B. Andreianov, P. Goatin, and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numerische Mathematik, vol.73, issue.115, pp.609-645, 2010.
DOI : 10.1007/s00211-009-0286-7

URL : https://hal.archives-ouvertes.fr/hal-00387806

R. Borsche, R. Colombo, and M. Garavello, Mixed systems: ODEs ??? Balance laws, Journal of Differential Equations, vol.252, issue.3, pp.2311-2338, 2012.
DOI : 10.1016/j.jde.2011.08.051

URL : http://doi.org/10.1016/j.jde.2011.08.051

R. Borsche, R. M. Colombo, and M. Garavello, On the coupling of systems of hyperbolic conservation laws with ordinary differential equations, Nonlinearity, vol.23, issue.11, pp.2749-2770, 2010.
DOI : 10.1088/0951-7715/23/11/002

A. Bressan, Unique solutions for a class of discontinuous differential equations, Proc. Amer, pp.772-778, 1988.
DOI : 10.1090/S0002-9939-1988-0964856-0

A. Bressan, Hyperbolic systems of conservation laws, of Oxford Lecture Series in Mathematics and its Applications, 2000.
DOI : 10.5209/rev_REMA.1999.v12.n1.17204

A. Bressan and P. G. Lefloch, Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws, Indiana University Mathematics Journal, vol.48, issue.1, pp.43-84, 1999.
DOI : 10.1512/iumj.1999.48.1524

A. Bressan and W. Shen, Uniqueness for discontinuous ODE and conservation laws, Nonlinear Analysis: Theory, Methods & Applications, vol.34, issue.5, pp.637-652, 1998.
DOI : 10.1016/S0362-546X(97)00590-7

C. Chalons, P. Goatin, and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling, Networks and Heterogeneous Media, vol.8, issue.2, pp.433-463, 2013.
DOI : 10.3934/nhm.2013.8.433

URL : https://hal.archives-ouvertes.fr/hal-00713609

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, Journal of Differential Equations, vol.234, issue.2, pp.654-675, 2007.
DOI : 10.1016/j.jde.2006.10.014

R. M. Colombo and A. Marson, A H??lder continuous ODE related to traffic flow, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, vol.133, issue.04, pp.759-772, 2003.
DOI : 10.1017/S0308210500002663

C. Daganzo and J. A. Laval, Moving bottlenecks: A numerical method that converges in flows, Transportation Research Part B: Methodological, vol.39, issue.9, pp.855-863, 2004.
DOI : 10.1016/j.trb.2004.10.004

C. Daganzo and J. A. Laval, On the numerical treatment of moving bottlenecks, Transportation Research Part B: Methodological, vol.39, issue.1, pp.31-46, 2005.
DOI : 10.1016/j.trb.2004.02.003

M. L. Delle-monache and P. Goatin, A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow, Discrete and Continuous Dynamical Systems - Series S, vol.7, issue.3, pp.435-447, 2014.
DOI : 10.3934/dcdss.2014.7.435

URL : https://hal.archives-ouvertes.fr/hal-00930031

V. V. Filippov, Ordinary differential equations with discontinuous right-hand sides, 1994.

M. Garavello and P. Goatin, The Aw???Rascle traffic model with locally constrained flow, Journal of Mathematical Analysis and Applications, vol.378, issue.2, pp.634-648, 2011.
DOI : 10.1016/j.jmaa.2011.01.033

URL : https://hal.archives-ouvertes.fr/hal-00638111

F. Giorgi, Prise en compte des transports en commun de surface dans la modélisation macroscopique de l'´ ecoulement du trafic, 2002.

S. N. Kru?hkov, FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES, Mathematics of the USSR-Sbornik, vol.10, issue.2, pp.228-255, 1970.
DOI : 10.1070/SM1970v010n02ABEH002156

C. Lattanzio, A. Maurizi, and B. Piccoli, Moving Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled Model, SIAM Journal on Mathematical Analysis, vol.43, issue.1, pp.50-67, 2011.
DOI : 10.1137/090767224