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Abstract

This paper presents novel and efficient strategies to spatially adapt the amount of computational effort applied

based on the local dynamics of a free surface flow, for classic weakly compressible SPH (WCSPH). Using a

convenient and readily parallelizable block-based approach, different regions of the fluid are assigned differing

time steps and solved at different rates to minimize computational cost. We demonstrate that our approach can

achieve about two times speed-up over the standard method even in highly dynamic scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The Smoothed Particle Hydrodynamics (SPH) method is
a powerful and widely used approach to liquid anima-
tion [MCG03, Mon05, BT07]; among other benefits, it pro-
duces detailed splashing and droplet effects, supports seam-
less topological changes and preservation of liquid mass,
and handles complex boundaries in a straightforward man-
ner. However, capturing a sufficiently wide range of spatial
scales in order to generate visually compelling results often
requires large particle counts, and correspondingly long sim-
ulation times.

Across all SPH methods, the choice of time step remains
a crucial factor in determining the overall computational
cost. Although recently developed methods target acceler-
ation based on multi-resolution [APKG07, ZSP08, SG11],
incompressibility [SP09, ICS∗13], GPU-based acceleration
[TH07, ZSP08, GSSP10] or adaptive global time-stepping
[IAGT10,GP11], the possibility of using different time steps
for different regions of fluid has not been explored.

In this paper, we introduce the regional time stepping

(RTS) approach for WCSPH method, in which computa-
tional effort is expended on different fluid regions in propor-
tion to the speed of their local dynamics. In our numerical
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experiments, we were able to reduce simulation times by ap-
proximately a factor of two compared to the standard method
on realistic, highly dynamic scenes in which the entire con-
nected body of fluid is in motion. Our algorithm relies on
an efficient block-based technique to determine the differ-
ent regions and support convenient parallelism. Further, our
method could be easily integrated with existing techniques
such as GPU-methods or multi-scale simulation to provide
added benefit.

2. Block-based Computation

Our algorithm relies on a block-based architecture. If s is the
initial particle spacing, we divide the simulation domain into
a virtual grid, with each block having support radius r, such
that r ≃ 2s. Thus each particle is contained by exactly one of
the blocks in the simulation domain.

Such an arrangement has several benefits. For example,
neighbors of all particles in a block can be computed effi-
ciently by examining neighboring blocks. Each block can
also be treated as a parallelization unit for computing the
physics of particles within it, as in the work of Goswami et
al. [GSSP10].

However, the most important advantage of the block-
based arrangement in our case is parallel region determina-
tion. The time steps for a given region are computed over
these virtual blocks instead of at the particle level, under the
reasonable assumption that liquid in a local area tends to be
deforming at comparable rates. This method can then be ef-
ficiently parallelized by launching a thread per filled block
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instead of per particle. Particles falling within that block re-
port their velocity and force up to the parent block, thereby
avoiding any race or collision conditions.

Our simple block-based time step computation is illus-
trated in Figure 1, and comprises three steps:

1. All particles compute their velocity and total force.
2. Particles propagate their attributes to their parent (i.e.,

containing) block. A minimum time step is computed for
the block based on the maximum force and velocity from
its particles.

3. Each block’s time step is propagated back to its particles.

Figure 1: Block-based time step computation for particles,

red (∆tb), green (2∆tb) and blue (3∆tb) where ∆tb is the base

(smallest) time step. (a) Particles colored by the individual

time steps they would ordinarily possess. (b) Particles pass

their velocity and force values to their parent blocks. Each

block is assigned the minimum required time step based on

its particles. (c) The block propagates its computed time step

back to the particles. (Particles whose time step has been

altered are outlined in black.)

In what follows, ℜn denotes a region or set of blocks as-
signed to a given time step ∆tn = n∆tb where ∆tb is the base
time step, and n is a positive integer. The corresponding par-
ticle set is denoted by Sn.

A block is assigned to a region corresponding to the
largest time step for which it satisfies a set of three crite-
ria, according to its particles’ maximum velocity and force.
The first two criteria are:

∆tn ≤
λvr

cs
(1)

∆tn ≤ λ f

√

rm

Fmax
(2)

These are standard time step conditions from the SPH lit-
erature (e.g., [DC99, BT07]); the first is a CFL condition,
while the second accounts for sudden accelerations over a
time step. In these equations, cs is the speed of sound in the
medium, m is the particle mass, Fmax is the maximum force
magnitude of particles in the block, and Vmax is the maxi-
mum velocity magnitude of particles in the block. We set
the remaining coefficients λ to λv ≤ 0.4 and λ f ≤ 0.25.

We introduce a third criterion to partition particles into
groups depending on their velocities:

∆tnVmax

r
≤ αβn (3)

where,

β1 = ∞, βn = 0.4(0.2)(n−2) for n ≥ 2 α = 0.4

In essence, Equation 3 assigns to each particle a time step
based on the fraction of its support radius that it would cover
in a step moving at its current velocity.

3. Regional Time Stepping with SPH

Serna et al. [SRS03] introduced an asynchronous predictor-
corrector time integration strategy for their DEVA astrophys-
ical SPH code. Given a set of particles assigned different
time steps, consider advancing through the union of all the
resulting time steps. Beginning from a current time tn, with
positions xn

i , velocities vn
i , and accelerations an

i for each par-
ticle i, the following predictor step of length ∆t = tn+1− tn is
taken by all particles to estimate new velocities and positions
at time tn+1:

x̃
n+1
i = x

n
i + v

n
i ∆t +

an
i (∆t)2

2
(4)

ṽ
n+1
i = v

n
i +a

n
i ∆t (5)

Among the set of all particles, the time tn+1 will be the
conclusion of a “true" time step for some, called active par-

ticles; for the remainder this step is taken only to provide
intermediate information to nearby particles. Next, only the
active particles have their neighborhoods and accelerations
re-evaluated at tn+1, and their positions and velocities are
corrected:

x
n+1
i = x̃

n+1
i +

(an+1
i −an

i )δt2

6
(6)

v
n+1
i = ṽ

n+1
i +

(an+1
i −an

i )δt

2
(7)

Although this approach saves on expensive evaluations
of forces and accelerations, it still requires substepping of
all particles in the simulation at the smallest global time
step. We make the further observation that if all the parti-
cles within a given particle’s neighborhood require only the
same or larger time step, then no interpolated substeps need
to be taken and the final result will be the same. Therefore
in regions of our domain assigned large time steps, we can
safely integrate all the contained particles at that timestep
without the need to perform any substepping whatsoever.
This allows the simulation to remain synchronized overall,
while correctly integrating different regions at appropriate
rates and avoiding unnecessary computation, see also Figure
2.

The basic outline of our approach is presented in Algo-
rithm 1. The first step assigns a time step to each block
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within the simulation domain. That is, we choose ℜn and
Sn and update the global block-based neighborhood grid.

To ensure that the time step varies gradually across the
physical domain, which aids in simulating quite stiff incom-
pressible flows, we locate the boundary between regions
with different time steps, and determine the set of blocks
ℜmin on the side with the larger time step. This region is
then assigned the smaller time step of its neighboring region,
which is done efficiently at the block level by checking each
block’s neighbors.

In our algorithm, the particles maintain a few additional
variables. validity is the number of the smallest time steps
for which its most recently computed attributes are assumed
valid (i.e., how many substeps before its true time step ends).
compute is a Boolean flag that indicates whether the par-
ticle is currently active (i.e., requires re-computation of its
acceleration, and end-of-step correction of its position and
velocity) which occurs when the validity ≤ 0. If the parti-
cle is active, its neighborhood set is determined and its local
density and forces are computed. Otherwise, it skips these
steps. At the end of each loop, the position and velocity
of each particle is updated, and active particles have their
velocities and positions corrected (lines 25-30), per Serna’s
scheme [SRS03].

We make some additional observations. First, while the
computation of time steps is determined per block, it is up-
dated on the individual particles which also track their own
validity. Blocks do not have validity or history, and there-
fore all computations over blocks are valid only for a frame.
Second, the algorithm is pre-emptive. That is, a particle can
change its time step even before its validity expires (line 14
of Algorithm 1). This allows the method to maintain stabil-
ity in the face of sudden accelerations, as often occurs in
collisions with boundaries. Figure 3 illustrates a double dam
break simulated using this scheme.

4. Results

The proposed and baseline WCSPH were implemented on
a machine with a 3.2 GHz quad-core Intel processor, using
C++ and the OpenMP API. The images were rendered of-
fline with POVRAY.

We have used ∆tc f l for standard time stepping and ∆tb =
∆tc f l for RTS. Table 1 gives the performance speed-up of our
method in comparison to WCSPH for two highly dynamic
examples. Our method yields simulations about twice as
fast as the comparison method for the given examples, even
in situations where globally adaptive time-stepping cannot
achieve benefit, for example in demo set-up for Figure 4.

5. Future Work

We presented an efficient block-based method for regional
time stepping using WCSPH. An interesting direction would
be to extend RTS for PCISPH / IISPH.

Figure 2: The initial moments of the double dam break ex-

ample using RTS WCSPH. Top: Without applying the second

order velocity and position corrections of Serna et al., the

particles quickly push apart and the smooth surface is dis-

rupted. Bottom: With the corrections applied we achieve the

expected behavior.

Scene # particles Speed up
(Ours vs. Standard)

Figure 3 1.5M 2
SPH

Figure 4 2.2M 1.8

Table 1: Performance comparisons of regional time stepping

with standard SPH.
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