Skip to Main content Skip to Navigation
Journal articles

Bipartite powers of k-chordal graphs

Abstract : Let k be an integer and k ≥3. A graph G is k-chordal if G does not have an induced cycle of length greater than k. From the definition it is clear that 3-chordal graphs are precisely the class of chordal graphs. Duchet proved that, for every positive integer m, if Gm is chordal then so is Gm+2. Brandstädt et al. in [Andreas Brandstädt, Van Bang Le, and Thomas Szymczak. Duchet-type theorems for powers of HHD-free graphs. Discrete Mathematics, 177(1-3):9-16, 1997.] showed that if Gm is k-chordal, then so is Gm+2. Powering a bipartite graph does not preserve its bipartitedness. In order to preserve the bipartitedness of a bipartite graph while powering Chandran et al. introduced the notion of bipartite powering. This notion was introduced to aid their study of boxicity of chordal bipartite graphs. The m-th bipartite power G[m] of a bipartite graph G is the bipartite graph obtained from G by adding edges (u,v) where dG(u,v) is odd and less than or equal to m. Note that G[m] = G[m+1] for each odd m. In this paper we show that, given a bipartite graph G, if G is k-chordal then so is G[m], where k, m are positive integers with k≥4.
Document type :
Journal articles
Complete list of metadata

Cited literature [16 references]  Display  Hide  Download

https://hal.inria.fr/hal-00980750
Contributor : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Submitted on : Friday, April 18, 2014 - 4:43:29 PM
Last modification on : Saturday, August 11, 2018 - 11:22:01 AM
Long-term archiving on: : Monday, April 10, 2017 - 3:49:59 PM

File

2141-7874-1-PB.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00980750, version 1

Collections

Citation

Sunil Chandran, Rogers Mathew. Bipartite powers of k-chordal graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2013, Vol. 15 no. 2 (2), pp.49--58. ⟨hal-00980750⟩

Share

Metrics

Record views

867

Files downloads

1072