terrain. A drawback of this
method is that it does not handle complex sketches with T-junctions,
which are common in landscape drawings. Moreover, the match-
ing process may select the same silhouette portions for different
strokes, thus producing unrealistic repeating patterns in the final re-
sult. Finally, the weighted sum function used for merging may fail
to remove the boundary seams produced by combining different
terrain slices. In this work, we address these issues by presenting a
sketch-based method that handles T-junctions in complex sketches



and deforms an input terrain to match the sketch rather than copy-
pasting parts of it.

3 OVERVIEW

Let us describe our processing pipeline. As in many terrain mod-
elling and rendering methods, our terrains are represented by a
height field, namely a greyscale image storing elevation values.
This representation cannot emulate features such as overhangs and
caves, but it is the most prevalent format in terrain generation be-
cause of its simplicity and efficient use of storage space. For render-
ing purposes and silhouette detection, a 3D triangular mesh is con-
structed from the height field by connecting adjacent terrain points
(x,y,altitude(x,y)). Users are able to navigate on a 3D rendering
of the existing terrain, possibly flat, with a first-person camera al-
ways at a standing viewpoint. A sketch is created by drawing one or
multiple strokes from the same camera position. The drawn strokes
represent silhouettes that should be visible from that position. Our
main goal is to deform the terrain such that these user constraints
are respected. The following requirements should be satisfied:

• Every sketched stroke should be a terrain silhouette, in the
current perspective view from the first-person camera view-
point.

• Each of these terrain silhouettes should be visible, i.e. not
hidden by any other part of the terrain.

• The deformed terrain should not have artifacts nor contain un-
realistic deformations, from any other viewpoint.

Our solution consists of five main steps, illustrated in Figure 2:

1. We order strokes according to their depth, from front to back
with respect to the camera position. This order is used when
we generate constraints for terrain deformation, so that a
curve constraint is not occluded by another, when viewed
from the first-person viewpoint.

2. Terrain features such as silhouettes and ridges are detected.
Deforming existing terrain features to match the desired sil-
houettes results in a more realistic terrain since no extra fea-
tures are added and thus, the nature of the existing terrain is
best preserved.

3. For each stroke, we select a terrain feature that will be de-
formed to fit the stroke, when seen from the camera position.
These deformed features represent the positional constraints
that we use in the diffusion-based terrain deformation. A key
idea of our framework is the expression of this feature selec-
tion step as an energy minimization problem, in which we
penalize features with large altitude differences compared to
their corresponding stroke as well as features that would result
in too large deformations.

4. We use a multi-grid Poisson solver for diffusion-based terrain
deformation. It solves for altitude differences instead of abso-
lute terrain positions, thus preserving the small-scale features
of the input terrain.

5. After terrain deformation, other parts of the terrain may hide
the user-specified silhouettes. To address this issue, we run
the following iterative process: we detect terrain silhouettes
that do not fit any user stroke and yet hide one of the sketched
silhouettes. Extra deformation constraints are constructed to
enforce lowering these protruding silhouettes until the user-
sketched silhouettes are no longer occluded. The terrain is
deformed with a combination of previous constraints and the
newly constructed constraints. We repeat this process until
there is no longer protruding silhouette.

(a) User 2D sketch, in a 3D interface (b) Stroke ordering

(c) Terrain feature detection (top view)

(d) Matching strokes to features (top

view)

(e) Deforming terrain with matched fea-

tures

(f) Terrain deformation result (from top

view)

(g) Lowering protruding silhouettes (h) Resulting terrain (top view)

(i) Closer view of the generated terrain

Figure 2: Overview of our terrain editing framework. In (b), stroke
colour indicates stroke ordering: blue indicates that a stroke is
closer to the camera position and red indicates that it is the furthest.
(c) illustrates detected terrain features in white and (d) shows the
subset of terrain features that have been assigned to user strokes. In
(f) the terrain features are deformed so that they match the strokes
from the user viewpoint. The final result in (h) is obtained after
removing some residual artifacts.



4 ANALYSING COMPLEX TERRAIN SKETCHES

In this section, we explain how depth ordering of silhouette strokes
is extracted from the user sketch.

The different silhouette strokes in the input sketch first need to be
ordered, in terms of relative depth from the camera viewpoint. This
will enable us to ensure, when they are matched with features, that
they will not be hidden by other parts of the terrain. Our approach
to do so is based on two observations:

• If, in the viewing plane, a silhouette lies above another, it ob-
viously corresponds to a mountain A farther away from the
viewpoint than the other mountain B. Otherwise A would hide
B. Using height coverage for ordering them in depth is how-
ever not sufficient, since some strokes may overlap in height,
as for the green and blue strokes in Figure 3.

• Furthermore, the terrain being a height field, the projection of
each stroke onto the horizon (x-axis of the viewing plane) is
injective (no more than one height value per point).

Input

3 silhouette strokes

Open stroke 1

 no relation

Open stroke 2

in front of 1

Close stroke 1

occluded by 2

Open stroke 3

in front of 2

Close stroke 3

in front of 2

stroke 1

stroke 2

stroke 3

q1

q3

Figure 3: An input sketch (top) and the different steps of the sweep-
ing algorithm used for scanning the sketch, labelling T-junctions
and ordering strokes (bottom). As a result, stroke 3 is detected to
be in front of stroke 2, which is itself in front of stroke 1.

These two observations allow us to solve the relative stroke or-
dering problem thanks to a new sweeping algorithm (see Figure 3):
We consider the projections of all the strokes onto the horizontal
x axis (depicted in the bottom part of the Figure) and sweep from
left to right, examining the extremities (starting and endpoints in
sweeping direction) and junction points of the silhouette strokes.
While doing so, we label the strokes’ extremities and the junction
points in the following way: an extremity qs of stroke s is a T-
junction if its closest distance to another stroke r is smaller than a
threshold. An endpoint qs is labelled (occluded-by, r) if the ori-
ented angle, measured counterclockwise, between the tangent1 of s

1Strokes are always oriented clockwise. Hence, stroke tangents are inde-

pendent of the direction in which the stroke was sketched. When labelling

a starting point qs as T-junction, we flip its tangent.

at qs and the tangent of r at qs, 6 (ts, tr)< 180◦. This indicates that
s is occluded by, and thus behind, r. Otherwise, s is in front of r
and we label qs as (in-front-of, r).

If a stroke s has no T-junctions, then it is behind a stroke r either
if the projection of s completely contains the projection of r or if
the smallest height value of s’s endpoints is larger than the smallest
height value of r’s endpoints.

While scanning the sketch from left to right, we insert each
stroke in a sorting structure, at a relative depth position determined
by the cues above. This results in a relative ordering of the user
strokes.

5 POSITIONING STROKES IN WORLD SPACE

The key idea of our approach is to create a 3D terrain that matches
the user drawing, by deforming an existing one. More precisely,
we deform the features of the existing terrain, like its ridgelines,
to match the user silhouette strokes. Because a terrain has many
features, we first have to compute to which one of them it is the
most appropriate to apply a deformation. In this section, we detail
how we compute the set of terrain features (Section 5.1), how we
affect one of them to each of the user strokes (Section 5.2) and we
present a feature completion algorithm that infers the hidden parts
of the silhouettes, enabling a more realistic terrain deformation re-
sult (Section 5.3).

5.1 Feature detection: silhouettes and ridgelines

Silhouette detection on the existing terrain is based on a common
and naive algorithm for computing the exact silhouettes of a 3D
mesh. Silhouette edges are detected by finding all visible edges
shared by a front face and a back face in the current perspective
view. Neighbouring silhouette edges are then linked to form long
silhouette curves.

Ridge detection is based on the profile-recognition and polygon-
breaking algorithm (PPA) by Chang et al. [3]. The PPA algorithm
marks each terrain point that is likely to be on a ridge line, based on
the point height profile. Segments, forming a cyclic graph, connect
adjacent candidate points. Polygon-breaking repeatedly deletes the
lowest segment in a cycle until the graph is acyclic. Finally, the
branches on the produced tree structure are reduced and smoothed.
The result is a graph where nodes are end points or branch points
connected by curvilinear ridgelines. An improvement of the PPA
algorithm connects all the terrain points into a graph using a height-
based or curvature-based weighting and computes the minimum
spanning tree of that graph [1]. Because we are mainly concerned
with performance and detection of large-scale ridges, we simply
connect candidate terrain points as in the original PPA algorithm
and replace the polygon-breaking with a minimum spanning forest
algorithm.

5.2 Stroke - Feature matching

In this section, we discuss a method for determining, for each
stroke, the terrain features which can be used to construct defor-
mation curve constraints. Viewed from the first person camera,
these curve constraints should match the user-sketched strokes. To
achieve this, we first construct a features priority list for each stroke
and then select features for each priority list such that the sum of
their associated cost is minimized.

5.2.1 Features priority list per stroke

For a stroke s, we project all terrain features on the sketching plane
(i.e. we use the 2D projection of the feature from the first-person
viewpoint) and select feature curves that satisfy the following con-
dition: the x interval they cover matches the one of the stroke s. We
deform the selected feature curves, and if necessary extend their
endpoints, such that viewed from the camera position, they cover



the length of s. This deformation is simply achieved by displac-
ing the feature curve points according to their projection on the 2D
stroke in the sketching plane, and their distance to the camera po-
sition. Let f be a terrain feature and fp its projection on the stroke
plane. If a portion of fp is below or above s, f is truncated to that
portion. Moreover, for each point q ∈ f , its altitude is modified as
follows:

q.z = q.z+ k ∗ ||qp −qs
p|| ∗

||q− eye||

||qp − eye||

where eye is the camera position, k =−1 if fp is below s and k = 1
otherwise, qp the projection of q on the stroke plane, and qs

p the
intersection of s and the vertical line passing at qp.

We used this deformed version of the feature to associate the
following cost E( f ,s) to each feature f with respect to stroke s:

E = Edissimilarity +Ede f ormation +Esampling +Eextension (1)

Edissimilarity( f ) =
w1

curvelength( fp)
∗
∫

fp

h fp
dt

Ede f ormation( f ) =
w2

curvelength( f )
∗
∫

f
h f dt

Esampling( f ) = w3 ∗
longestedgelength( f )

maxg∈prioritylist(s) longestedgelength(g)

Eextension( f ) = w4 ∗
extendedcurvelength( f )

curvelength( f )

where, wi are weights, fp is the projection of f on the stroke
plane, h f is the altitude difference between f and f ’s projection
on the terrain, and h fp

is the altitude difference between fp and
the stroke s. Edissimilarity represents the dissimilarity between f
and s, Ede f ormation expresses the amount of deformation along f ,
Esampling penalizes features with long edges and Eextension penal-
izes features that were extended to fully cover s when viewed from
the camera position. All the results shown here were generated with
w1 = w2 = w3 = w4 = 1.0.

All features are sorted in a priority list according to their cost.
Figure 4 illustrates this process for a single stroke (in this simple
case, the feature of minimal cost is selected).

5.2.2 Energy minimization

The goal here is the selection of a feature curve f from the priority
list of each stroke si, to construct deformation constraints for terrain
deformation. In addition to the feature order within the different
priority lists, we need to take into account the depth ordering for
silhouette strokes computed in Section 4.

Therefore, this selection process can be seen as a minimization
problem. Let S = {si : i = 1, ...,n} be the stroke list (ordered by

depth) and f i denote a feature in the priority list L(si) = { f i
k : k =

1, ...,mi} for a stroke si. We are looking for { f i : i ∈ 1...n} such that

f i < f j if i < j and ∑E( f i) is minimized. Here, f i < f j means

that f i should not be occluded by f j, so that all deformation curve
constraints are visible from the first person viewpoint. We process
the ordered stroke list from front to back, and after each stroke, we
remove from the priority list of the next strokes, features that will
be occluded if selected. We chose to process strokes from front to
back for two main reasons. Firstly, strokes that are closest to the eye
are processed first and due to Ede f ormation, the algorithm attempts to
select constraints that will minimize the terrain deformation. Thus,
features closer to the eye are more likely to be selected. Secondly, if
all the features of interest for a given stroke si were already selected,
and therefore its priority list was empty, an arbitrary curve on the
terrain would be used instead. If this ever occurs, we prefer it to be
for background silhouettes.

(a) User sketch (b) Feature detection

(c) Detect possible candidate matches (d) Terrain deformation using best match

Figure 4: Computing possible features to match with a user stroke.
Images (a) and (d) show the terrain from the first person viewpoint
used for editing, while image (b) and (c) use a higher viewpoint to
better show features on the input terrain. Feature colour indicates
cost: blue for the lowest cost and red for the highest.

In practice, feature selections that cause any stroke to have an
empty priority list are penalized with a very high cost. Thus, a con-
figuration that guarantees a non-empty priority list for each stroke
is always selected, if it exists. If no such configuration exists and si

has an empty priority list, we automatically compute a 3D embed-
ding of the 2D stroke si and use the resulting curve as a deforma-
tion constraint. To easily compute this 3D embedding, we take the
two strokes lying just in front and just behind si. Then we place si

halfway between the terrain features assigned to these two strokes.
If there is no stroke restricted to lie behind si, we place it behind the
furthest stroke from the viewpoint. If there is no stroke restricted
to lie in front of si, we place it in front of the closest stroke to the
viewpoint. With this approach, each stroke is represented by a de-
formation constraint even if it was not matched to a terrain feature
during the energy minimization.

The energy minimization problem we have described so far is
NP-hard. We use a branch-and-bound algorithm to efficiently dis-
card all partial solutions that have a cost higher than the current
best cost, without having to explore the whole solution tree. The
branch-and-bound algorithm consists of two steps: a branching step
and a bounding step. The branching step consists of exploring pos-
sible choices for si+1 once we have made a feature selection for
si. In other words, we split the node (si, f i) into multiple nodes

(si+1, f i+1
k

), where f i+1
k

are features in the priority list of si+1. The
bounding step allows the algorithm to stop exploring a partial so-
lution if the total cost of features in the solution is higher than the
cost of the best solution found so far.

It is possible for a feature to be the first choice in the priority lists
for two or more strokes. To handle this, when exploring a possible
solution, a feature curve assigned to a stroke is no longer consid-
ered for subsequent strokes. Our branch and bound algorithm will
explore other solutions with the feature curve assigned to different
strokes as long these solutions are guaranteed to have a smaller cost
than the current best solution.



5.2.3 Stroke in world space

The previous minimization gives us, for each stroke s, an associ-
ated terrain feature f . However, the stroke s has its points in screen
space, whereas the points of f are in the world space. Our goal is to
place the stroke in the world space, in order to deduce terrain con-
straints, i.e. find the distance of their projection from the camera.

For each point of the stroke qs = (xs,ys), we check if there exists
a feature point q f whose projection on screen qp =P(q f ) = (xp,yp)
has the same x-coordinate as qs, i.e. xs = xp. If this point exists, we
project the stroke point on the world space, using the distance of q f

from the camera as a depth value.

The possible undetermined points depth, at the stroke borders,
are set in world space to follow the stroke tangent, in the world
space.

5.3 Completing selected 3D features

Using user-specified endpoints of an occluded stroke during the
generation of deformation constraints would create silhouettes that
appear to start exactly at these endpoints. This can look quite un-
natural when viewed from a different position than the first person
camera position used for sketching: indeed, the endpoint of the oc-
cluded stroke (a junction) is typically above the terrain and thus, a
sharp deformation will be created at that point.

We address this problem by simply extending 3D features as-
signed to strokes at both endpoints along their tangents, until they
reach the surface of the terrain. An example of this feature comple-
tion is presented in Figure 5. More sophisticated contour comple-
tion methods such as the one presented in SmoothSketch [14] could
alternatively be used, but this simple method was sufficient in our
case, and is proposed as an optional step in the editing process.

(a) User input (b) Matched features

(c) Extend the matched features (d) Resulting terrain

Figure 5: Completing selected features: after matching 2D strokes
to terrain features, we extend these features until they reach the
surface of the terrain, to ensure a smooth transition from specified
silhouettes to the terrain.

6 TERRAIN DEFORMATION

In the previous section, we analysed terrain features and used them
to position the strokes in the world space. We present in this section
how we use them as constraints to deform the existing terrain.

6.1 Diffusion-based equation solver

Our deformation algorithm relies on iterative diffusion of displace-
ment constraints, which are computed from the 3D strokes posi-
tioned in the world space.

The diffusion method, first introduced by the authors in [8], con-
sists in computing the difference of the curve height and the ter-
rain height H , and to diffuse these differences (instead of absolute
height values) using a multi-grid Poisson solver similar to the one
in [12].

More precisely, for each point p = (x,y,z) of the stroke in the
world space, we compute δ = z−H (x,y), and set it as a displace-
ment constraint. The constraints are rasterised on a grid, whose
resolution is equal to the terrain resolution. After having set the
constraints of all strokes, we perform the diffusion, which gives the
displacement map M .

The displacement is finally applied on the terrain height field H ,
whose feature line silhouettes are now matching the user strokes,
when seen from the first-person viewpoint used for sketching. The
deformation only consists of adding the two heights, H ′(x,y) =
H (x,y) +M (x,y), where H ′ is the resulting terrain. Because
height differences are propagated, instead of absolute heights, the
terrain preserves fine-scale details during the deformation.

6.2 Lowering protruding silhouettes

After deformation, the user-defined silhouettes may be hidden by
other parts of the terrain. To address this issue, we detect the un-
wanted protruding silhouettes and constrain them to a lower posi-
tion so that the user-defined silhouettes become visible.

6.2.1 Detecting most protruding silhouette edges

First, all visible silhouettes are detected, with the algorithm dis-
cussed in Section 5.1. These silhouettes are projected onto the
sketching plane. Let s be a silhouette of the deformed landscape,
inherited from the example terrain. The mountain of silhouette s
hides a user-specified silhouette g if s is closer to the camera than g
and the projection sp of s in the sketching plane has a higher altitude
than gp, the projection of g. In this case, s is an unwanted protrud-
ing silhouette. Determining how much s should be lowered is done
as follows: Let h be the maximum height difference between s and
a silhouette g hidden by s. h is the minimum altitude by which
s should be lowered to ensure the silhouettes it hides become visi-
ble. Our solution is simply to uniformly lower s by an offset h. This
method is applied to all unwanted protruding silhouettes and we use
the set of lowered silhouettes to form new deformation constraints.

6.2.2 Updating deformation constraints

The new deformation constraints from the lowered protruding
silhouettes are added to the set of constraints associated to the
sketched silhouettes, and the terrain is deformed once again us-
ing the method of section 6.1. This operation maintains the user-
specified silhouettes while lowering areas around the unwanted pro-
truding silhouettes, so that user specifications are satisfied.

The process of detecting protruding silhouettes and using this in-
formation to further constrain the terrain is repeated until protruding
silhouettes are no longer detected. In practice, a single iteration is
usually sufficient to make all user-specified silhouette strokes visi-
ble.

7 RESULTS

Validation examples : The examples below and the joined
video illustrate the results of our method in a variety of cases. In
particular, Figure 6 shows editing of a terrain with a complex sketch
containing 5 T-junctions. Our method is also able to handle com-
plex mountains where ridges are not as well-defined as they are
on smooth landscapes. An example of this is presented in Figure
7. Our proposed approach differs from other sketch-based methods



in that non-planar silhouettes can be generated from planar user-
sketched strokes. This is illustrated in Figure 8. Moreover, the
method is robust enough to support terrains with few or no features,
as shown in the example given in Figure 9. This complex sketch-
based editing framework comes with interactive rates, as illustrated
in the attached video, which makes it a very attractive alternative to
other terrain generation/editing techniques discussed in Section 2.

User tests: We performed an informal user test with two expe-
rienced computer artists. The system was briefly introduced to the
users, who had no prior knowledge about it. They were then asked
to draw sketches to deform existing terrains. Both of them reported
that our system was very easy to take in hand and use, and where
able to quickly create new sceneries. Their feedback indicates that
the approach is original, and seems a promising way to create a
scene that matches their artistic intend. However, they had some
difficulties for predicting the result of their sketch. This could have
been improved by manually tuning the feature matching weights,
which was not among their skills. These first users also asked for
the ability to move within the scene and edit the terrain from mul-
tiple viewpoints. Note that this is not a technical issue: we simply
did not implement it since this editing mode was already provided
by previous methods. Lastly, the users insisted on the natural aspect
of the resulting terrain, and noted that it matched their sketches in
the expected way.

Limitations: Although our system succeeds in matching a
complex user-sketch through a natural deformation of the terrain,
based on its existing features, the lack of predictability of the stroke-
feature solver may be a problem. A full user study would be useful
to understand the user intent when sketching over the existing ter-
rain, and identify the ranges of weight values allowing us to better
match this intent. We could also improve our matching method us-
ing extra error functions.

Another limitation comes from our deformation solver. The
diffusion-based deformation method sometimes creates small de-
clivities around the extremity of a constraint curve, when the slope
of the curve is high and the extremity is located on the terrain: in
this case, the terrain locally inflates, except at this end-point where
the deformation is zero, which causes the problem. Using an in-
verse distance to deform a terrain [13] does not work either, be-
cause of our use of curves as constraints. Future work still needs to
be done on terrain deformation, especially for curve-based defor-
mations.

8 CONCLUSION

We presented the first sketch-based modelling method enabling the
deformation of a terrain from a single viewpoint. The user sketches
a few silhouette strokes forming a graph with T-junctions, similar
to the silhouette representations used in artistic terrain sketching. A
key feature of our method is that sketched silhouettes are matched
with existing terrain features: this enables our technique to both
match silhouette strokes with a non-planar curve, and produce a
deformation that does not spoil plausibility, since the structure of
ridges and valleys typically remains unchanged. This work could
easily be extended to a multiple-view editing interface, where the
user can move over the terrain and iteratively edit it from different
points of view, while keeping his other sketches as constraints.
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