
HAL Id: hal-00977379
https://hal.inria.fr/hal-00977379v2

Submitted on 5 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Markov Chain Analysis of Evolution Strategies on a
Linear Constraint Optimization Problem

Alexandre Chotard, Anne Auger, Nikolaus Hansen

To cite this version:
Alexandre Chotard, Anne Auger, Nikolaus Hansen. Markov Chain Analysis of Evolution Strategies
on a Linear Constraint Optimization Problem. Amir Hussain; Zhigang Zeng; Nian Zhang. IEEE
Congress on Evolutionary Computation, Jul 2014, Beijing, China. 2014. <hal-00977379v2>

https://hal.inria.fr/hal-00977379v2
https://hal.archives-ouvertes.fr


Markov Chain Analysis of Evolution Strategies on a Linear

Constraint Optimization Problem

Alexandre Chotard, Anne Auger and Nikolaus Hansen

Abstract— This paper analyses a (1, λ)-Evolution Strategy,

a randomised comparison-based adaptive search algorithm, on
a simple constraint optimization problem. The algorithm uses
resampling to handle the constraint and optimizes a linear
function with a linear constraint. Two cases are investigated:
first the case where the step-size is constant, and second the case
where the step-size is adapted using path length control. We
exhibit for each case a Markov chain whose stability analysis
would allow us to deduce the divergence of the algorithm
depending on its internal parameters. We show divergence
at a constant rate when the step-size is constant. We sketch
that with step-size adaptation geometric divergence takes place.
Our results complement previous studies where stability was
assumed.

I. INTRODUCTION

Derivative Free Optimization (DFO) methods are tailored

for the optimization of numerical problems in a black-box

context, where the algorithms can only query the objective

function to optimize f : Rn → R, and no properties on f ,

such as convexity or differentiability, is exploited.

Evolution Strategies (ES) are comparison-based ran-

domised DFO algorithms. At iteration t, solutions are sam-

pled from a multivariate normal distribution centered in a

vector Xt. The candidate solutions are ranked according to

f , and update of Xt and other parameters of the distribution

(usually a step-size σt and a covariance matrix) is performed

using the ranking information given by the candidate solu-

tions. Since ES do not directly use the function values of the

new points, but only how f ranks the different samples, they

are invariant to the composition of the objective function by

a strictly increasing function h : R → R.

This property and the black-box scenario make Evolution

Strategies suited for a wide class of real-world problems,

where constraints on the variables are often given. Different

techniques for handling constraints in randomised algorithms

have been proposed, see [6] for a survey. For ES, common

techniques are resampling, i.e. resample a solution till it

lies in the feasible domain, repair of solutions that project

unfeasible points onto the feasible domain (e.g. [1]), penalty

methods where unfeasible solutions are penalised either by

a quantity that depends on the distance to the constraint

(e.g. [7] with adaptive penalty weights) (if this latter one

can be computed) or by the constraint value itself (e.g.

stochastic ranking [11]) or methods inspired from multi-

objective optimization (e.g. [10]).
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In this paper we focus on the resampling method and

study it on a simple constraint problem. More precisely,

we study a (1, λ)-ES optimizing a linear function with a

linear constraint and resampling any unfeasible solution until

a feasible solution is sampled. The linear function models

the situation where the current point is, relatively to the

step-size, far from the optimum and “solving” this function

means diverging. The linear constraint models being close to

the constraint relatively to the step-size and far from other

constraints. Due to the invariance of the algorithm to the

composition of the objective function by a strictly increasing

map, the linear function could be composed by a function

without derivative and with many discontinuities without any

impact on our analysis.

The problem we address was studied previously for differ-

ent step-size adaptation mechanisms: with constant step-size,

self-adaptation and cumulative step-size adaptation [2], [3].

The drawn conclusion is that when adapting the step-size

the (1, λ)-ES fails to diverge unless some requirements on

internal parameters of the algorithm are met. However, the

approach followed in the aforementioned studies relies on

finding simplified theoretical models to explain the behaviour

of the algorithm: typically those models arise by doing some

approximations (considering some random variables equal to

their expected value, ...) and assuming some mathematical

properties like the existence of stationary distributions of

underlying Markov chains.

In contrast, our motivation is to study the real–in the

sense not simplified–algorithm and prove rigorously different

mathematical properties of the algorithm allowing to deduce

the exact behaviour of the algorithm, as well as to provide

tools and methodology for such studies. Our theoretical

studies need to be complemented by simulations of the con-

vergence/divergence rates. The mathematical properties that

we derive show that these numerical simulations converge

fast.

As for the step-size adaptation mechanism, our aim is

to study the cumulative step-size adaptation (CSA), default

step-size mechanism for the CMA-ES algorithm [8]. The

mathematical object to study for this purpose is a discrete

time, continuous state space Markov chain that is defined

as the couple: evolution path and normalized distance to the

constraint. More precisely stability properties like irreducibil-

ity, existence of a stationary distribution of this Markov chain

need to be studied to deduce the geometric divergence of the

CSA and have a rigorous mathematical framework to perform

Monte Carlo simulations allowing to study the influence of

different parameters of the algorithm. We start however by



illustrating in details the methodology on the simpler case

where the step-size is constant. We deduce in this case the

divergence at a constant speed. We keep–due to some space

limitation–the details of the generalization to the CSA study

for a future publication and give only a sketch of the results.

This paper is organized as follows. In Section II we

define the (1, λ)-ES using resampling and the problem. In

Section III we provide some preliminary derivations on

the distributions that come into play for the analysis. In

Section IV we analyze the constant step-size case: exhibit the

Markov chain, prove its stability and deduce the divergence

of the (1, λ)-ES on the constraint problem. In Section V

we sketch out our results when the step-size is adapted

using cumulative step-size adaptation. Finally we discuss our

results and our methodology in Section VI.

Notations

Throughout this article, we denote by ϕ the density

function of the standard multivariate normal distribution,

and Φ the cumulative distribution function of a standard

univariate normal distribution. The standard (unidimensional)

normal distribution is denoted N (0, 1), the (n-dimensional)

multivariate normal distribution with covariance matrix iden-

tity is denoted N (0, Idn) and the ith order statistic of λ
i.i.d. standard normal random variables is denoted Ni:λ.

The uniform distribution on an interval I is denoted UI .

We denote µLeb the Lebesgue measure. The set of natural

numbers (including 0) is denoted N, and the set of real

numbers R. We denote R+ the set {x ∈ R|x ≥ 0}, and

for A ⊂ R
n, the set A∗ denotes A\{0} and 1A denotes

the indicator function of A. For two vectors x ∈ R
n and

y ∈ R
n, we denote [x]i the ith-coordinate of x, and x.y the

scalar product of x and y. Take (a, b) ∈ N
2 with a ≥ b, we

denote [a..b] the interval of integers between a and b. For

a topological set X , B(X ) denotes the Borel algebra of X .

For X and Y two random vectors, we denote X
d
= Y if

X and Y are equal in distribution. For (Xt)t∈N a sequence

of random variables and X a random variable we denote

Xt
a.s.
→ X if Xt converges almost surely to X and Xt

P
→ X

if Xt converges in probability to X .

II. PROBLEM STATEMENT AND ALGORITHM DEFINITION

A. (1, λ)-ES with resampling

In this paper, we study the behaviour of a (1, λ)-Evolution

Strategy maximizing a function f : R
n → R, λ ≥ 2, n ≥

2, with a constraint defined by a function g : R
n → R

restricting the feasible space to Xfeasible = {x ∈ R
n|g(x) ≥

0}. To handle the constraint, the algorithm resamples any

unfeasible solution until a feasible solution is found.

From iteration t ∈ N, given the vector Xt ∈ R
n and step-

size σt ∈ R
∗
+, the algorithm generates λ new candidates:

Yi
t = Xt + σtN

i
t , (1)

with i ∈ [1..λ], and (Ni
t)i∈[1..λ] i.i.d. standard multivariate

normal random vectors. If a new sample Yi
t lies outside the

feasible domain, that is g(Yi
t) < 0, then it is resampled

Fig. 1. Linear function with a linear constraint, in the plane generated
by ∇f and n, a normal vector to the constraint hyperplane with angle
θ ∈ (0, π/2) with ∇f . The point x is at distance g(x) from the constraint.

until it lies within the feasible domain. The first feasible

ith candidate solution is denoted Ỹi
t and the realization of

the multivariate normal distribution giving Ỹi
t is Ñi

t, which

is called a feasible step. Note that Ñi
t is not distributed

as a multivariate normal distribution, further details on its

distribution are given later on.

We define ⋆ = argmax
i∈[1..λ]

f(Ỹi
t) as the index realizing the

maximum objective function, and call Ñ⋆
t the selected step.

The vector Xt is then updated as the solution realizing the

maximum value of the objective function, i.e.

Xt+1 = Ỹ⋆
t = Xt + σtÑ

⋆
t . (2)

The step-size and other internal parameters are then

adapted. We denote for the moment in a non specific manner

the adaptation as

σt+1 = σtξt (3)

where ξt is a random variable whose distribution is a function

of the selected steps (Ñ⋆
i )i≤t. We will define later on specific

rules for this adaptation.

B. Linear fitness function with linear constraint

In this paper, we consider the case where f , the function

that we optimize, and g, the constraint, are linear functions.

W.l.o.g., we assume that ‖∇f‖ = ‖∇g‖ = 1. We denote

n := −∇g a vector normal to the constraint hyperplane.

We choose an orthonormal Euclidean coordinate system with

basis (ei)i∈[1..n] with its origin located on the constraint

hyperplane where e1 is equal to the gradient ∇f , hence

f(x) = [x]1 (4)

and the vector e2 lives in the plane generated by ∇f and

n and is such that the angle between e2 and n is positive.

We define θ the angle between ∇f and n, and restrict our

study to θ ∈ (0, π/2). The function g can be seen as a signed

distance to the linear constraint as

g(x) = x.∇g = −x.n = −[x]1 cos θ − [x]2 sin θ . (5)

A point is feasible if and only if g(x) ≥ 0 (see Figure 1).

Overall the problem reads

maximize f(x) = [x]1 subject to

g(x) = −[x]1 cos θ − [x]2 sin θ ≥ 0 .
(6)



Although Ñi
t and Ñ⋆

t are in R
n, due to the choice of

the coordinate system and the independence of the sequence

([Ni
t]k)k∈[1..n], only the two first coordinates of these vectors

are affected by the resampling implied by g and the selection

according to f . Therefore [Ñ⋆
t ]k ∼ N (0, 1) for k ∈ [3..n].

With an abuse of notations, the vector Ñi
t will denote

the 2-dimensional vector ([Ñi
t]1, [Ñ

i
t]2), likewise Ñ⋆

t will

also denote the 2-dimensional vector ([Ñ⋆
t ]1, [Ñ

⋆
t ]2), and

n will denote the 2-dimensional vector (cos θ, sin θ). The

coordinate system will also be used as (e1, e2) only.

Following [2], [3], [4], we denote the normalized signed

distance to the constraint as δt, that is

δt =
g(Xt)

σt
. (7)

We initialize the algorithm by choosing X0 = −n and

σ0 = 1, which implies that δ0 = 1.

III. PRELIMINARY RESULTS AND DEFINITIONS

Throughout this section we derive the probability density

functions of the random vectors Ñi
t and Ñ⋆

t and give a

definition of Ñi
t and of Ñ⋆

t as a function of δt and of an

i.i.d. sequence of random vectors.

A. Feasible steps

The random vector Ñi
t, the ith feasible step, is distributed

as the standard multivariate normal distribution truncated by

the constraint, as stated in the following lemma.

Lemma 1: Let a (1, λ)-ES with resampling optimize a

function f under a constraint function g. If g is a linear form

determined by a vector n as in (5), then the distribution of the

feasible step Ñi
t only depends on the normalized distance to

the constraint δt and its density given that δt equals δ reads

pδ (x) =
ϕ(x)1R+

(δ − x.n)

Φ(δ)
. (8)

Proof: A solution Yi
t is feasible if and only if g(Yi

t) ≥
0, which is equivalent to −(Xt + σtN

i
t).n ≥ 0. Hence

dividing by σt, a solution is feasible if and only if δt =
−Xt.n/σt ≥ Ni

t.n. Since a standard multivariate normal

distribution is rotational invariant, Ni
t.n follows a standard

(unidimensional) normal distribution. Hence the probability

that a solution Yi
t or a step Ni

t is feasible is given by

Pr(N (0, 1) ≤ δt) = Φ (δt) .

Therefore the density probability function of the random

variable Ñi
t.n for δt = δ is x 7→ ϕ(x)1R+

(δ− x)/Φ(δ). For

any vector n⊥ orthogonal to n the random variable Ñi
t.n

⊥

was not affected by the resampling and is therefore still dis-

tributed as a standard (unidimensional) normal distribution.

With a change of variables using the fact that the standard

multivariate normal distribution is rotational invariant we

obtain the joint distribution of Eq. (8).

Then the marginal density function p1,δ of [Ñi
t]1 can be

computed by integrating Eq. (8) over [x]2 and reads

p1,δ (x) = ϕ (x)
Φ
(
δ−x cos θ

sin θ

)

Φ (δ)
, (9)

(see [2, Eq. 4] for details) and we denote F1,δ its cumulative

distribution function.

It will be important in the sequel to be able to express

the vector Ñi
t as a function of δt and of a finite number

of random samples. Hence we give an alternative way to

sample Ñi
t rather than the resampling technique that involves

an unbounded number of samples.

Lemma 2: Let a (1, λ)-ES with resampling optimize a

function f under a constraint function g, where g is a linear

form determined by a vector n as in (5). Let the feasible step

Ñi
t be the random vector described in Lemma 1 and Q be

the 2-dimensional rotation matrix of angle θ. Then

Ñi
t

d
= F̃−1

δt
(U i

t )n+N i
tn

⊥ = Q−1

(
F̃−1
δt

(U i
t )

N i
t

)

(10)

where F̃−1
δt

denotes the generalized inverse of the cumu-

lative distribution of Ñi
t.n

1, U i
t ∼ U[0,1], N i

t ∼ N (0, 1)
with (U i

t )i∈[1..λ],t∈N i.i.d. and (N i
t )i∈[1..λ],t∈N i.i.d. random

variables.

Proof: We define a new coordinate system (n,n⊥) (see

Figure 1). It is the image of (e1, e2) by Q. In the new

basis (n,n⊥), only the coordinate along n is affected by

the resampling. Hence the random variable Ñi
t.n follows

a truncated normal distribution with cumulative distribution

function F̃δt equal to min(1,Φ(x)/Φ(δt)), while the random

variable Ñi
t.n

⊥ follows an independent standard normal

distribution, hence Ñi
t

d
= (Ñi

t.n)n + N i
tn

⊥. Using the fact

that if a random variable has a cumulative distribution F ,

then for F−1 the generalized inverse of F , F−1(U) with

U ∼ U[0,1] has the same distribution as this random variable,

we get that F̃−1
δt

(U i
t )

d
= Ñi

t.n, so we obtain Eq. (10).

We now extend our study to the selected step Ñ⋆
t .

B. Selected step

The selected step Ñ⋆
t is chosen among the different

feasible steps (Ñi
t)i∈[1..λ] to maximize the function f , and

has the density described in the following lemma.

Lemma 3: Let a (1, λ)-ES with resampling optimize the

problem (6). Then the distribution of the selected step Ñ⋆
t

only depends on the normalized distance to the constraint δt
and its density given that δt equals δ reads

p⋆δ(x)=λpδ (x)F1,δ([x]1)
λ−1 , (11)

=λ
ϕ(x)1R+

(δ − x.n)

Φ(δ)

(
∫ [x]1

−∞

ϕ(u)
Φ( δ−u cos θ

sin θ
)

Φ(δ)
du

)λ−1

where pδ is the density of Ñi
t given that δt = δ given

in Eq. (8) and F1,δ the cumulative distribution function of

[Ñi
t]1 whose density is given in Eq. (9) and n the vector

(cos θ, sin θ).

Proof: The function f being linear, the rank-

ings on (Ñi
t)i∈[1..λ] corresponds to the order statistic on

1The generalized inverse of F̃δ is F̃−1

δt
(y) := infx∈R{F̃δt

(x) ≥ y}.



([Ñi
t]1)i∈[1..λ]. If we look at the joint cumulative distribution

F ⋆
δ of Ñ⋆

t

F ⋆
δ (x, y) = Pr

(

[Ñ⋆
t ]1 ≤ x, [Ñ⋆

t ]2 ≤ y
)

=

λ∑

i=1

Pr

(

Ñi
t ≤

(
x
y

)

, [Ñj
t ]1 < [Ñi

t]1 for j 6= i

)

by summing disjoints events. The vectors (Ñi
t)i∈[1..λ] being

independent and identically distributed

F ⋆
δ (x, y) = λPr

(

Ñ1
t ≤

(
x
y

)

, [Ñj
t ]1 < [Ñ1

t ]1 for j 6= 1

)

= λ

∫ x

−∞

∫ y

−∞

pδ(u, v)

λ∏

j=2

Pr([Ñj
t ]1 < u)dvdu

= λ

∫ x

−∞

∫ y

−∞

pδ(u, v)F1,δ(u)
λ−1dvdu .

Deriving F ⋆
δ on x and y yields the density of Ñ⋆

t of Eq. (11).

We may now obtain the marginal of [Ñ⋆
t ]1 and [Ñ⋆

t ]2.

Corollary 1: Let a (1, λ)-ES with resampling optimize the

problem (6). Then the marginal distribution of [Ñ⋆
t ]1 only

depends of δt and its density given that δt equals δ reads

p⋆1,δ (x) = λp1,δ(x)F1,δ(x)
λ−1 , (12)

= λϕ(x)
Φ
(
δ−x cos θ

sin θ

)

Φ(δ)
F1,δ(x)

λ−1 ,

and the same holds for [Ñ⋆
t ]2 whose marginal density reads

p⋆2,δ (y) = λ
ϕ(y)

Φ(δ)

∫ δ−y sin θ
cos θ

−∞

ϕ(u)F1,δ(u)
λ−1du . (13)

Proof: Integrating Eq. (11) directly yields Eq. (12).

The conditional density function of [Ñ⋆
t ]2 is

p⋆2,δ(y|[Ñ
⋆
t ]1 = x) =

p⋆δ((x, y))

p⋆1,δ(x)
.

As p⋆2,δ(y) =
∫

R
p⋆2,δ(y|[Ñ

⋆
t ]1 = x)p⋆1,δ(x)dx, using the

previous equation with Eq. (11) gives that p⋆2,δ(y) =
∫

R
λpδ((x, y))F1,δ(x)

λ−1dx, which with Eq. (8) gives

p⋆2,δ(y) = λ
ϕ(y)

Φ(δ)

∫

R

ϕ(x)1R+

(

δ −

(
x
y

)

.n

)

F1,δ(x)
λ−1dx.

The condition δ − x cos θ − y sin θ ≥ 0 is equivalent to x ≤
(δ − y sin θ)/ cos θ, hence Eq. (13) holds.

We will need in the next sections an expression of the

random vector Ñ⋆
t as a function of δt and a random vector

composed of a finite number of i.i.d. random variables. To

do so, using notations of Lemma 2, we define the function

G̃ : R+ × ([0, 1]× R) → R
2 as

G̃(δ,w) = Q−1

(

F̃−1
δ ([w]1)
[w]2

)

. (14)

According to Lemma 2, given that U ∼ U[0,1] and N ∼
N (0, 1), (F̃−1

δ (U),N ) (resp. G(δ, (U,N ))) is distributed as

the resampled step Ñi
t in the coordinate system (n,n⊥)

(resp. (e1, e2)). Finally, let (wi)i∈[1..λ] ∈ ([0, 1]× R)λ and

let G : R+ × ([0, 1]× R)λ → R
2 be the function defined as

G(δ, (wi)i∈[1..λ]) = argmax
N∈{G̃(δ,wi)|i∈[1..λ]}

f(N) . (15)

As shown in the following proposition, given that Wi
t ∼

(U[0,1],N (0, 1)) and Wt = (Wi
t)i∈[1..λ], the function

G(δ,Wt) is distributed as the selected step Ñ⋆
t .

Proposition 1: Let a (1, λ)-ES with resampling optimize

the problem defined in Eq. (6), and let (Wi
t)i∈[1..λ],t∈N

be an i.i.d. sequence of random vectors with Wi
t ∼

(U[0,1],N (0, 1)), and Wt = (Wi
t)i∈[1..λ]. Then

Ñ⋆
t

d
= G(δt,Wt) , (16)

where the function G is defined in Eq. (15).

Proof: Since f is a linear function f(Ỹi
t) =

f(Xt) + σtf(Ñ
i
t), so f(Ỹi

t) ≤ f(Ỹj
t ) is equivalent

to f(Ñi
t) ≤ f(Ñj

t ). Hence ⋆ = argmaxi∈[1..λ] f(Ñ
i
t)

and therefore Ñ⋆
t = argmax

N∈{Ñi
t|i∈[1..λ]} f(N). From

Lemma 2 and Eq. (14), Ñi
t

d
= G̃(δt,Wi

t), so Ñ⋆
t

d
=

argmax
N∈{G̃(δt,Wi

t)|i∈[1..λ]} f(N), which from (15) is

G(δt,Wt).

IV. CONSTANT STEP-SIZE CASE

We illustrate in this section our methodology analysis on

the simple case where the step-size is constantly equal to

σ and prove that then (Xt)t∈N diverges almost surely at

constant speed (Theorem 1). The analysis of the CSA will

then be a generalisation of the results presented here, with a

few more technical results to derive.

As suggested in [2], the sequence (δt)t∈N
plays a central

role for the analysis, and we will show that it admits a

stationary measure. We first prove that this sequence is an

homogeneous Markov chain.

Proposition 2: Consider the (1, λ)-ES with resampling

and with constant step-size σ optimizing the constraint

problem (6). Then the sequence δt = g(Xt)/σ is an

homogeneous Markov chain on R+ and

δt+1 = δt − Ñ⋆
t .n

d
= δt − G(δt,Wt).n , (17)

where G is the function defined in (15) and (Wt)t∈N =
(Wi

t)i∈[1..λ],t∈N is an i.i.d. sequence with Wi
t ∼

(U[0,1],N (0, 1)) for all (i, t) ∈ [1..λ]× N.

Proof: It follows from the definition of δt that δt+1 =
g(Xt+1)
σt+1

=
−(Xt+σÑ⋆

t ).n
σ

= δt − Ñ⋆
t .n, and in Proposition 1

we state that Ñ⋆
t

d
= G(δt,Wt). Since δt+1 has the same

distribution as a time independent function of δt and of Wt

where (Wt)t∈N are i.i.d., it is an homogeneous Markov chain.

The Markov Chain (δt)t∈N
comes into play for investigat-

ing the divergence of f(Xt) = [Xt]1. Indeed, we can express



[Xt−X0]1
t

in the following manner:

[Xt −X0]1
t

=
1

t

t−1∑

k=0

[Xk+1]1 − [Xk]1

=
σ

t

t−1∑

k=0

[Ñ⋆
k]1

d
=

σ

t

t−1∑

k=0

[G(δk,Wk)]1 . (18)

The latter term suggests the use of a Law of Large Numbers

(LLN) to prove the convergence of
[Xt−X0]1

t
which will in

turn imply–if the limit is positive–the divergence of f(Xt) at

a constant rate. Sufficient conditions on a Markov chain to be

able to apply the LLN include the existence of an invariant

probability measure π. The limit term is then expressed as an

expectation over the stationary distribution. More precisely,

assume the LLN can be applied, the following limit will hold

lim
t→∞

[Xt −X0]1
t

= σ

∫

R+

E ([G(δ,W)]1)π(dδ) (19)

= lim
t→∞

Eδ0∼µ ([Xt+1]1 − [Xt]1) , (20)

with µ any initial distribution. The latter term corresponds to

the limit of the progress rate (see [2, Eq. 2]). The invariant

measure π is also underlying the study carried out in [2,

Section 4] where more precisely it is stated: “Assuming for

now that the mutation strength σ is held constant, when

the algorithm is iterated, the distribution of δ-values tends

to a stationary limit distribution.”. We will now provide a

formal proof that indeed (δt)t∈N
admits a stationary limit

distribution π, as well as prove some other useful properties

that will allow us in the end to conclude to the divergence

of (f(Xt))t∈N.

A. Study of the stability of (δt)t∈N

We study in this section the stability of (δt)t∈N
. We first

derive its transition kernel P (δ, A) := Pr(δt+1 ∈ A|δt = δ)
for all δ ∈ R+ and A ∈ B(R+). Since Pr(δt+1 ∈ A|δt =
δ) = Pr(δt − Ñ⋆

t .n ∈ A|δt = δ) ,

P (δ, A) =

∫

R2

1A (δ − u.n) p⋆δ (u) du (21)

where p⋆δ is the density of Ñ⋆
t given in (11). For t ∈ N

∗, the

t-step transition kernel P t is defined by P t(δ, A) := Pr(δt ∈
A|δ0 = δ).

From the transition kernel, we will now derive the first

properties on the Markov chain (δt)t∈N
. First of all we

investigate the so-called ψ-irreducible property.

A Markov chain (δt)t∈N on a state space R+ is ψ-

irreducible if there exists a non-trivial measure ψ such that

for all set A ∈ B(R+) with ψ(A) > 0 and for all δ ∈ R+,

there exists t ∈ N
∗ such that P t(δ, A) > 0. We denote

B+(R+) the set of Borel sets of R+ with strictly positive

ψ-measure.

We also need the notion of small sets: a set C ∈ B(R+)
is called a small set if there exists m ∈ N

∗ and a non trivial

measure νm such that for all set A ∈ B(R+) and all δ ∈ C

Pm(δ, A) ≥ νm(A) . (22)

If there exists C a ν1-small set such that ν1(C) > 0 then the

Markov chain is said strongly aperiodic.

Proposition 3: Consider a (1, λ)-ES with resampling and

with constant step-size optimizing the constraint problem (6)

and let (δt)t∈N
be the Markov chain exhibited in (17). Then

(δt)t∈N
is µLeb-irreducible, strongly aperiodic, and compact

sets are small sets.

Proof: Using Eq. (21) and Eq. (11) the transition kernel

can be written

P (δ, A)=λ

∫

R2

1A(δ−

(
x
y

)

.n)
ϕ(x)ϕ(y)

Φ(δ)
F1,δ(x)

λ−1dydx .

We remove δ from the indicator function by a substitution

of variables u = δ − x cos θ − y sin θ, and v = x sin θ −
y cos θ. As this substitution is the composition of a rotation

and a translation the determinant of its Jacobian matrix

is 1. We denote hδ : (u, v) 7→ (δ − u) cos θ + v sin θ,

h⊥δ : (u, v) 7→ (δ − u) sin θ − v cos θ and g(δ, u, v) 7→
λϕ(hδ(u, v))ϕ(h

⊥
δ (u, v))/Φ(δ)F1,δ(hδ(u, v))

λ−1. Then x =
hδ(u, v), y = h⊥δ (u, v) and

P (δ, A) =

∫

R

∫

R

1A(u)g(δ, u, v)dvdu . (23)

For all δ, u, v the function g(δ, u, v) is strictly positive hence

for all A with µLeb(A) > 0, P (δ, A) > 0. Hence (δt)t∈N
is

irreducible with respect to the Lebesgue measure.

In addition, the function (δ, u, v) 7→ g(δ, u, v) is con-

tinuous as the composition of continuous functions (the

continuity of δ 7→ F1,δ(x) for all x coming from the

dominated convergence theorem). Given a compact C we

hence know that there exists gC > 0 such that for all

(δ, u, v) ∈ C × [0, 1]2, g(δ, u, v) ≥ gC > 0. Hence for all

δ ∈ C,

P (δ, A) ≥ gCµLeb(A ∩ [0, 1])
︸ ︷︷ ︸

:=νC(A)

.

The measure νC being non-trivial, the previous equation

shows that compact sets are small and that for C a compact

such that µLeb(C ∩ [0, 1]) > 0, we have νC(C) > 0 hence

the chain is strongly aperiodic.

The application of the LLN for a ψ-irreducible Markov

chain (δt)t∈N on a state space R+ requires the existence of

an invariant measure π, that is satisfying for all A ∈ B(R+)

π(A) =

∫

R+

P (δ, A)π(dδ) . (24)

If a Markov chain admits an invariant probability measure

then the Markov chain is called positive.

A typical assumption to apply the LLN is positivity and

Harris-recurrence. A ψ-irreducible chain (δt)t∈N on a state

space R+ is Harris-recurrent if for all set A ∈ B+(R+) and

for all δ ∈ R+, Pr(ηA = ∞|δ0 = δ) = 1 where ηA is the

occupation time of A, i.e. ηA =
∑∞

t=1 1A(δt). We will show

that the Markov chain (δt)t∈N
is positive and Harris-recurrent

by using so-called Foster-Lyapunov drift conditions: define

the drift operator for a positive function V as

∆V (δ) = E[V (δt+1)|δt = δ]− V (δ) .



Drift conditions translate that outside a small set, the drift

operator is negative. We will show a drift condition for V-

geometric ergodicity where given a function f ≥ 1, a positive

and Harris-recurrent chain (δt)t∈N with invariant measure π
is called f -geometrically ergodic if π(f) < ∞ and there

exists rf > 1 such that

∑

t∈N

rtf‖P
t(δ, ·)− π‖f <∞ , ∀δ ∈ R+ , (25)

where for ν a signed measure ‖ν‖f denotes

supg:|g|≤f |
∫

R+
g(x)ν(dx)|.

To prove V -geometric ergodicity, we will prove that there

exists a small set C, constants b ∈ R, ǫ ∈ R
∗
+ and a function

V ≥ 1 finite for at least some δ0 ∈ R+ such that for all

δ ∈ R+

∆V (δ) ≤ −ǫV (δ) + b1C(δ) . (26)

If the Markov chain (δt)t∈N
is ψ-irreducible and aperiodic,

this drift condition implies that the chain is V -geometrically

ergodic [9, Theorem 15.0.1]2 as well as positive and Harris-

recurrent3.

Because compacts are small sets and drift conditions

investigate the negativity outside a small set, we need to study

the chain for δ large. The following lemma is a technical

lemma studying the limit of E(exp(G(δ,W).n)) for δ to

infinity.

Lemma 4: Consider the (1, λ)-ES with resampling op-

timizing the constraint problem (6), and let G be the

function defined in (15). We denote K and K̄ the ran-

dom variables exp(G(δ,W).(a, b)) and exp(a|[G(δ,W)]1|+
b|[G(δ,W)]2|). For W ∼ (U[0,1],N (0, 1))λ and any (a, b) ∈
R

2 limδ→+∞ E(K) = E(exp(aNλ:λ))E(exp(bN (0, 1))) <
∞ and limδ→+∞ E(K̄) <∞
For the proof see the appendix. We are now ready to prove

a drift condition for geometric ergodicity.

Proposition 4: Consider a (1, λ)-ES with resampling and

with constant step-size optimizing the constraint problem

(6) and let (δt)t∈N
be the Markov chain exhibited in (17).

The Markov chain (δt)t∈N
is V -geometrically ergodic with

V : δ 7→ exp(αδ) for α > 0 small enough, and is Harris-

recurrent and positive with invariant probability measure π.

Proof: Take the function V : δ 7→ exp(αδ)
then ∆V (δ) = E (exp (α (δ − G(δ,W).n))) − exp (αδ),
∆V
V

(δ) = E (exp (−αG(δ,W).n)) − 1. With Lemma 4 we

obtain lim
δ→+∞

E (exp (−αG(δ,W).n)) =

E (exp(−αNλ:λ cos θ))E(exp(−αN (0, 1) sin θ)) < ∞ .
As the right hand side of the previous equation is finite we

can invert integral with series with Fubini’s theorem, so with

Taylor series the limit equals to

(
∑

i∈N

(−α cos θ)
i
E
(
N i

λ:λ

)

i!

)(
∑

i∈N

(−α sin θ)
i
E
(
N (0, 1)i

)

i!

)

,

2The condition π(V ) < ∞ is given by [9, Theorem 14.0.1].
3The function V of (26) is unbounded off petite sets [9, Lemma 15.2.2],

hence with [9, Theorem 9.1.8] the Markov chain is Harris-recurrent.

which in turns yields

lim
δ→+∞

∆V

V
(δ) =(1− αE(Nλ:λ) cos θ + o(α)) (1 +o(α))−1

= −αE(Nλ:λ) cos θ + o(α) .

Since for λ ≥ 2, E(Nλ:λ) > 0, for α > 0 and small enough

we get limδ→+∞
∆V
V

(δ) < −ǫ < 0. Hence there exists ǫ >
0, M > 0 and b ∈ R such that

∆V (δ) ≤ −ǫV (δ) + b1[0,M ](δ) .

According to Proposition 3, [0,M ] is a small set, hence

it is petite [9, Proposition 5.5.3]. Furthermore (δt)t∈N
is a

ψ-irreducible aperiodic Markov chain so (δt)t∈N
satisfies

the conditions of Theorem 15.0.1 from [9], which with

Lemma 15.2.2, Theorem 9.1.8 and Theorem 14.0.1 of [9]

proves the proposition.

We now proved rigorously the existence (and unicity) of

an invariant measure π for the Markov chain (δt)t∈N
, which

provides the so-called steady state behaviour in [2, Section

4]. As the Markov chain (δt)t∈N
is positive and Harris-

recurrent we may now apply a Law of Large Numbers [9,

Theorem 17.1.7] in Eq (18) to obtain the divergence of f(Xt)
and an exact expression of the divergence rate.

Theorem 1: Consider a (1, λ)-ES with resampling and

with constant step-size optimizing the constraint problem

(6) and let (δt)t∈N
be the Markov chain exhibited in (17).

The sequence ([Xt]1)t∈N diverges in probability to +∞ at

constant speed, that is

[Xt −X0]1
t

P
−→

t→+∞
σEπ×µW

([G (δ,W)]1) > 0 , (27)

with G defined in (15) and W = (Wi)i∈[1..λ] where

(Wi)i∈[1..λ] is an i.i.d. sequence such that Wi ∼
(U[0,1],N (0, 1)) and µW is the probability measure of W .

Proof: From Proposition 4 the Markov chain (δt)t∈N

is Harris-recurrent and positive, and since (Wt)t∈N is i.i.d.,

the chain (δt,Wt) is also Harris-recurrent and positive with

invariant probability measure π × µW , so to apply the Law

of Large Numbers [9, Theorem 17.0.1] to [G]1 we only need

[G]1 to be π × µW -integrable.

With Fubini-Tonelli’s theorem Eπ×µW
(|[G(δ,W)]1|)

equals to Eπ(EµW
(|[G(δ,W)]1|)). As δ ≥ 0, we

have Φ(δ) ≥ Φ(0) = 1/2, and for all x ∈ R as

Φ(x) ≤ 1, F1,δ(x) ≤ 1 and ϕ(x) ≤ exp(−x2/2) with

Eq. (12) we obtain that |x|p⋆1,δ(x) ≤ 2λ|x| exp(−x2/2)
so the function x 7→ |x|p⋆1,δ(x) is integrable. Hence

for all δ ∈ R+, EµW
(|[G(δ,W)]1|) is finite. Using

the dominated convergence theorem, the function

δ 7→ F1,δ(x) is continuous, hence so is δ 7→ p⋆1,δ(x).
From (12) |x|p⋆1,δ(x) ≤ 2λ|x|ϕ(x), which is integrable,

so the dominated convergence theorem implies that

the function δ 7→ EµW
(|[G(δ,W ]1|) is continuous.

Finally, using Lemma 4 with Jensen’s inequality shows

that limδ→+∞ EµW
(|[G(δ,W)]1|) is finite. Therefore

the function δ 7→ EµW
(|[G(δ,W ]1|) is bounded by

a constant M ∈ R+. As π is a probability measure



Eπ(EµW
(|[G(δ,W)]1|)) ≤ M < ∞, meaning [G]1 is

π × µW -integrable. Hence we may apply the LLN on

Eq. (18)

σ

t

t−1∑

k=0

[G(δk,Wk)]1
a.s.
−→

t→+∞
σEπ×µW

([G(δ,W)]1) <∞ .

The equality in distribution in (18) allows us to deduce the

convergence in probability of the left hand side of (18) to

the right hand side of the previous equation.

As the measure π is an invariant measure for the Markov

chain (δt)t∈N
, using (17), Eπ×µW

(δ) = Eπ×µW
(δ −

G(δ,W).n), hence Eπ×µW
(G(δ,W).n) = 0 and thus

Eπ×µW
([G(δ,W)]1) = − tan θEπ×µW

([G(δ,W)]2) .

We see from Eq. (13) that for y > 0, p⋆2,δ(y) <
p⋆2,δ(−y) hence the expected value Eπ×µW

([G(δ,W)]2) is

strictly negative. With the previous equation it implies that

Eπ×µW
([G(δ,W)]1) is strictly positive.

We showed rigorously the divergence of [Xt]1 and gave

an exact expression of the divergence rate, which is the

limit of the progress rate defined in [2, Eq. (2)]. The fact

that the chain (δt)t∈N
is V -geometrically ergodic gives

that
∑

t r
t
V ‖P

t(δ, ·) − π‖V < ∞. This implies that the

distribution π can be simulated efficiently by a Monte

Carlo simulation allowing to have precise estimations of the

divergence rate of [Xt]1. Assuming a CLT could be applied,

confidence intervals on the Monte Carlo simulations could

also be obtained.

A Monte Carlo simulation of the right hand side of

Eq. (27) for 106 time steps gives the progress rate ϕ⋆ =
E([Xt+1−Xt]1), which once normalized by σ and λ yields

Fig. 2. We normalize per λ as in evolution strategies the cost

of the algorithm is assumed to be the number of f -calls. We

see that for small values of θ, the normalized serial progress

rate assumes roughly ϕ⋆/λ ≈ θ2. Only for larger constraint

angles the serial progress rate depends on λ where smaller

λ are preferable.

Fig. 3 is obtained through simulations of the Markov

chain (δt)t∈N
defined in Eq. (17) for 106 time steps where

the values of (δt)t∈N
are averaged over time. We see that

when θ → π/2 then Eπ(δt) → +∞ since the selection

does not attract Xt towards the constraint anymore, while

the resampling still repels Xt from the constraint. With a

larger population size the algorithm is closer to the constraint,

as better samples are more likely to be found close to the

constraint.

V. CUMULATIVE STEP-SIZE ADAPTATION CASE

We generalise the previous results to the cumulative step-

size adaptation mechanism. However due to space limitation

we only sketch the results that we plan to present in details

in an extended version of the paper. CSA introduces a new

variable, pt, called the evolution path. It is a weighted

recombination of the previous selected steps, where the

weight of Ñ⋆
k is proportional to (1− c)t−1−k with c ∈ (0, 1]
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Fig. 2. Normalized progress rate ϕ⋆ = E([Ñ⋆
t
]1) divided by λ for

the (1, λ)-ES with constant step-size and resampling, plotted against the
constraint angle θ, for λ ∈ {5, 10, 20}.
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Fig. 3. Average normalized distance δ from the constraint for the (1, λ)-ES
with constant step-size and resampling plotted against the constraint angle
θ for λ ∈ {5, 10, 20}.

being the cumulation parameter. For c = 1 the algorithm has

”no memory” and the evolution path pt is Ñ⋆
t−1. The step-

size is adapted depending on the norm of pt [8]. The Markov

chain to study in this case is (δt,pt)t∈N, except when c = 1
where it is (δt)t∈N

.

As in Section IV if the Markov chain is ψ-irreducible,

aperiodic, and compact sets are small, then for c = 1
the Markov chain (δt)t∈N

is positive, Harris recurrent and

V -geometrically ergodic, and a LLN can be applied on

ln(σt/σ0) to obtain that

1

t
ln

(
σt
σ0

)

a.s.
−→
t→∞

(
Eπc×µW

(
‖G (δ,W) ‖2

)
− 2
)

2dσn
, (28)

with πc the stationary measure of (δt)t∈N
, G defined in (15),

W = (Wi)i∈[1..λ] where (Wi)i∈[1..λ] is an i.i.d. sequence

such that Wi ∼ (U[0,1],N (0, 1)) and µW the probability

measure of W . So the step-size converges (resp. diverges)

exponentially fast when the right hand side of Eq. (28) is

strictly negative (resp. strictly positive).



VI. DISCUSSION

We investigated the (1, λ)-ES with constant step-size opti-

mizing a linear function under a linear constraint handled by

resampling unfeasible solutions. We prove the stability (for-

mally V-geometric ergodicity) of the Markov chain (δt)t∈N

defined as the normalised distance to the constraint, which

was pressumed in [2]. This property implies the divergence

of the algorithm at a constant speed (see Theorem 1).

In addition, it ensures (fast) convergence of Monte Carlo

simulations of the divergence rate, justifying their use.

We believe that with the same approach, the CSA can

be analysed. Simulations suggest that geometric divergence

occurs for a small enough cumulation parameter, c, or large

enough population size, λ. However, smaller values of the

constraint angle seem to increase the difficulty of the problem

arbitrarily, i.e. no given values for c and λ solve the problem

for every θ ∈ (0, π/2).
Using a different covariance matrix to generate new sam-

ples can be interpreted as a change of the constraint angle.

Therefore a correct adaptation of the covariance matrix will

render the problem arbitrarily close to the one with θ = π/2.

The unconstrained linear function case has been shown to be

solved by a (1, λ)-ES with cumulative step-size adaptation

for a population size larger than 3, regardless of other internal

parameters [5]. We believe this is a strong argument for

using covariance matrix adaptation with ES when dealing

with constraints, as pure step-size adaptation has been shown

to be liable to fail on even a very basic problem.

This work provides a methodology that can be applied to

many ES variants. It demonstrates that a rigorous analysis

of the constrained problem can be achieved. It relies on

the theory of Markov chains for a continuous state space

that once again proves to be a natural theoretical tool for

analysing ESs, complementing particularly well previous

studies [2], [3], [4].
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APPENDIX

Proof of Lemma 4. Proof: From Proposition 1 the

density probability function of G(δ,W) is p⋆δ , and from

Eq. (11)

p⋆δ

((
x
y

))

= λ

ϕ(x)ϕ(y)1R+

(

δ −

(
x
y

)

.n

)

Φ(δ)
F1,δ(x)

λ−1 .

From Eq. (9) p1,δ(x) = ϕ(x)Φ((δ − x cos θ)/ sin θ)/Φ(δ),
so as δ ≥ 0 we have 1 ≥ Φ(δ) ≥ Φ(0) = 1/2, hence

p1,δ(x) ≤ 2ϕ(x). So p1,δ(x) converges when δ → +∞ to

ϕ(x) while being bounded by 2ϕ(x) which is integrable.

Therefore we can apply Lebesgue’s dominated convergence

theorem: F1,δ converges to Φ when δ → +∞ and is finite.

For δ ∈ R+ and (x, y) ∈ R
2 let hδ,y(x) be

exp(ax)p⋆δ((x, y)). With Fubini-Tonelli’s theorem

E(exp(G(δ,W).(a, b))) =
∫

R

∫

R
exp(by)hδ,y(x)dxdy. For

δ → +∞, hδ,y(x) converges to exp(ax)λϕ(x)ϕ(y)Φ(x)λ−1

while being dominated by 2λ exp(ax)ϕ(x)ϕ(y),
which is integrable. Therefore by the dominated

convergence theorem and as the density of Nλ:λ is

x 7→ λϕ(x)Φ(x)λ−1 , when δ → +∞,
∫

R
hδ,y(x)dx

converges to ϕ(y)E(exp(aNλ:λ)) <∞.

So the function y 7→ exp(by)
∫

R
hδ,y(x)dx con-

verges to y 7→ exp(by)ϕ(y)E(exp(aNλ:λ)) while be-

ing dominated by y 7→ 2λϕ(y) exp(by)
∫

R
exp(ax)ϕ(x)dx

which is integrable. Therefore we may apply the dom-

inated convergence theorem: E(exp(G(δ,W).(a, b))) con-

verges to
∫

R
exp(by)ϕ(y)E(exp(aNλ:λ))dy which equals to

E(exp(aNλ:λ))E(exp(bN (0, 1))); and this quantity is finite.

The same reasoning gives that limδ→∞ E(K̄) <∞.


