S. Allassonnì-ere, Y. Amit, and A. Trouvé, Towards a coherent statistical framework for dense deformable template estimation, Royal Statistical Society, vol.69, issue.1, pp.3-29, 2007.

B. Avants and J. Gee, Geodesic estimation for large deformation anatomical shape averaging and interpolation, NeuroImage, vol.23, issue.8, pp.139-150, 2004.
DOI : 10.1016/j.neuroimage.2004.07.010

M. Beg and A. Khan, Computing an Average Anatomical Atlas Using LDDMM and Geodesic Shooting, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.1116-1119, 2006.
DOI : 10.1109/ISBI.2006.1625118

M. Beg, M. Miller, A. Trouvé, and L. Younes, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, International Journal of Computer Vision, vol.61, issue.2, pp.139-157, 2005.
DOI : 10.1023/B:VISI.0000043755.93987.aa

K. Bhatia, J. Hajnal, B. Puri, A. Edwards, and D. Rueckert, Consistent groupwise non-rigid registration for atlas construction, 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821), pp.908-911, 2004.
DOI : 10.1109/ISBI.2004.1398686

M. Bossa, M. Hernandez, and S. Olmos, Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images, pp.667-674, 2007.
DOI : 10.1007/978-3-540-75757-3_81

T. Brox and J. Malik, Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.3, pp.500-513, 2011.
DOI : 10.1109/TPAMI.2010.143

T. Brox, C. Bregler, and J. Malik, Large displacement optical flow, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.41-48, 2009.
DOI : 10.1109/CVPR.2009.5206697

P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache, Iconic feature based nonrigid registration: the PASHA algorithm, Computer Vision and Image Understanding, vol.89, issue.2-3, pp.272-298, 2003.
DOI : 10.1016/S1077-3142(03)00002-X

URL : https://hal.archives-ouvertes.fr/inria-00615633

M. Carcassoni and E. Hancock, Spectral correspondence for point pattern matching, Pattern Recognition, vol.36, issue.1, pp.193-204, 2003.
DOI : 10.1016/S0031-3203(02)00054-7

M. Carcassoni and E. Hancock, Point pattern matching with robust spectral correspondence, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662), pp.649-655, 2000.
DOI : 10.1109/CVPR.2000.855881

H. Chui and A. Rangarajan, A new algorithm for nonrigid point matching, pp.44-51, 2000.

F. Chung, Spectral Graph Theory, AMS, vol.92, issue.4, p.13, 1997.
DOI : 10.1090/cbms/092

W. Crum, T. Hartkens, and D. Hill, Non-rigid image registration: theory and practice, The British Journal of Radiology, vol.77, issue.suppl_2, pp.140-153, 2004.
DOI : 10.1259/bjr/25329214

C. Ding and X. He, -means clustering via principal component analysis, Twenty-first international conference on Machine learning , ICML '04, 2004.
DOI : 10.1145/1015330.1015408

URL : https://hal.archives-ouvertes.fr/cea-01058940

P. Drineas and M. Mahoney, On the Nyström method for approximating a Gram matrix for improved Kernel-Based learning, Journal Machine Learning Research, vol.6, pp.2153-2175, 2005.

S. Durrleman, P. Fillard, X. Pennec, A. Trouvé, and N. Ayache, Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents, NeuroImage, vol.55, issue.3, pp.1073-1090, 2011.
DOI : 10.1016/j.neuroimage.2010.11.056

URL : https://hal.archives-ouvertes.fr/hal-00816044

A. Egozi, Y. Keller, and H. Guterman, Improving Shape Retrieval by Spectral Matching and Meta Similarity, IEEE Transactions on Image Processing, vol.19, issue.5, pp.1319-1327, 2010.
DOI : 10.1109/TIP.2010.2040448

B. Fischl, M. Sereno, R. Tootell, and A. Dale, High-resolution intersubject averaging and a coordinate system for the cortical surface, Human Brain Mapping, vol.179, issue.4, pp.272-284, 1999.
DOI : 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4

B. Glocker, A. Sotiras, N. Komodakis, and N. Paragios, Deformable Medical Image Registration: Setting the State of the Art with Discrete Methods, Annual Review of Biomedical Engineering, vol.13, issue.1, pp.219-244, 2011.
DOI : 10.1146/annurev-bioeng-071910-124649

URL : https://hal.archives-ouvertes.fr/hal-00858380

L. Grady and J. Polimeni, Discrete Calculus: Applied Analysis on Graphs for Computational Science, 2010.
DOI : 10.1007/978-1-84996-290-2

A. Guimond, J. Meunier, and J. Thirion, Average Brain Models: A Convergence Study, Computer Vision and Image Understanding pp 192?210, p.8, 2000.
DOI : 10.1006/cviu.1999.0815

URL : https://hal.archives-ouvertes.fr/inria-00615030

V. Jain and H. Zhang, Robust 3D shape correspondence in the spectral domain, Int. Conf. on Shape Modeling and App, p.3, 2006.

S. Joshi, B. Davis, M. Jomier, and G. Gerig, Unbiased diffeomorphic atlas construction for computational anatomy, NeuroImage, vol.23, pp.151-160, 2004.
DOI : 10.1016/j.neuroimage.2004.07.068

O. Van-kaick, H. Zhang, G. Hamarneh, and D. Cohen-or, A Survey on Shape Correspondence, Computer Graphics Forum, vol.29, issue.6, pp.1681-1707, 2011.
DOI : 10.1111/j.1467-8659.2011.01884.x

E. Konukoglu, B. Glocker, A. Criminisi, and K. Pohl, WESD--Weighted Spectral Distance for Measuring Shape Dissimilarity, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.9, pp.2284-2297, 2012.
DOI : 10.1109/TPAMI.2012.275

C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. Freeman, SIFT Flow: Dense Correspondence across Different Scenes, pp.28-42, 2008.
DOI : 10.1007/978-3-540-88690-7_3

C. Liu, J. Yuen, and A. Torralba, SIFT Flow: Dense Correspondence Across Scenes and Its Applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, issue.15, pp.978-994, 2011.
DOI : 10.1007/978-3-319-23048-1_2

H. Lombaert, L. Grady, J. Polimeni, and F. Cheriet, Fast Brain Matching with Spectral Correspondence, pp.660-670, 2011.
DOI : 10.1007/978-3-642-22092-0_54

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Lombaert, J. Peyrat, P. Croisille, S. Rapacchi, L. Fanton et al., Statistical Analysis of the Human Cardiac Fiber Architecture from DT-MRI, In: FIMH, vol.6666, pp.171-179, 2011.
DOI : 10.1007/978-3-540-85988-8_90

URL : https://hal.archives-ouvertes.fr/inria-00616208

H. Lombaert, J. Peyrat, L. Fanton, F. Cheriet, H. Delingette et al., Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts, pp.207-213, 2011.
DOI : 10.1007/978-3-642-28326-0_21

URL : https://hal.archives-ouvertes.fr/hal-00813799

H. Lombaert, L. Grady, X. Pennec, N. Ayache, and F. Cheriet, Spectral Demons ??? Image Registration via Global Spectral Correspondence, p.7, 2012.
DOI : 10.1007/978-3-642-33709-3_3

URL : https://hal.archives-ouvertes.fr/hal-00813833

H. Lombaert, L. Grady, X. Pennec, J. Peyrat, N. Ayache et al., Groupwise Spectral Log-Demons Framework for Atlas Construction, MICCAI MCV, p.8, 2012.
DOI : 10.1007/978-3-642-36620-8_2

URL : https://hal.archives-ouvertes.fr/hal-00813834

H. Lombaert, J. Peyrat, P. Croisille, S. Rapacchi, L. Fanton et al., Human Atlas of the Cardiac Fiber Architecture: Study on a Healthy Population, IEEE Transactions on Medical Imaging, vol.31, issue.7, pp.1436-1447, 2012.
DOI : 10.1109/TMI.2012.2192743

URL : https://hal.archives-ouvertes.fr/hal-00797755

H. Lombaert, L. Grady, J. Polimeni, and F. Cheriet, FOCUSR: Feature Oriented Correspondence Using Spectral Regularization--A Method for Precise Surface Matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.35, issue.9, pp.2143-2160, 2013.
DOI : 10.1109/TPAMI.2012.276

H. Lombaert, J. Sporring, and K. Siddiqi, Diffeomorphic Spectral Matching of Cortical Surfaces, pp.376-389, 2013.
DOI : 10.1007/978-3-642-38868-2_32

M. Lorenzi, N. Ayache, G. Frisoni, and X. Pennec, LCC-Demons: A robust and accurate symmetric diffeomorphic registration algorithm, NeuroImage, vol.81, pp.470-483
DOI : 10.1016/j.neuroimage.2013.04.114

URL : https://hal.archives-ouvertes.fr/hal-00819895

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, vol.60, issue.2, pp.91-110, 2004.
DOI : 10.1023/B:VISI.0000029664.99615.94

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1007/s11222-007-9033-z

J. Magnus, On Differentiating Eigenvalues and Eigenvectors, Econometric Theory, vol.8, issue.02, pp.179-191, 1985.
DOI : 10.1214/aos/1176344621

T. Mansi, X. Pennec, M. Sermesant, H. Delingette, and N. Ayache, iLogDemons: A Demons-Based Registration Algorithm for??Tracking Incompressible Elastic Biological Tissues, International Journal of Computer Vision, vol.28, issue.12, pp.92-111, 2011.
DOI : 10.1007/s11263-010-0405-z

URL : https://hal.archives-ouvertes.fr/inria-00616187

S. Marsland, C. Twining, and C. Taylor, Groupwise Non-rigid Registration Using Polyharmonic Clamped-Plate Splines, pp.771-779, 2003.
DOI : 10.1007/978-3-540-39903-2_94

D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer, Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration, 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.
DOI : 10.1109/CVPR.2008.4587538

URL : https://hal.archives-ouvertes.fr/inria-00590251

M. Meila and J. Shi, Learning segmentation by random walks, p.17, 2000.

M. Miller, A. Trouvé, and L. Younes, On the Metrics and Euler-Lagrange Equations of Computational Anatomy, Annual Review of Biomedical Engineering, vol.4, issue.1, pp.375-405, 2002.
DOI : 10.1146/annurev.bioeng.4.092101.125733

X. Pennec, P. Cachier, and N. Ayache, Understanding the ???Demon???s Algorithm???: 3D Non-rigid Registration by Gradient Descent, pp.597-605, 1999.
DOI : 10.1007/10704282_64

J. Peyrat, M. Sermesant, X. Pennec, H. Delingette, C. Xu et al., A Computational Framework for the Statistical Analysis of Cardiac Diffusion Tensors: Application to a Small Database of Canine Hearts, IEEE Transactions on Medical Imaging, vol.26, issue.11, pp.1500-1514, 2007.
DOI : 10.1109/TMI.2007.907286

URL : https://hal.archives-ouvertes.fr/inria-00616023

S. Ranjan, Organ localization through anatomyaware non-rigid registration with atlas, pp.1-5, 2011.

S. Rapacchi, P. Croisille, V. Pai, D. Grenier, M. Viallon et al., Reducing motion sensitivity in free breathing DWI of the heart with localized Principal Component Analysis, p.15, 2010.

M. Reuter, Hierarchical Shape Segmentation and Registration via??Topological Features of Laplace-Beltrami Eigenfunctions, International Journal of Computer Vision, vol.21, issue.6, pp.287-308, 2009.
DOI : 10.1007/s11263-009-0278-1

L. Risser, F. Vialard, R. Wolz, M. Murgasova, D. Holm et al., Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping, IEEE Transactions on Medical Imaging, vol.30, issue.10, pp.1746-1759, 2011.
DOI : 10.1109/TMI.2011.2146787

A. Robles-kelly, Segmentation via Graph-Spectral Methods and Riemannian Geometry, pp.661-668, 2005.
DOI : 10.1007/11556121_81

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach et al., Nonrigid registration using free-form deformations: application to breast MR images, IEEE Transactions on Medical Imaging, vol.18, issue.8, pp.712-721, 1999.
DOI : 10.1109/42.796284

G. Scott and H. Longuet-higgins, An Algorithm for Associating the Features of Two Images, Proceedings of the Royal Society B: Biological Sciences, vol.244, issue.1309, pp.21-26, 1309.
DOI : 10.1098/rspb.1991.0045

C. Seiler, X. Pennec, and M. Reyes, Capturing the multiscale anatomical shape variability with polyaffine transformation trees, Medical Image Analysis, vol.16, issue.7, pp.1371-1384, 2012.
DOI : 10.1016/j.media.2012.05.011

URL : https://hal.archives-ouvertes.fr/hal-00813866

L. Shapiro and J. Brady, Feature-based correspondence: an eigenvector approach, Image and Vision Computing, vol.10, issue.5, pp.283-288, 1992.
DOI : 10.1016/0262-8856(92)90043-3

A. Shekhovtsov, I. Kovtun, and V. Hlavac, Efficient MRF deformation model for Non-Rigid image matching, pp.1-6, 2007.

J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.22, issue.8, pp.888-905, 2000.

C. Studholme and V. Cardenas, A template free approach to volumetric spatial normalization of brain anatomy, Pattern Recognition Letters, vol.25, issue.10, pp.1191-1202, 2004.
DOI : 10.1016/j.patrec.2004.03.015

T. Tlusty, A relation between the multiplicity of the second eigenvalue of a graph Laplacian, Courant's nodal line theorem and the substantial dimension of tight polyhedral surfaces, Electronic Journal of Linear Algebra, vol.16, issue.1, pp.315-324, 2010.
DOI : 10.13001/1081-3810.1204

S. Umeyama, An eigendecomposition approach to weighted graph matching problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.10, issue.5, pp.695-703, 1988.
DOI : 10.1109/34.6778

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Non-parametric Diffeomorphic Image Registration with the Demons Algorithm, pp.319-326, 2007.
DOI : 10.1007/978-3-540-75759-7_39

URL : https://hal.archives-ouvertes.fr/inria-00166123

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach, pp.754-761, 2008.
DOI : 10.1007/978-3-540-85988-8_90

URL : https://hal.archives-ouvertes.fr/inria-00280602

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Diffeomorphic demons: Efficient non-parametric image registration, NeuroImage, vol.45, issue.1, pp.61-72, 2009.
DOI : 10.1016/j.neuroimage.2008.10.040

URL : https://hal.archives-ouvertes.fr/inserm-00349600

Y. Weiss, Segmentation using eigenvectors: a unifying view, Proceedings of the Seventh IEEE International Conference on Computer Vision, pp.975-982, 1999.
DOI : 10.1109/ICCV.1999.790354

R. Wilson, E. Hancock, E. Pekalska, and R. Duin, Spherical embeddings for non-Euclidean dissimilarities, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1903-1910, 2010.
DOI : 10.1109/CVPR.2010.5539863

G. Wu, H. Jia, Q. Wang, and D. Shen, SharpMean: Groupwise registration guided by sharp mean image and tree-based registration, NeuroImage, vol.56, issue.4, pp.1968-1981, 2011.
DOI : 10.1016/j.neuroimage.2011.03.050

B. Yeo, M. Sabuncu, T. Vercauteren, N. Ayache, B. Fischl et al., Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration, IEEE Transactions on Medical Imaging, vol.29, issue.3, p.13, 2010.
DOI : 10.1109/TMI.2009.2030797

URL : https://hal.archives-ouvertes.fr/inria-00616102

H. Zhang, O. Van-kaick, and R. Dyer, Spectral Mesh Processing, Computer Graphics Forum, vol.21, issue.3, 2010.
DOI : 10.1111/j.1467-8659.2010.01655.x

D. Zikic, B. Glocker, O. Kutter, M. Groher, N. Komodakis et al., Linear intensity-based image registration by Markov random fields and discrete optimization, Medical Image Analysis, vol.14, issue.4, pp.550-562, 2010.
DOI : 10.1016/j.media.2010.04.003

URL : https://hal.archives-ouvertes.fr/hal-00856077

D. Zikic, M. Baust, A. Kamen, and N. Navab, A general preconditioning scheme for difference measures in deformable registration, 2011 International Conference on Computer Vision, pp.49-56, 2011.
DOI : 10.1109/ICCV.2011.6126224

L. Zollei, E. Learned-miller, E. Grimson, and W. Wells, Efficient Population Registration of 3D Data, p.1, 2005.
DOI : 10.1007/11569541_30