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A maximal independent set is an independent set that is nojp@psubset of any other independent set. Liu [J.Q. Liu,
Maximal independent sets of bipartite graphs, J. Graph héa (4) (1993) 495-507] determined the largest number
of maximal independent sets amongaiVertex bipartite graphs. The corresponding extremallygare forests. It

is natural and interesting for us to consider this problenbipartite graphs with cycles. LeB,, (resp. %;,) be the
set of alln-vertex bipartite graphs with at least one cycle for evesgreodd)n. In this paper, the largest number
of maximal independent sets of graphsdh, (resp. 4.,) is considered. AmongZ,, the disconnected graphs with
the first-, second-,. ., ";2-th largest number of maximal independent sets are chaizsde while the connected
graphs in%,, having the largest and the second largest number of maxitdapendent sets are determined. Among
2., graphs having the largest number of maximal independesiasetidentified.
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1 Introduction

Given a graphG = (V, Eg), a setl C Vi is independent if there is no edge off between any two
vertices of]. A maximal independent set is an independent set that is not a proper subset of any other
independent set. The dual of an independent set is a cligubeisense that a clique corresponds to an
independent set in the complement graph. The set of all n@ximdependent sets of a graghis denoted
by MI(G) and its cardinality byni(G).

Around 1960, Erdés and Moser proposed the problem to detertine maximum value ahii(G) when
G runs over alln-vertex graphs and to characterize the graphs attainisgntliximum, both of which
were answered by Moon and Moser [18]. Itis interesting takatthe extremal graphs turn to have most
components isomorphic to the complete gr&fh On the other hand, the theory on maximal independent
set has some applications in other research field. For exxampmhemistry, £lar structureis defined to
be a maximal independent set of vertices of the Clar graphetorresponding benzenoid hydrocarbons
[5]. Clar structures recently are used as basis-set to ctampsonance energies. The theory of maximal
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independent set is also applied to the areas of managemehteeworks. For theompatibility graph

G, its vertices denote tasks, and an edge denotes a resoarbegsbonstraint between the two tasks
linked by it. A maximal independent set of a compatibilityagh represents a maximal set of tasks
that can be executed concurrently. Basagni [2] and Alzotibl.e[21] pointed out the importance of a

maximal independent set in the wireless network. Mosciaradd Watenhofer [19] obtained the well-

known Maximal Independent Set problem when they modelediséructured radio network as a graph.

Along the line on the study of the maximal independent setath@matical literature, mathematicians
focused on determining the largest numbenofG) in various interesting classes of graphs. Ying et al.
[22] determined the maximum number of maximal independetstis graphs of ordet with at mostr
cycles and in connected graphs of order 3r with at most- cycles. Ortiz [20] established a sharp upper
bound for the number of maximal independent sets in catargjiaphs. Arumugam et al. [1] studied the
maximal independent set of graphs with minimum coloringff@ Frankl and Rddl [4] studied maximal
independent sets in graphs obtained from Boolean lattlieg.and one of the present authors [16] studied
the maximal independent set of graphs with cyclomatic nurabenost two. Jin and Li [8] determined
the second largest number of maximal independent sets aalbgaphs of ordern. Hua and Hou [6]
determined thex-vertex graph having the third largest number of maximaépehdent sets. Jou and Lin
[10, 13] settled the problem for trees and forests. Jin and[Yhsettled the problem for the second and
third largest number of maximal independent sets of trees.

This paper is motivated directly from [17], in which the antttompletely characterized thevertex
bipartite graphs having the largest number of maximal iedelent sets. The corresponding extremal
graphs are forests. Furthermore, for the bipartite grapbrdérn that contains cycles, the author in
[17] determined the upper bound on the number of maximalgaddent sets for odd. Unfortunately,
the graphs which attain this value were not characterizet datural and interesting to determine the
corresponding extremal graphs, which is settled in thisspa®n the other hand, it is necessary and
interesting to consider this problem on thevertex bipartite graphs with cycles for evenin this paper,
among the set of all disconnected bipartite graphs with evder, the extremal graphs which have the
first-, second-, . ., ”T‘Q-th largest number of maximal independent sets are chaizsderespectively,
while among the set of all connected bipartite graphs withneorder, the extremal graphs having the
largest and the second largest number of maximal indepésdtmnare identified.

2 Preliminary

Given a simple grapliy = (Vz, E), the cardinality ofi; is called theorder of G. And G — v denotes
the graph obtained fro@ by deleting vertex € Vi (this notation is naturally extended if more than one
vertex is deleted). Far € Vi, let N (v) (or N (v) for short) denote the set of all the adjacent vertices of
vin G andd(v) = |Ng(v)|. For convenience, Ie¥;[v] = Ng(v)U{v}. Aleaf of G is a vertex of degree
one, while ansolated vertex of G is a vertex of degree zero. For any two graphsndH , letGWH denote
the disjoint union ofG and H, and for any nonnegative integerlet tG stand for the disjoint union of
copies ofG. For a connected grapti with maximum degree vertexand a graplts = G1wGaW- - - WGy,
with u; being a maximum degree vertexd@y,: = 1,2, ..., k. Define the graptf x G to be the graph
with vertex setVp.c = Vi U Vi and edge seEy.c = Fy U Eq U {au; : i = 1,2,...,k}. Anodd
(resp. even) component is a component of odd (resp. even) order. Thimutghe text we denote by
P,, C,, K -1 and K, the path, cycle, star and complete graphovertices, respectively. Undefined
terminology and notation may be referred to [3].
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Throughout this paper, for simplicity,denotes,/2.
We begin with some useful known results which are neededaeepour main results.

Lemmal([7, 14]) For any vertex vinagraph G, mi(G) < mi(G — v) + mi(G — N¢[v]). Ifvisaleaf
adjacent to «, then mi(G) = mi(G — N¢[v]) + mi(G — Nglu)).

Lemma2 ([14]) If G istheunion of two digjoint graphs G; and G, then mi(G) = mi(G1) - mi(Gs).
Lemma3([13]) If Tisatreewithn > 1 vertices, then mi(T) < ¢;(n), where

() 2 41, ifniseven;
ti1(n) =
! pn1, if 1 is odd.

Furthermore, mi(T") = ¢1(n) ifand only if T € T3 (n), where

B(2,2=2) or B(4,254), ifniseven;
Ti(n) = { ? 2

B(1, 271, if n isodd,

where B(i, j) isthe set of batons, which are the graphs obtained fromabasic path P; (< > 1) by attaching
j > 0 paths of length two to the endpoints of P; in any possible ways.

Lemma4 ([13]) If F isaforest withn > 1 vertices, then mi(F) < f1(n), where

", if niseven;
fi(n) = =1 ifn isodd.

Furthermore, mi(F') = f1(n) ifand only if F € Fy(n), where

5 Ko, if niseven;
Fi(n) =

B(1,2=1228) y sK, for some s with 0 < s < 251, if nisodd.

Lemmab5 ([14]) If F isaforest withn > 4 verticeshaving F' ¢ F(n), then mi(F) < fa(n), where
3rn~4, ifn > 4iseven;

fa(n) =< 3, if n = 5;
7r*=7 ifn > 7isodd.

Furthermore, mi(F') = fo(n) ifand only if F € F»(n), where

Py 22K, ifn > 4iseven;
FQ(TL): Pl*P4OI‘,P1L‘!‘JP4, Ifn:5,
Prw 251K, ifn > 7isodd.
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Forn > 2,0 < k < | %], define

2Py W 258 K5 or, Th(n — 2k) WkK,, if nis even;
"\ Ti(n - 2k) W kKo, if 1 is odd.

Thenmi(B,, ) = 2% - mi(T1(n — 2k)), or 9r"=8.

Lemma 6 ([17]) The maximum number of maximal independent sets among all bipartite graphs of order
nis 2Lz, and the only bipartite graphs of order n which have this many maximal independent sets are
F1 (n)

Lemma7 ([17]) If G isanacyclic graph of order n and G 2 B, i, then mi(G) < t1(n).
Lemma8 If n > 6, then mi(C,,) = mi(C,,—2) + mi(C,_3). Furthermore, one has

r»~1 ifn > 7isodd;

)

mi(Cy) < {

"2 ifn > 12iseven.

)

Proof: The first part is due to [13]; we show the second part by indaabinn. It is routine to check that
mi(Cr) =7 < r°, mi(Cy) =12 <78,  mi(Chp) =22 < r10,
mi(Cr2) =29 <% mi(Ci3) =39 <r'2, mi(Cry) =51 < r'2
Assume the result holds far < k. Now considen = k£ + 1 > 15. By induction hypothesis, we obtain
=21 4 pn=3-2 — 3pn=5 =1 if njs odd;

pn=272 popn=3-l = pn=2) if n is even.

)

mi(Cy,) = mi(Cp—_2) + mi(Cp—3) < {

This completes the proof. i

3 Sharp bounds and extremal graphs

Let &, (resp.#.,) be the set of alh-vertex bipartite graphs with at least one cycle for evesgreodd)
n. In this section, amongg,, the disconnected graphs with the first-, second-, ”T*Q—th largest number
of maximal independent sets are characterized, while thaexed graphs it8,, having the largest and
the second largest number of maximal independent sets merdeed; among?,, the graphs having the
largest number of maximal independent sets are identified.

For evem and3 < k < 4, defineD,, = Box & (5 — k) Ko, WhereBy, is depicted in Fig. 1. Then
mi(Dy, ) = 22 7% mi(Bag) = 27 F(2F1 + 1) <72 406,

Theorem 1 For graphs Dy, 3, Dp.a, ..., Dp 2, Cs W 252Ky, Cro W 2510 Ky, (Cs * Ka) W 250K,
one has

-8 —10
L 5 Kg) > mi(Dn,4) > mi(Dmg,) = mi(Clo W i 5

—10
n K3) > mi(Dy6) > mi(Dy7) > -+ > mi(Dm%) — 241

mi(Dmg) = ml(Cg H Kg)

=mi((Cs *x K2) W
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Tt

Fig. 1. GraphBag, wherek > 3 andt > 2.

Proof: By direct computing, we have

mi(Dny) = 277 -mi(By) =2"T + 27, t=34,..., g 1)

mi(Cs 8 =8 K,) = 10.2%°, )
mi(Crow "0,y = 17,955, 3)
mi((Cy + Ko)w "= 10ky) = 17.2%%2 (4)

By (1), itis easy to see thati(D,, ;) < mi(D, 1) for4 <t < %. Combining with (2)-(4), our results
follow immediately. O

Let Hy(6), Ho(8), Hy(10), H1(n), Ha(n), Hs(n) andO; (n) be the graphs depicted in Fig. 2.

Ho(6)  Ho(8) Ho(10) Hy(n) Hy(n) Hj(n) O1(n)

Fig. 22 The extremal graphs

Theorem 2 Consider an n-vertex bipartite graph G containing cycleswithn > 5.

i) G e %, \ {.Dn)37 Dya,... ,Dn)%, Cs W nTigKg, CiooW n;lOK% (Cg * Kg) (] %NKQ}, then

mi(G) < r" 2. (5)
If G is connected, the equality holdsin (5) if and only if G = Hy(n), Hi(n), Ha(n), or Hs(n) for
n=6,8,10;and G = Hy(n), Hz(n), or Hs(n) for n > 12.
If G isdisconnected, the equality holdsin (5)if and only if G = C4w 52 Ky, Ho(6)w252 Ky, Ho(8)w

28Ky, Ho(10) w 250 Ky, Hy(n — 2k) W kKo, Ha(n — 2k) W kKo, of Hy(n — 2k) W kK.
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(i) 1fG € &, then
mi(G) < 3r™75. (6)

The equality holdsin (6) if and only if G = Cg x K3, or O1(n) for connected G and G =2 O;(n —
2k) W kK, or (Cg * K1) W 25L K, for disconnected G.

Proof: We put the proofs of (i) and (i) together as below. Cho6s#® %, \ {D»3, Dyna; .., D2,
Cs W 28 Ky, Cro W 2512 Ky, (Cs x Ko) W 22 K, } (resp.28,) such thaini(G) is as large as possible.
We proceed by induction om.

For5 < n < 6, it is straightforward to check that our results hold. Assutmat our results hold for
n < k. Nowconsiden =k +1>7.

First we consider thaf' is disconnected. Denote

G =Go, WGoy 8- WGy, WGe, WGy W8 Gy,

whereG,, is an odd component fdr< 7 < [; andG., is an even component far< j < lo.

Casel. nis even. In this case, we have thats also even. If; > 2, then

mi(G) = Hmi(Goi)-Hmi(Gej) (by Lemma 2)

=1 j=1
l] l2

< H plVeo, -1 H Vo (by Lemma 6) (7)
i=1 Jj=1

— T,nfll

< ,r,n—2. (8)

The equality in (7) holds if and only ir,, = Fi(|Vg, |) for 1 < i < 1, Ge;, = F1(|VGC]_ ) for
1 < j < lo; while the equality in (8) holds if and only i = 2, which implies thatt = Fy(|Vg,, |) &

(|Va,,|)w MKQ Obviously,G does not contain cycles, s0i(G) < r" 2.

Therefore we consider that = 0, that is to say, each component containe@'iis an even component.
Without loss of generality, assume thét,, | > [Vg,,| > - > |VG512 |. Note thatG contains cycles,
hence Vg, | > 4.

If [V, | = 4, then there exists a € {1,2,...,l2} such thatlVg, | = [Vg,,| = [Va,,| = -+ =
IVa.,| = 4. As G contains cycles, there is at least ane {1,2,...,p} such thatG., = C,. We obtain
that

l2
mi(G) = mi(Ge,)- [] miGe,)- [] mi(Ge)  (byLemma2)

1<j#i<p k=p+1
< 2.3p7 LT (by Lemmas 3 and 6) 9)
3
_ n—2 (2 p—1
r (4)
< (10)
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The equality in (9) holds if and only ifr., = Cy, G; = Pyfor1 <j #i < — (Gey WGy W-- - W
Ge,) = Fy (n —4p) = *4”K2, while the equality i |n (10) holds if and onlyp‘_ 1, which implies that
G=Cyyl KQ, our result holds.

If Vg, | > 6 then we consider the following two possible subcases.

n—|Va,, |

° |VG€2| = 2. In this subcase, we havg — G,, = 51 K,. Note thatG % DnWGEl 1/2,Cs W
an8K27010 () nglng and (Cg * Kg) S n%ng, henceGel 2 B|VG61|5087010 andCs * Ks. By
induction hypothesis and Lemma 2, we have

mi(G) = mi(Ge,) mi(G — G,)
< Ve l=2 pn=lVa, | (11)

rn2,

The equality in (11) holds if and only €., = Hy(6), Ho(8), Ho(10), H:(|Ve,,|), Ha2(|Va., ), or

Hs(|Ve.,, |). Together withG — G, = "_“;Gel | K5, our result follows immediately.

e |V, | = 4. In this subcase, we have
€2

l2
mi(G) = mi(G, ) - mi(Ge,) - [[ mi(Ge,)  (by Lemma 2)
=3
< (Ve l=2 41 1) (plVeea 172 4 1) pn=lVee I=IVee, | (by Lemmas 3, 6 and Theorem 1)
—pn—4 4 Voo, =2 4 n=IVoe [=2 | n=|Va., |=IVae,|
< Tn—4 4 Tn—ﬁ 4 ,r,n—8 4 Tn—lO

<2,

Case2. nis odd. In this casd; is also odd. 1f; > 3, by Lemmas 2 and 6 , we get

mi(G) = Hmi(Goi) . H mi(Ge;) H Ve, =1 H Vae;| = pn—h <t < 3R,

Hence, we consider that = 1 in what follows.
If G,, contains cycles, by induction hypothesis and Lemmas 2 awae6obtain that

mi(G) = mi(G,,) - mi(G — G,,) < 3plVao =5 pn=IVao, | 3rn5,

the equality holds if and only it7,, = O:(|Va,, |) or Cs * K1 andG — G, = MKQ, which
implies thatG = O (|Vg,, |) @ %Kg or (Cs * K1) W 257 K5, the result holds.

If G, does not contain cycles, then there exists at least one @mmpanentG., containing cycles
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with [Ve, | = 4. If [V, | = 4, thenG., = C4. We obtain that

mi(G) = mi(G,,) mi(G.,) [ miGe,) (by Lemma 2)
1<i#j<la
< rlVeo =t g pn—d=lVeo, | (by Lemmas 3 and 6)
< 3T,

the result holds. IfV, | > 6, we obtain that

mi(G) = mi(Go,) mi(Ge,)- [[ miGe,) (by Lemma 2)
1< <z

plVeo 171, (rIVGea‘ =2 1)- Vo, 171Voe, | (by Lemmas 3, 6 and Theorem 1)
,,,n73 + T"_|VGej -1
T,n73 +Tn77

=

3rT?

VANV/AN

The result holds.
Now we consider thatr is connected. It suffices to consider the following two pblescases.

Case 1. G has a vertex of degree> 4 such thatz — v has cycles.

Subcase 1.1. n is even. In this subcase, we have

mi(G) < mi(G—v)+ mi(G — Ng[v]) (by Lemma 1)
< 3O g STt (by induction hypothesis and Lemma 6) (12)

= "2

The equality in (12) holds if and only & — v = O (k) W 2=E=L K, or (Cs * K1) W 258 K>, G — Ng[v] =2
Fi(n —5). But there is no such bipartite graph singe- N [v] is obtained fronG — v by deleting four
independent vertices, henag(G) < r"~2.

Subcase 1.2. n is odd.

In this subcase, we first consider tidat- v = D,,_1 ;. Then by Theorem Ini(G —v) < r" 3477,
If d(v) = 4, thenG — N¢|v] is either an acyclic bipartite graph which is not isomorphbid,,_5 5, or a
bipartite graph with cycles which is not isomorphiciip,_5 ;. Hence by induction hypothesis or Lemma
7,mi(G — Ng[v]) < r"~7, which gives

mi(G) < mi(G—v)+mi(G — Ng[v]) (by Lemma 1)
< -3 _|_Tn—7 _|_Tn—7 (13)
= 375,
The equality in (13) holds if and only & —v = Csw 25" K, andG— Ng[v] = Ho(6 ) HO(S)
213 Ko, Ho(10) W 252 Ko, Hy (k) W 2=E=2 K5, Hy(k) W 2=E=5 (5, or Hs(k) W Note that




Maximal independent sets in bipartite graphs 251

G —v = Cs W 5T K5, henced — Ng[v] is a subgraph ofs & 257 K. Itis easy to see tha — Ng|[v]
contains no cycles, a contradiction.

Now we consider thatr — v 22 D,,_1 . In order to use the induction hypothesis, we should shot tha
G—v2CsWI2K,y, CioW 25 Ky, and(Cs = Ky) W 2L K first. Infact, if G — v = Cs W 252 K,
thenl < |Ng(v) N Neg (v)] < 4.

If ING(v) N Neg(v)| = 1, thenn > 15 andG — Ngv] = P W 22K;. By Lemma 1, we get
mi(G) < mi(G —v) + mi(G — Ngv]) =57 + 7 < 3r"=5,

If INg(v) N Neg(v)| = 2, thenn > 13 andG — Ng[v] = Ps W 271Ky, or 2P3 252 K. By Lemma
1, we getmi(G) < mi(G — v) + mi(G — Ng[v]) = 57"~ 7 +4 < 3r"75.

If ING(v) N Neg(v)| = 3, thenn > 11 andG — Ng[v] = Py W %2K,. By Lemma 1, we get
mi(G) < mi(G —v) + mi(G — Ng[v]) =57 + 2 < 3r"=5,

If [Ne(v) N Neg(v)| = 4, thenn > 9 andG — Nglv] = 21 K;. By Lemma 1, we gemi(G) <
mi(G —v) + mi(G — Ng[v]) =577 +1 < 3r"=5.

By a similar discussion as above, we may show that v 2 C1o W "311K2, (Cs x Ko) W "311K2.
Therefore, we have

G—-—vZ# Dn—l,ka Cs ¥ i ; 9K2, Cio ¥ i _2 11K2 and(08 * Kg) H = 11K2.
By induction hypothesis, we havei(G — v) < 7"~2. Thus,
mi(G@) < mi(G—v)+ mi(G — Ng[v]) (by Lemma 1)
< 3 pnTS (by Lemma 6) (14)
= 375,

The equality in (14) holds if and only & — v = Hy(6) & 252 Ko, Ho(8) W 252 Ky, Ho(10) W 251 K,

Hi(k) W ==Ky, Hy(k) w 2=E=L K, or Hs(k) W 2=E=1 K, andG — N¢[v] = Fi(n — 5). Since
G is connected and? — N¢[v] has no isolated vertexiG — v contains noK, as a component, i.e.,
G —v = Hy(6), Ho(8), Ho(10), Hi(n—1), Ho(n—1), 0or H3(n—1). HoweverG — N¢[v] is obtained

from G — v by deleting four independent vertices which is impossiblencemi(G) < 3r"=5.

Case 2. Every vertex of degreg 4 is in all cycles ofG.

First we consideb(G) = 1. Choose an edgev € E¢ with d(v) = 1. LetG; = G — {u,v} and
G2 = G — NJu]. We distinguish the following two possible subcases to shomresults.

Subcase 2.1. n is odd.

If d(u) = 2, thenG, is a connected graph with cycles afid 2 "T*Kg. By induction hypothesis and
Lemma5 and Theorem 1, we hawe(G1) < 3r"~7 andmi(Gy) < max{3r"~7, rn=54yn=9) = 3pn=7,
By Lemma 1, we get

mi(G) = mi(G1) 4+ mi(Ga) < 3r" 7 + 3" = 3" 75,

the equality holds if and only iff; =2 O1(n — 2) or Cs * K1, G3 = Py & "T”Kg, i.e.,G = 01(n).
If d(u) > 3, by Lemmas 1 and 6 , we obtain that

mi(G) = mi(Gy) + mi(Gq) < 7" 271 g4l = 3
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the equality holds if and only i7; = Fi(n —2), Go = Fi(n —4) or Fi(n —5). If Go & Fi(n — 4),
we haved(u) = 3. In this situation, we geff = Cg * K;. If G2 = Fi(n — 5), we haved(u) = 4. Gy is
obtained from7; by deleting three independent vertices which is impossible

Subcase 2.2. n is even.

e d(u) = 2. In this subcase, we know th@ is a connected graph with cycles. Note thagt Cs * K,
henceG; % Cs. By Theorem 1, we haveii(G1) < r"~* + 1. On the other hand, notice th@t2 D, ,
hence ifGy = B,,_3 1, we obtain thatG = Hy(n), Hz(n), or Hs(n), our result holds. 175 % B,,_3 .
by induction hypothesis or Lemma 7, we haw&G3) < max{r"~*—1,3r"~8} = r»~4—1. Combining
with Lemma 1, we have

mi(G) = mi(Gy) + mi(Ga) < r" 414" =1 =172

the equality holds if and only i1 = B,,_, C1o or Cg * Ko andmi(Gz) = r"~* — 1, but there is no
such bipartite graph.

e d(u) = 3. If Gy is disconnected, thefl; must have cycles ar@, 2 "T*‘*KQ sinceG have cycles. Thus,
by Lemma5 and Theorem 1, we gei(G;) < 7"~ 4+r"~8 = 57"~ andmi(G3) < max{3r"=8 rn=64
rn=10} = 3r"~8. By Lemma 1, we have

mi(G) = mi(G1) + mi(Ga) < 5" 4 38 =72,

the equality holds if and only i7; = Cs W ”ngKQ andGy = Py W "T*SKQ, but there is no such bipartite
graph. IfG; is connected an@y = "T“*KQ, then we havey = Hy(n) andmi(G) = r"~2, the result
holds. IfG; is connected and, 2 "T“lKQ, then forn = 6, we getG, = 2K; andG = Hy(6), the
result holds. We assume> 8. Obviously,G;  Cs sinceG % Cs * Ko. By Lemmas 3, 5 and Theorem
1, we havemi(Gp) < 7" * + 1, mi(Gy) < max{3r"=8 rn=6 4 pn=10} = 398 Thus,

mi(G) = mi(Gy1)+ mi(Ga) (by Lemma 1)
S (15)
= T+
< R (16)

The equality in (15) holds if and only &, = Ty (n—2),0r B,_2, G2 = P, ¥ "T‘SKQ; while the equality
in (16) holds ifand only if» = 8, i.e.,G| = Py*x K5, Cg or Ps andGy =2 Py, but there is no such bipartite
graph.

e d(u) > 4. Note thatG contains cycles, it is easy to see tliat 2 "T*QKQ. By Lemmas 5, 6 and
Theorem 1, we gahi(G;) < max{3r"~6 rn=% 4 pn=8} = 3y"=6 andmi(Gz) < r"~°. By Lemmal,

mi(G) = mi(Gy) + mi(Gy) < 3r™ 0 4 pn7571 = pn=2,

the equality holds if and only iff; = P, W "T*"’Kg, G2 = Fi(n —5) or Fi(n — 6). Note thatG; is
obtained fromG; by deleting three or four independent vertices, hence tisare such bipartite graph of
ordern. Hencemi(G) < r"2.

Now we considet(G) > 2. In this subcase, we used the following two facts (for thedrgfs one may
be referred to the Appendix).
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Fact 1 Supposen > 7 isodd and each vertex of degree > 4 isin all cycles of G, then mi(G) < 3775,

Fact 2 Supposen > 6 is even and each vertex of degree > 4 isin all cycles of G, then mi(G) < r"~2.
The equality holdsif and only if G = Hy(n).

Obviously, in this case, i§(G) > 2, Theorem 2 holds directly from Facts 1 and 2. O

4 Concluding remark

In view of Theorems 1 and 2(i), the disconnected graphs an#ngvith the first-, second-,. ., ”T‘z-th
largest number of maximal independent sets are charaetierzhile the connected graphsd, having
the largest and the second largest number of maximal indigpe¢sets are determined; whereas in view of
Theorem 2(ii), graphs among,, having the largest number of maximal independent sets argifi&d.
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Appendix
In the appendix, we present the proofs for Facts 1 and 2.

Proof of Fact 1: We first assume thaf has a vertexw of degree 3 such th&@¥ — v has cycles. Note thak contains no odd cycles
andé(G) > 2, henceG — v (resp.G — N [v]) does not contaiti(» as a component.

e G —v % D,_1. Then we are to show thaf — v % Cs W ”ggKg, Cio W 251 K and (Cs + Ka) W 2ZH K by
contradiction.

fFG—-—v=Csy "ggKg, i.e.,G — v = Cs. Notice thatd(v) = 3, we haveG — N¢g[v] = 2K1 W P3. So we obtain that the
graphG is depicted in Fig. 3(a). By Lemma 1, we gei(G) < mi(G — u) + mi(G — N[u]) =7+ 4 = 11 < 3r* = 12.

If G —v 2 Ciow 251 Ky, ie.,G — v 2 Cyp. Note thatd(v) = 3, we haveG' — Ng[v] = 2K @ Ps or K1 & 2Ps. By
Lemma 1, we getni(G) < mi(G — v) + mi(G — Ng[v]) = 17 +4 = 21 < 3r6 = 24,

If G—v 2 (CyxKa)w 2L K ie.,G—v = Cg x Ky. Note thatd(v) = 3, we haveG — Ng[v] & 2K, W Ps, K1 W2Ps,
K1 W(K71*(K2wWP3)) or PswKy 3. By Lemma 1, we geti(G) < mi(G—v)+mi(G—Ng[v]) = 174+4 =21 < 3r6 = 24.

Hence, we have

-9 —11 —11
G—U;”EDn,l,;wCsL‘dn Kz,CloL‘dn Ko and(Cg*Kg)L‘rJn Kos.
By induction hypothesisni(G — v) < »»~3. In view of Lemmas 1 and 6, we have
mi(G) < mi(G — v) + mi(G — Ng[v])
< n—3 _,’_Tn7471 (A.l)

r
3rn—5

The equality in (A.1) holds if and only & — v = Ho(n — 1), Hi(n — 1), Ha(n — 1), or H3(n — 1) forn = 7,9,11 and
G—v>Hi(n—1), Hy(n—1),0r H3(n — 1) forn > 13, G — Ng[v] = Fi(n — 4),i.e.,G — Ng[v] = T1(n — 4). Note
thatG — N¢|[v] is obtained fromG — v by deleting three independent disjoint vertices, but tiger® such bipartite graph of order
n. Hencemi(G) < 3r™ =5,
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G —v=D, 14, ie,G—v= B, 1. Inthis case, we havmi(G — v) = "3 + 1. FurthermoreG — N¢g|[v] is either
an acyclic graph which is not isomorphic i, 4 ;, or a bipartite graph containing cycles. It follows from imtion hypothesis or
Lemma 7 thaimi(G — Ng[v]) < max{r"~4~1 —1,3r"=4-5} = 25 _ 1, Together with Lemma 1, we have
mi(G) < mi(G —v) + mi(G — Ng[v])
<3414 -1 (A.2)
=375,
The equality in (A.2) holds if and only i — v = B,,_1, mi(G — Ng[v]) = r™~3 — 1. Note thatG is a bipartite graph with

4(G) = 2, henceGG —v must be the graph as depicted in Fig. 3@)— N [v] is obtained fromG — v by deleting three independent
vertices. Elementary calculation yieldsi(G — Ng[v]) < »"~% — 1. Hencemi(G) < 3r"~5.

Uy W P,
V1 1 ni.,
V2 -
n2
w u (Y
Ut - Pnk_
u Uk Wi

Fig. 3: Graphs used in the proof of Fact 1.

Now, we consider the case that each vertex of degrekis in all cycles ofG. ThenG must be a graph with the structures as
depicted in Figs. 3(c) or 3(d). Assume that the verteis in all cycles ofG, thend(u) > 3. Note thatn is odd andj(G) > 2,
henceG — u # By, _1,, andG — u contains no cycles. By Lemma 7, we gei(G — u) < r"=3. Thus, we have

mi(G) < mi(G — u) + mi(G — N[u]) (by Lemma 1)
L3 ppnmat (by Lemma 6) (A.3)
=3rn75,

The equality in (A.3) holds if and only ihi(G —u) = "3, G — N[u] = Fi(n—4) or Fi(n—5),i.e.,G — N[u] = Ty (n—4)
orTi(n — 5). Notice thats(G) > 2 andw is in all cycles ofG, it is straightforward to check that € {7,9,11} andG — Nu| 2
Ti(n — 5). So we get thati is a graph of the structure in Fig. 3(d). That is to s@yhas exactly two vertices of degree 3,
sayu andw. It follows thatd(u) = d(v) = d andG — {u,v} = Pp,; W--- W Py, Withny > ng > -+ 2 ng. lfn =7,
thenni; = 3, no = 1, ng = 1. By elementary calculationpi(G) = 5 < 6. If n = 9, thenn; = 5, no = 1, n3 = 1. By
Lemma 1mi(G) < mi(G —u) + mi(G — Nu]) =4+ 7 =11 < 12. If n = 11, thenn; = n2 = n3 = 3. By Lemma 1,
mi(G) < mi(G — u) + mi(G — N[u]) = 13 + 8 = 21 < 24. Hence, we obtaimi(G) < 3r"~5. Thus, Fact 1 holds. o

Further on we need the following lemma to prove Fact 2.

Lemma A Supposen > 6 iseven. If G hasapath Ps = ujususugus suchthat d(us) = 2, G — {u1, u2, us, u4, us } hascycles

and G — {ug2, u3, u4,us} Z Dy 41,Cs n;12 Ko,CioW n;14 Koand (Cs * K2) W n;1 Ko, then mi(G) < rn—2,

Proof: From the assumption it follows thét; := G —{u1,u2,u3}, G2 := G —{u2,u3,us} andGs := G —{ua, us, ua, us},
respectively, has cycles aés % D,y 1, Cs W 252 Ky, Cio W 2512 K5 and (Cs * K2) & 2512 K. Hence, by Lemma 1
we obtain

mi(G) < mi(G — uz — u4) + mi(G — u2 —ua — N(ua)) + mi(G — Nluz])
mi(Gz) —+ mi(Gg) + mi(Gl)
3pn 375 4 pr—d=2 4 3,n—3-5 (by induction hypothesis) (A.4)

N

— ,rn72.
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The equality in (A.4) holds if and only #(u2) = d(us) = 2, G1 = G2 2= (Cs * K1) & 2510 K5 or O1 (k) & 2=E=2 K5, and

G3 = Ho(6) W 210Ky, Ho(8) W 2512 Ky, Ho(10) W 22 Ko, Hy (k) W 2=E=2 K0y Hy(k) W 2=E=2 K5, or H3(k) @
n=k=4 . Sinced(G) > 2, G1, G2 contains nak as a component, i.6G1 = Ga = Cg * K1 0r O1(n — 3). If G1 = G =
Ce * K1, we getG = Hy(10) or the graph depicted in Figi(c). But this impliesG — {1, u2,us3,u4,us} has no cycles, a
contradiction. If{G1 = G2 = O1(n — 3), we get two such graphs which contain odd cycles, a contiadicThat is to say, the
equality in (A.4) does not hold. Henceyi(G) < r™~2, as desired. )

Proof of Fact 2: We say a vertew is good ifd(v) = 3 andG — v has cycles. Sincé(G) > 2 and G is bipartite, then
G — Ng[v] # B,,_4, for any good vertex.
First we consider tha’ has good vertices by distinguishing the following two pblescases.

Case 1. For all good vertices, G — Ng[v] = D,,_4 1.

For convenience, lef; = G — N¢|[v]. Note thaté(G) > 2 andG is bipartite, henc&'; must be connected ar@h = B,,—4.
Furthermore G1 must be a graph with the structure shown in Fig. 3(b). Cledily > 1, thenN(w) N N(v) = 0;if ¢t = 0,
then eitherV (w) N N(v) = @ or N(u) N N(v) = 0. Hence, without loss of generality, assutNgw) N N(v) = 0. Note that
d(v) = 3anddé(G) > 2, henceG — w has cycles. Thus, by the assumption that each vertex ofelegtes in all cycles ofG, it
follows that2 < d(z) < 3forz = worz € N(v).

If d(u) < 3, note thaté(G) > 2 andG — Ng[v] = D, _4 for every good vertexw, G must be the graph shown in
Figs. 4(a) or 4(b). For Fig. 4(ani(G) < mi(G — v) + mi(G — Ng[v]) = 8 + 5 = 13 < 16; For Fig. 4(b),mi(G) <
mi(G —v) + mi(G — Ng[v]) = 6 + 5 = 11 < 16, they are not the extremal graphs.

If d(u) > 4, thenG has at most one edge betwebi{v) andA = {u; : 1 < j < k} U{w; : 1 < j < k}. Consequently,
we haved(w) = 2. Otherwise,w is a good vertex of7, so inG — N[w], there is at least one vertgx € N(u) such that
d(y) = 1. Obviously,G — N[w] # D,,_4 1, a contradiction. Similarly, we can conclude that eachexeiht N'(v) has degree
2. Now, let Ps = ujwiwwauz. Obviously,d(w) = 2, G — {u1, w1, w,ws2,u2} has cycles and? — {w1, w, w2, ua} #

Dp_4,,Cs ¥ 252 Ky, Cro & 251 K and(Cs * Ka) W 251 K. By Lemma A, we obtain thahi(G) < r™~2.

i S8 2
= S <
(@) (b) © (d) (f)

Fig. 4: Graphs used in the proof of Fact 2.

Case 2. There exists a good vertexsuch thatG' — Ng([v] 2 Dy, 4 k-

In this case, we are to show th@l := G — Ngv] 2 Cs & 252 Ky, Cio & 2511 K and (Cg + K2) W 251 Ky In

fact, if G1 = Cg w 252 K>, then there exist eight such graphs, i@€1,G?,...,G%; if G1 = Cio ¥ 2L K>, then there

exist thirteen such graphs, i.&2, G0, ... G?1;if G1 = (Cs * K2) W %Kg, then there exist twenty-five such graphs, i.e.,
G?2 . G?3,...,G*0, whereG', G2, ..., G*S are depicted in Fig. 5. By direct computation, we obtaii{G) < r™~2. Hence,
G1 2Cs "ggKg, Cio W ”;an and(Cs « K2) W "*T“Kz. By Lemma 7 (ifG is acyclic) or by induction hypothesis (if
G1 contains cycles), we obtain thati(G1) < r™~6. Thus, we obtain that

mi(G) < mi(G — v) + mi(G1) (by Lemma 1)
< 3rn6 4 pn—6 (by induction hypothesis) (A.5)

— Tn72_

The equality in (A.5) holds if and only if — v = (Ce * K1) & 58 K5 or O1 (k) W 2=2=% K5, mi(Gy) = r"~6. Note that
4(G) > 2 andG contains no odd cyclegy — v contains naK» as a component, henégé — v = Cg * K1 or O1(n — 1). If
G —v = Cg x K1, there are two such graphs. By a straightforward calculatia (G) = 6 or7 < r8 = 8. If G —v = O1(n—1),
then6 < n < 10 sinced(v) = 3 andd§(G) > 2. Forn = 6, there is one such graph. By a straightforward calculation,

mi(G) = 3 < 4. Forn = 8, there are two such graphs. By a straightforward calculatioi(G) = 7 < 8. Forn = 10, we get
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v v v v v
@; G2 a3 G4 @;5 \/PC:G
2 2 2 2% 2 2
v v v v v v
G" \/l\ng G G % G
3 % » D E3 B
(% (% v v % U
felt 14 15 al QGY felt:
K*) K*) 4 vl 3 B
v v v
v v v
G4 G2 GQ]“ @Gm. 23 24
D a1 D B a1 8
v v v v v v
ED a Pl 3 Pl a
v v Y 4 ) )
i GSI ﬁ; G33 G34 G35 G3
3 © Y] “ 0 5
v v v v v 1 v
GS' GBS G39 ﬁGZl G41 G42
2 “ a ‘ a B M
v v v
‘/P@ & Ig oM 45 @G%
@ © a ‘ »

Fig. 5. GraphsG!, G2, ..., G*® used in Case 2 of Fact 2, in which each number below the gfdpis an upper
bound ofmi(G?), i = 1,2, ..., 46.
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G1 = Cy % 2K7. By Lemma 1mi(G) < mi(G — v) + mi(G1) = 12+ 3 = 15 < 16. Hencemi(G) < r™~2. The result
holds.

Now we consider thati has no good vertex, that is to say, each vertex of degreemust be contained in all cycles 6f.
This implies thatG must be the graph with structures shown in Figs. 3(c) or 3gg)Lemma 8 and7 2 Cs, Cs andC1g, we
assume thaf7 is not a cycle. IfG is a graph of the structure in Fig. 3(c), théhhas only one vertex of degree> 3. SinceG is
a bipartite graph of even order, the(u) > 6 andG — u consists of > 3 disjoint paths of even length, sa@.,, Pn,, ..., Pn,

(see Fig. 3(c)), wherk = @. By Lemmas 2 and 3, it follows that

mi(G — u) = ﬁ mi(Pnj) < ﬁ ri—1 < rn—4
Jj=1 j=1
and so
mi(G) mi(G — u) + mi(G — Nglu]) (by Lemma 1)
s (by Lemma 6)

57“”78 < 7,,7L72

IN N

The result holds.

SupposeG is a graph of the structure in Fig. 3(d), théhhas exactly two vertices degree 3, sayw,v. It follows that
d(u) = d(v) = d > 3 andG — {u,v} consists ok disjoint paths, say’,, , Pn,,. .., Pn;, Withni > na > --- > ny, where
k = dif u andv are not adjacent ard= d — 1 otherwise. Sincé& is a bipartite graph, either all;’s are odd or alk;'s are even.

If all n;’s are odd, we havé = d > 4. By Lemmas 2 and 3, we get

k k
mi(G—u—v) = mi(Pn;) < HT”j71 <S8,
=1 j=1
This gives
mi(G) < mi(G — u —v) + mi(G —u —v — Ng(v)) + mi(G — Ng[u]) (by applying Lemma 1 twice)

<
<=6 4 pn—6 4 pn—5-1 (by Lemma 6)

T
37,,7L76 < Tn72

Now we consider that alh;'s are even. LeP,; = uiusz...un,. By Lemma A, we assume; < 4. If n; = 4, then both
L1 = G —{u1,u2,us}andLy = G — {u2,us,us} have cycles ands = G — {u1,u2,us, uq,v1} is a tree. Furthermore,
L 2 Ty (n — 4) unlessG is one of the graphs shown in Figures 4(c), 4(d) and 4(fL3glf T1 (n — 4), by Lemma 1 we get

mi(G) < mi(G — w1 — u3) + mi(G — u1 —uz — N(u1)) + mi(G — Nus])
= mi(Ll) + mi(Lg) + mi(Lz)
<3rm 8 4 =6 4 3pn—8 (by induction hypothesis and Lemma 6) (A.6)

— 7,,7L72'

The equality in (A.6) holds if and only iL., = Ly = Cs * K1 or O1(n — 3), Ly = Ho(6) & 25Ky, Ho(8) W

212 Ky, Ho(10) W25 Ko, Hy (k)W 2=E=2 Ky, Ha (k)W 2=E=2 K5, or Hs (k)& —E=2 K5 If L1 = Ly = Cs+ Ky, then
n = 10andG = Hy(10). Somi(G) = mi(Hp(10)) = 16, hence we get the extremal grapfy (10). If L1 = Lo = O1(n—3),
thenn = 8 andG = Hy(8). Somi(G) = mi(Hp(8)) = 8, hence we get the extremal grapfy (8). Our result holds.

If Ly = Th(n — 4), G is one of the graphs shown in Figs. 4(c), 4(d) and 4(f). Bydimlculation, we have, for Fig. 4(c),
mi(G) = 13 < 16; for Fig. 4(d) (» > 8), mi(G) = 3r"~6 4+ 2 < r"~2, the equality holds if and only it = 8, G = Hy(8),
hence we get extremal graghy(8); for Fig. 4(f) (n > 10), mi(G) = 3r"=6 + 4 < r?~2, the equality holds if and only if
n = 10, G = Ho(10). Hence, we assume; < 2, which impliesn; = na = --- = ng = 2. SinceG 2 B, we conclude that
v1 must be adjacent to;. Somi(G) = "2 andG = Hy(n).

This completes the proof. ]




