
metaRNASeq: Differential meta-analysis of
RNA-seq data

Guillemette Marot, Florence Jaffrézic, Andrea Rau

Modified: April 16, 2013. Compiled: June 13, 2013

Abstract

This vignette illustrates the use of the metaRNASeq package to combine data
from multiple RNA-seq experiments. Based both on simulated and real publicly
available data, it also explains the way the p-value data provided in the package
have been obtained.

Contents

1 Introduction 1

2 Simulation study 2

3 Individual analyses of the two simulated data sets 3

4 Use of p-value combination techniques 5

5 Treatment of conflicts in differential expression 7

6 Session Info 9

1 Introduction

High-throughput sequencing (HTS) data, such as RNA-sequencing (RNA-seq) data, are
increasingly used to conduct differential analyses, in which gene-by-gene statistical tests
are performed in order to identify genes whose expression levels show systematic covari-
ation with a particular condition, such as a treatment or phenotype of interest. Due to
their large cost, however, only few biological replicates are often considered in each exper-
iment leading to a low detection power of differentially expressed genes. For this reason,
analyzing data arising from several experiments studying the same question can be a

1

useful way to increase detection power for the identification of differentially expressed
genes.

The metaRNASeq package implements two p-value combination techniques (inverse
normal and Fisher methods); see [3] for additional details. There are two fundamental
assumptions behind the use of these p-value combination procedures: first, that p-values
have been obtained the same way for each experiment (i.e., using the same model and
test); and second, that they follow a uniform distribution under the null hypothesis. In
this vignette, we illustrate these p-value combination techniques after obtaining p-values
for differential expression in each individual experiment using the DESeq Bioconductor
package [1]. Count data are simulated using the sim.function provided in the metaR-
NASeq package; see section 2 for additional detail.

2 Simulation study

To begin, we load the necessary packages and simulation parameters:

> library(metaRNASeq)

> library(DESeq)

> library(HTSFilter)

> data(param)

> dim(param)

[1] 26408 3

> data(dispFuncs)

These simulation parameters include the following information:

• param: Matrix of dimension (26408 × 3) containing mean expression in each of
two conditions (here, labeled “condition 1” and “condition 2”) and a logical vector
indicating the presence or absence of differential expression for each of 26,408 genes

• dispFuncs: List of length 2, where each list is a vector containing the two estimated
coefficients (α0 and α1) for the gamma-family generalized linear model (GLM) fit
by DESeq (version 1.8.3) describing the mean-dispersion relationship for each of
the two real datasets considered in [3]. These regressions represent the typical
relationship between mean expression values µ and dispersions α in each dataset,
where the coefficients α0 and α1 are found to parameterize the fit as α = α0+α1/µ.

These parameters were calculated on real data sets from two human melanoma cell
lines [5], corresponding to two different studies performed for the same cell line compar-
ison, with two biological replicates per cell line in the first and three per cell line in the
second. These data are presented in greater detail in [5] and [2], and are freely available
in the Supplementary Materials of the latter.

2

Once parameters are loaded, we simulate data. We use the set.seed function to
obtain reproducible results.

> set.seed(123)

> matsim <- sim.function(param = param, dispFuncs = dispFuncs)

> sim.conds <- colnames(matsim)

> rownames(matsim) <- paste("tag", 1:dim(matsim)[1],sep="")

> dim(matsim)

[1] 26408 16

The simulated matrix data contains 26, 408 genes and 4 replicates per condition
per study. It is possible to change the number of replicates in each study using either
the nrep argument or the classes argument. Using nrep simulates the same number
of replicates per condition per study. In order to simulate an unbalanced design, the
classes argument may be used. For example, setting

classes = list(c(1,2,1,1,2,1,1,2),c(1,1,1,2,2,2,2))

leads to 5 and 3 replicates in each condition for the first study, and 3 and 4 replicates
in each condition in the second.

3 Individual analyses of the two simulated data sets

Before performing a combination of p-values from each study, it is necessary to perform
a differential analysis of the individual studies (using the same method). In the following
example, we make use of the DESeq package to obtain p-values for differential analyses
of each study independently; however, we note that other differential analysis methods
(e.g., edgeR or baySeq) could be used prior to the meta analysis.

Genes with very low values of expression often lead to an enrichment of p-values close
to 1 as they take on discrete values; as such genes are unlikely to display evidence for
differential expression, it has been proposed to apply independent filtering to filter these
genes [4]. In addition, the application of such a filter typically removes those genes con-
tributing to a peak of p-values close to 1, leading to a distribution of p-values under the
null hypothesis more closely following a uniform distribution. As the proposed p-value
combination techniques rely on this assumption, it is thus necessary to independently
filter genes with very low read counts. For this purpose, we recommand the use of the
HTSFilter package, see [4] for more details; note that we apply the filter in HTSFilter to
each study individually after estimating library sizes and per-gene dispersion parameters.

Once the data are filtered, we use the DESeq package to perform differential analyses
of each of the two individual datasets. The following function resDESeq1study is a
wrapper of the main functions of the data filter in HTSFilter and differential analysis
in DESeq , selecting the appropriate columns in the simulated data set for each study.

3

The following two steps could be replaced by direct uses of the HTSFilter and DESeq
packages and concatenation of results in one list (see resDESeq.alt).

> resDESeq1study <- function(studyname, alldata, cond1totest="cond1",

+ cond2totest="cond2", fitType = "parametric") {

+ study <- alldata[,grep(studyname,colnames(alldata))]

+ studyconds <- gsub(studyname,"",colnames(study))

+ colnames(study) <- paste(studyconds,1:dim(study)[2],sep=".")

+ cds <- newCountDataSet(study, studyconds)

+ cds <- estimateSizeFactors(cds)

+ cds <- estimateDispersions(cds, method="pooled", fitType=fitType)

+ ## Filter using Jaccard index for each study

+ filter <- HTSFilter(cds, plot=FALSE)

+ cds.filter <- filter$filteredData

+ on.index <- which(filter$on == 1)

+ cat("# genes passing filter", studyname, ":", dim(cds.filter)[1], "\n")

+ res <- as.data.frame(matrix(NA, nrow = nrow(cds), ncol=ncol(cds)))

+ nbT <- nbinomTest(cds.filter, cond1totest, cond2totest)

+ colnames(res) <- colnames(nbT)

+ res[on.index,] <- nbT

+ res

+ }

The wrapper can be applied simultaneously to the two studies with the use of the
function lapply:

> studies <- c("study1", "study2")

> resDESeq <- lapply(studies,

+ FUN=function(x) resDESeq1study(x, alldata=matsim))

genes passing filter study1 : 14044

genes passing filter study2 : 13839

Note that resDESeq can be created directly from two or more DEseq results called
res.study1, res.study2, . . . :

> #alternative approach

> #resDESeq.alt <- list(res.study1,res.study2)

Since only p-values are necessary to perform meta-analysis, we keep them in lists
called rawpval for raw p-values and adjpval for p-values adjusted to correct for multiple
testing (e.g., to control the false discovery rate at 5% using the Benjamini-Hochberg
method).

4

Figure 1: Histograms of raw p-values for each of the individual differential analyses
performed using the DESeq package.

> rawpval <- lapply(resDESeq, FUN=function(res) res$pval)

> adjpval <- lapply(resDESeq, FUN=function(res) res$padj)

> DE <- mapply(adjpval, FUN=function(x) ifelse(x <= 0.05, 1, 0))

> colnames(DE)=paste("DE",studies,sep=".")

DE returns a matrix with 1 for genes identified as differentially expressed and 0
otherwise (one column per study). To confirm that the raw p-values under the null
hypothesis are roughly uniformly distributed, we may also inspect histograms of the raw
p-values from each of the individual differential analyses (see Figure 1):

> par(mfrow = c(1,2))

> hist(rawpval[[1]], breaks=100, col="grey", main="Study 1",

+ xlab="Raw p-values")

> hist(rawpval[[2]], breaks=100, col="grey", main="Study 2",

+ xlab="Raw p-values")

4 Use of p-value combination techniques

The code in this section may be used independently from the previous section if p-values
from each study have been obtained using the same differential analysis test between

5

Figure 2: (Left) Histogram of raw p-values obtained after a meta-analysis of all studies,
with p-value combination performed using the Fisher method. (Right) Histogram of
raw p-values obtained after a meta-analysis of all studies, with p-value combination
performed using the inverse normal method.

the different studies. Vectors of p-values must have the same length; rawpval is a
list (or data.frame) containing the vectors of raw p-values obtained from the individual
differential analyses of each study.

The p-value combination using the Fisher method may be performed with the fish-

ercomb function, and the subsequent p-values obtained from the meta-analysis may be
examined (Figure 2, left):

> fishcomb <- fishercomb(rawpval, BHth = 0.05)

> hist(fishcomb$rawpval, breaks=100, col="grey", main="Fisher method",

+ xlab = "Raw p-values (meta-analysis)")

The use of the inverse normal combination technique requires the choice of a weight
for each study. In this example, we choose nrep=8, since 8 replicates had been simulated
in each study. As before, we may examine a histogram of the subsequent p-values
obtained from the meta-analysis (Figure 2, right).

> invnormcomb <- invnorm(rawpval,nrep=c(8,8), BHth = 0.05)

> hist(invnormcomb$rawpval, breaks=100, col="grey",

+ main="Inverse normal method",

+ xlab = "Raw p-values (meta-analysis)")

Finally, we suggest summarizing the results of the individual differential analyses as
well as the differential meta-analysis (using the Fisher and inverse normal methods) in
a data.frame:

6

> DEresults <- data.frame(DE,

+ "DE.fishercomb"=ifelse(fishcomb$adjpval<=0.05,1,0),

+ "DE.invnorm"=ifelse(invnormcomb$adjpval<=0.05,1,0))

> head(DEresults)

DE.study1 DE.study2 DE.fishercomb DE.invnorm

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 1 1 1 1

5 NA NA NA NA

6 0 0 0 0

5 Treatment of conflicts in differential expression

As pointed out in [3], it is not possible to directly avoid conflicts between over- and
under- expressed genes in separate studies that appear in differential meta-analyses of
RNA-seq data. We thus advise checking that individual studies identify differential
expression in the same direction (i.e., if in one study, a gene is identified as differentially
over-expressed in condition 1 as compared to condition 2, it should not be identified as
under-expressed in condition 1 as compared to condition 2 in a second study). Genes
displaying contradictory differential expression in separate studies should be removed
from the list of genes identified as differentially expressed via meta-analysis.

We build a matrix FC gathering all fold changes from individual studies.

> FC1study <- function(studyname, alldata=matsim, cond1totest="cond1",

+ cond2totest="cond2") {

+ study <- alldata[,grep(studyname,colnames(alldata))]

+ studyconds <- gsub(studyname,"",colnames(study))

+ colnames(study) <- paste(studyconds,1:dim(study)[2],sep=".")

+ cds <- newCountDataSet(study, studyconds)

+ cds <- estimateSizeFactors(cds)

+ ## Calculate normalized base means using DESeq functions

+ bm1 <- getBaseMeansAndVariances(counts(cds[,which(studyconds=="cond1")]),

+ sizeFactors(cds)[which(studyconds=="cond1")])$baseMean

+ bm2 <- getBaseMeansAndVariances(counts(cds[,which(studyconds=="cond2")]),

+ sizeFactors(cds)[which(studyconds=="cond2")])$baseMean

+ FC <- log2(bm2 / bm1)

+ names(FC) <- rownames(study)

+ FC

+ }

> FC <- mapply(FC1study, studyname=c("study1", "study2"))

7

> sumsigns <- apply(sign(FC),1,sum)

> commonsgnFC <- ifelse(abs(sumsigns)==dim(FC)[2], sign(sumsigns),0)

The vector commonsgnFC will return a value of 1 if the gene has a positive log2 fold
change in all studies, -1 if the gene has a negative log2 fold change in all studies, and 0
if contradictory log2 fold changes are observed across studies (i.e., positive in one and
negative in the other). By examining the elements of commonsgnFC, it is thus possible
to identify genes displaying contradictory differential expression among studies.

> unionDE <- unique(c(fishcomb$DEindices,invnormcomb$DEindices))

> FC.selecDE <- data.frame(DEresults[unionDE,],FC[unionDE,],

+ signFC=commonsgnFC[unionDE], DE=param$DE[unionDE])

> keepDE <- FC.selecDE[which(abs(FC.selecDE$signFC)==1),]

> conflictDE <- FC.selecDE[which(FC.selecDE$signFC == 0),]

> dim(FC.selecDE)

[1] 1356 8

> dim(keepDE)

[1] 1183 8

> dim(conflictDE)

[1] 173 8

> head(keepDE)

DE.study1 DE.study2 DE.fishercomb DE.invnorm study1

4 1 1 1 1 1.3953474

11 1 1 1 1 -0.9995495

22 1 1 1 1 -1.1846661

36 1 1 1 1 -3.0703584

55 0 1 1 1 -0.4229661

59 1 1 1 1 1.1465223

study2 signFC DE

4 2.0827094 1 TRUE

11 -0.5666571 -1 TRUE

22 -0.9829683 -1 TRUE

36 -2.8604070 -1 TRUE

55 -1.0557700 -1 TRUE

59 1.3520322 1 TRUE

Note that out of the 173 conflicts, 147 represented genes that were simulated to be
truly differentially expressed.

> table(conflictDE$DE)

FALSE TRUE

26 147

8

6 Session Info

> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=French_France.1252

[2] LC_CTYPE=French_France.1252

[3] LC_MONETARY=French_France.1252

[4] LC_NUMERIC=C

[5] LC_TIME=French_France.1252

attached base packages:

[1] stats graphics grDevices utils datasets

[6] methods base

other attached packages:

[1] SweaveListingUtils_0.5.5 startupmsg_0.7.2

[3] HTSFilter_0.99.6 edgeR_3.0.6

[5] limma_3.14.3 DESeq_1.10.1

[7] lattice_0.20-10 locfit_1.5-8

[9] Biobase_2.18.0 BiocGenerics_0.4.0

[11] metaRNASeq_0.2

loaded via a namespace (and not attached):

[1] annotate_1.36.0 AnnotationDbi_1.20.3

[3] DBI_0.2-5 genefilter_1.40.0

[5] geneplotter_1.36.0 grid_2.15.2

[7] IRanges_1.16.4 parallel_2.15.2

[9] RColorBrewer_1.0-5 RSQLite_0.11.2

[11] splines_2.15.2 stats4_2.15.2

[13] survival_2.37-2 tools_2.15.2

[15] XML_3.95-0.1 xtable_1.7-0

References

[1] S. Anders and W. Huber. Differential expression analysis for sequence count data.
Genome Biology, 11(R106):1–28, 2010.

[2] M.-A. Dillies, A. Rau, J. Aubert, C. Hennequet-Antier, M. Jeanmougin, N. Servant,
C. Keime, G. Marot, D. Castel, J. Estelle, G. Guernec, B. Jagla, L. Jouneau, D. Laloë,

9

C. Le Gall, B. Schaëffer, S. Le Crom, and F. Jaffrézic. A comprehensive evaluation of
normalization methods for Illumina high-throughput RNA sequencing data analysis.
Briefings in Bioinformatics, 2012. doi: 10.1093/bib/bbs046.

[3] A. Rau, G. Marot, and F. Jaffrézic. Differential meta-analysis of RNA-seq data from
multiple studies. (submitted), 2013.

[4] Andrea Rau, Mélina Gallopin, Gilles Celeux, and Florence Jaffrézic. Data-based
filtering for replicated high-throughput transcriptome sequencing experiments. (sub-
mitted), 2013.

[5] T. Strub, S. Giuliano, T. Ye, C. Bonet, C. Keime, D. Kobi, S. Le Gras, M. Cor-
mont, R. Ballotti, C. Bertolotto, and I. Davidson. Essential role of microphthalmia
transcription factor for DNA replication, mitosis and genomic stability in melanoma.
Oncogene, 30:2319–2332, 2011.

10

	Introduction
	Simulation study
	Individual analyses of the two simulated data sets
	Use of p-value combination techniques
	Treatment of conflicts in differential expression
	Session Info

