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ALTERNATING VECTOR ADDITION SYSTEMS
WITH STATES

JEAN-BAPTISTE COURTOIS AND SYLVAIN SCHMITZ

ABSTRACT. Alternating vector addition systems are obtained by equip-
ping vector addition systems with states (VASS) with ‘fork’ rules, and
provide a natural setting for infinite-arena games played over a VASS.
Initially introduced in the study of propositional linear logic, they have
more recently gathered attention in the guise of multi-dimensional en-
ergy games for quantitative verification and synthesis.

We show that establishing who is the winner in such a game with a
state reachability objective is 2-EXPTIME-complete. As a further appli-
cation, we show that the same complexity result applies to the problem
of whether a VASS is simulated by a finite-state system.

KEYWORDS. VASS, energy game, simulation game, Pareto frontier

1. INTRODUCTION

Vector addition systems with states (VASS) allow to model systems ma-
nipulating multiple discrete resources, for instance bank accounts balances
or numbers of processes running concurrently. Extending their definition to
two-players games is both a very natural endeavour and a tricky problem:
the most immediate definition, where both players can freely update the
vector values, leads to an undecidable game even with the simplest winning
condition, namely control state reachability [IJ.

Facing this difficulty, one might expect to see a flurry of competing def-
initions for VASS games that would retain decidability through various re-
strictions. Surprisingly, this is not really the case: if there is indeed a large
number of denominations (e.g. B-VASS games [19], Z-reachability games [5],
multi-dimensional energy games [7]), Abdulla, Mayr, Sangnier, and Spros-
ton [2] noted last year that they all defined essentially the same asymmetric
class of games, where one player is restricted and cannot update the vector
values.

Our contention in this paper is that so many different people coming up
independently with the same model is not a coincidence, but a sure sign
of a fundamental idea deserving investigation in its own right. We find
further arguments in our own initial interest in such games, which comes
from the study of simulation problems between Petri nets and finite-state
systems [12], [I5] where they arise naturally. Furthermore the model was
already explicitly defined in the ’90s in the study of substructural logics [16,
13l 22], and appears implicitly in recent proofs of complexity lower bounds
in 9, 3].

Work funded in part by the ANR grant 11-BS02-001-01 REACHARD.
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2 J.-B. COURTOIS AND S. SCHMITZ

We show in this paper that determining the winner of an asymmetric
VASS game with a state reachability objective is 2-EXPTIME-complete. We
extend for this well-known techniques by Rackoff [18] and Lipton [17] used
to establish the complexity of VASS problems, see sections 3| and We
also provide refined bounds when the dimension of the problem is fixed, and
show how to compute the Pareto frontier for such games.

Perhaps more importantly than those technical contributions, we propose
a single, simple definition for alternation in VASS by way of ‘fork’ rules in
for which the complexity analyses of sections 3] and [4] are relatively
easy, and establish it as a pivotal definition for VASS games. Indeed, we
relate it to energy games in[Section 5| (following [2]) and to regular simulation
problems for VASS in Our lower bound improves on all the
published bounds for those problems, including the EXPSPACE-hardness of
simulations between basic parallel processes and finite-state processes due
to Lasota [I5]. Our upper bound applies to the simulation of Petri nets by
finite-state systems, for which only decidability was known [12].

2. ALTERNATING VASS

Alternating VASS were originally called ‘and-branching’ counter machines
by Lincoln, Mitchell, Scedrov, and Shankar [16], and were introduced to
prove the undecidability of propositional linear logic. Kanovich [I3] later
identified a fragment of linear logic, called the (!, ®)-Horn fragment, that
captures exactly alternation in VASS, and adopted a game viewpoint. Al-
ternating VASS were also instrumental in establishing the ACKERMANN-
completeness of the conjunctive-implicational fragment of relevance logic [22].
As discussed in sections [5] and [6] this class of systems has since reappeared
in other contexts, which motivates its study in earnest.

2.1. Basic Definitions. An alternating vector addition system with states
(AVASS) is syntactically a tuple A = (Q,d,T,,Ty) where @ is a finite set
of states, d is a dimension in N, and T, C Q x Z¢ x @ and Ty C Q?
are respectively finite sets of unary and fork rules. We denote unary rules
(¢,u,q1) in T, with u in Z? by ‘¢ = ¢1’ and fork rules (¢, g1, ¢2) in Ty by
‘¢ = q1 N g2 A wvector addition system with states (VASS) is an AVASS
with Tf = 0.

2.1.1. Deduction Semantics. Given an AVASS, its semantics is defined by
a deduction system over configurations (q,v) in Q x N% if ¢ 2 ¢ and
q — q1 A\ g2 are rules, then

_eY unary v fork

q1,vV+u 1,V G2,V
where ‘+’ denotes component-wise addition in N¢, and implicitly v + u
has no negative component, i.e. is in N¢. Such a deduction system can be
employed either top-down or bottom-up depending on the decision problems
at hand (as with tree automata).

When working with finite deduction trees t, we define the height h(t) of

t as the maximal length among all its branches. A (multi)-context C is
a finite tree with n distinguished leaves labelled with n distinct variables
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Z1,...,Tpn; Clt1,...,t,] then denotes the tree obtained by substituting for
each 1 < j < n the tree t; for the variable z;.

2.1.2. Game Semantics. The top-down direction of the deduction semantics
allows for potentially infinite deduction trees, and defines in a natural way
an asymmetric VASS game as defined by Kanovich [13] and later by Raskin
et al. [19]. Two players, ‘Controller’ and ‘Environment’, play over the infinite
arena @ x N, In a current configuration (g,v), Controller chooses among
the applicable rules in T;, U Ty. In case of a unary rule ¢ = ¢, the next
configuration is (¢/, v4u), where by assumption v4+u > 0 where ‘0’ denotes
the null vector in N%. In case of a fork rule ¢ — ¢1 A g2, Environment then
chooses which branch of the deduction tree to explore, i.e. chooses between
(q1,v) and (g2, V) as the next configuration. Various winning conditions on
such plays (qo, vo),(q1,V1),... can then be envisioned, and correspond to
conditions that must be satisfied by all the branches of a deduction tree. As
shown by Abdulla et al. [2], such asymmetric games are closely related to

multi-dimensional energy games [7, 5], see

2.2. Decision Problems and Complexity. We assume when deriving

complexity bounds a binary encoding of vectors in Z%. That is, letting

|lullso & maxj<;<q|u(i)| denote the norm of the vector u and defining

1T | oo def mMax (g u,q¢)er, |[Ulccthe norm of a set of unary transitions, then

the size of an AVASS (Q,d,Ty,Tf) depends polynomially on the bitsize
log(||Tu|loc +1). Note that we can reduce in logarithmic space by stan-
dard techniques all our decision problems to work with a set of unary rules
T! with effects u = e; or u = —e;—where ‘e;’ is the unit vector with ‘1’ in
coordinate ¢ and ‘0’ everywhere else—, but this comes at the expense of an
increase in the dimension by a factor of log(||Ty|lco + 1)-

2.2.1. Reachability. The decision problem that originally motivated the def-
inition of AVASS by Lincoln et al. [16] is reachability: given an AVASS
(Q,d, T, T¢) and two states ¢, and gy in @, does there exist a deduction
tree with root labelled by (¢, 0) and every leaf labelled by (g, 0)? Equiva-
lently, does Controller have a strategy that ensures that a play starting in
(gr,0) eventually visits (g, 0)?

This problem is easily seen to be ¥9-complete:

Fact 2.1 (Lincoln et al. [I6]). Reachability in AVASS is undecidable.

Proof Idea. By a reduction from the halting problem in Minsky machines:
note that a zero test ¢ =0, ¢’ on a counter ¢ can be emulated through a
fork ¢ — ¢’ A q., where unary rules g, N qc for all ¢ # c allow to empty

the counters different from ¢, and a last unary rule g, 9, q¢ to the single
target state allows to check that ¢ was indeed equal to zero. O

2.2.2. State Reachability. Our main problem of interest in this paper is state
reachability (aka leaf coverability): given as before an AVASS (Q,d, Ty, Ty)
and two states ¢, and ¢, in ), we ask now whether there exists a deduction
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tree with root labelled by (g,,0) and every leaf label in {g,} x N¢. Equiva-
lently, does Controller have a strategy that ensures that a play starting in
(qr,0) eventually visits (g¢, v) for some v in N9?

We prove in this paper that state reachability is 2-EXPTIME-complete,
see [I'heorem 3.1| and [Proposition 4.1]

2.2.3. Non-Termination. A second problem of interest is non-termination:
given an AVASS (Q,d, T, T¢) and an initial state ¢, in @, does there exist a
deduction tree where every branch is infinite? Equivalently, does Controller
have a strategy to ensure that a play starting in (g, 0) never stops?

Brézdil, Jancar, and Kucera [5] show in the context of energy games
that this problem is ExpSpACE-hard, and in (d — 1)-EXPTIME when the
dimension d is fixed. It is still open whether this upper bound could be
lowered, but our 2-EXPTIME lower bound in [Proposition 4.1]is the best one
can hope for.

We discuss a few other decision problems related to energy games in

and to regular VASS simulations in

2.3. Example. Figure presents a 2-dimensional AVASS with state set
Q={q,9 q1,q2,q} and a single fork rule ¢ — q1 A go.

v @
(_17 0)
(0,1) qr,1,0

w q2, 17 1
©,-1) q€7071 qf7170
Cio (22)

(A) A 2-dimensional AVASS A. (B) A deduction tree in A.

FIGURE 1. State reachability and non-termination in an AVASS.

For the state reachability problem, observe that Controller cannot ensure
reaching state ¢y from the initial configuration (g,,0,0): in configuration
(¢,0,1), Environment can send to (¢1,0,1) from which only (g,,0,0) can be
reached; in configuration (g, 1,0) Environment can send instead to (g2, 1,0)
with the same conclusion. However, starting instead from an initial config-
uration (g, 1,0) would give Controller a winning strategy described by the
deduction tree in

Regarding the non-termination problem, in a similar way Controller can-
not ensure an infinite execution from (g,,0,0): this time Environment can
force Controller to visit gy where the system deadlocks.

3. CoMPLEXITY UPPER BOUNDS

The state reachability problem asks about the existence of a deduction
tree with root (g,,0) and leaves labels in {g/} x N? which describes when
using the game semantics a winning strategy for Controller. More generally,
we are interested in deduction trees with root label (¢,v) and leaves in
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{q¢} x N, which we call witnesses for (g,v). Let us write A, g;> ¢, v if such
a witness exists in an AVASS A; then the state reachability problem asks
whether A, ¢; > ¢y, 0.

Following Rackoff [18], the main idea to prove a 2-EXPTIME upper bound
on the state reachability problem is to prove a doubly exponential upper
bound on the height of witnesses, by induction on the dimension d; see
But let us first make a useful observation: if A, g, > ¢, v and
(¢',v') > (q,v) for the product ordering over @ x N% i.e. if ¢ = ¢ and
v/(i) > v(i) for all 1 < i < d, then A, ¢ >¢',v', and is moreover witnessed
by a deduction tree of the same height—indeed, this is the deduction tree
with v/ —v added to all the labels. This means that the set of root labels that
ensure reaching ¢, is upward-closed, and since (Q X N¢, <) is a well partial
order, it has a finite set of minimal elements called its Pareto frontier:

Pareto(A, ¢/) < min{(¢,v) € Q x N’ | A, g, q,v} . (1)
For instance, with the example AVASS of

ParetO(Av QZ) = {(qrv 170)7 (qr,(), 1)7 (Q7 17 1)7 ((ha 150)7 (q270) 1)5 (QKvovo)} :

We use in [Section 3.2 the bounds on the size of witnesses to show that
Pareto frontiers can be computed in doubly exponential time, which in turn
proves:

Theorem 3.1. State reachability in AVASS is in 2-EXPTIME. It is in
EXPTIME when the dimension is fixed, and in PTIME when furthermore the
bitsize is fized.

Note that the PTIME bound in the case of a fixed dimension and fixed bitsize
is not trivial, since it still allows for infinite arenas. In essence it shows that
we can add a fixed number of counters to a reachability game ‘for free.’

3.1. Small Witnesses. Let us fix an instance (A, ¢, ¢s) of the state reach-
ability problem with A = (Q,d,T,,Ty) and write [d] o {1,...,d} for its
set of components. For a subset I C [d] of the components of A, we

write ujr for the projection of a vector u on I, and define the projection
def def

Air = (Q, 1], Tu;1,Ty) of A on I as the AVASS with unary rules Ty =

def
{(; w1, ) | (g;u,q) € Tu}. Let W = {(q,v) € Q x NI | Ajp, g0 g, v}
be the set of witness roots in .A4;7. We are interested in bounding the height
h(t) of minimal witnesses t in Aj;:

H; Y sup min{h(t) | t witnesses (¢,v)}, (2)
(a,v)EWT
where implicitly H; = 0 if no witness exists.

A last remark before we proceed is that, if a label (q,v) appears twice
along a branch of a witness ¢, i.e. if t = C[C’[t]] for some context C, some
non-empty context C’ with root label (¢, v), and tree ¢’ with root label (¢, v),
then the shortening C[t'] of t, obtained by replacing C’[t'] by ¢’ in ¢, is also
a witness.

Assume that there exists some witness for some root label (g, v). We are
going to bound H; by induction on |I]: for the base case where I = (), by
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q,Vv

Tz

=

IN

o

qi1,Vi1 qn,Vn §
~ o
= =

ti\ - /tn Vi +
— T

- in

~ ~

- 1

t:C[tl,...,tn}

FIGURE 2. Bounding the height of minimal witnesses.

repeated shortenings we see that no branch of a minimal witness can have
the same state twice, thus

Hy <1Q| . (3)

Consider now some non-empty set I and a minimal witness ¢ for (¢, v). We
would like to bound H7, assuming by induction hypothesis that we are able
to bound H for all J C I by some value

HC[ > maXHJ .
- JCI

Define for this a large value

def
Br = [T loo - Herp

and consider along each branch of ¢ the first occurrence (starting from the

root) of a node with some vector value > By if one exists. If there are n such

occurrences then t = C[ty,...,t,] where C is a context where all the vector

values are < By, and each t; witnesses Ay, q¢ > gj,v; where v;(i;) > By for
some i; in I.

(1) By repeated shortenings, we can bound the height of C by |Q| -B'I”.

(2) For each j, let I; & I\ {i;}. Then t; is also a witness for Az, g, >

4> Vi, and we can replace it by a witness t;- of height at most Hy;.

Then t; also witnesses Ay, q¢>q;, v; because B bounds the maximal

total decrease that can occur along a branch of a deduction tree of
height H I

See for an illustration. Hence ¢ % C [t],...,t)] is a witness for

(q,v) and
Hy < h(t) < |Q1- By + Her = Q1 (|Tulloo - Hen)! + Hey . (4)
Combining (3) with (), we obtain:
Hig < (1Q] - (| Tulloo + 1) + 1)@D". (5)

Observe that this bound is doubly exponential in d, but only exponential in
the bitsize log(||Tu||lec + 1), and polynomial in the number of states |Q)|.
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3.2. Pareto Frontier. Equation yields an algorithm in AEXPSPACE =
2-EXPTIME to decide given (¢,v) in @ x N¢ whether A, ¢, > ¢, v, since it
suffices to look for a minimal witness of height at most Hq), and the vector
values in such a witness are bounded by Hig) - | Tyl co-

Furthermore, as observed by Yen and Chen [23], a bound like (5] that does
not depend on the initial configuration (g, v) can be exploited to compute the
Pareto frontier: if (¢, v) belongs to Pareto(A, g¢), then [|v|joc < Hg*||Tu|co-
Thus the Pareto frontier can be computed by running the previous algorithm
on at most [Q - (1 + Hg - |1 Tullo0)? candidates (q,v):

Proposition 3.2. Let A = (Q,d, Ty, Ty) be an AVASS and q; be a state
in Q. Then the Pareto frontier Pareto(A,qe) can be computed in doubly
exponential time. If d is fized it can be computed in exponential time, and
if | Tulloo s also fized it can be computed in polynomial time.

4. COMPLEXITY LOWER BOUNDS

In this section, we match the 2-EXPTIME upper bound of [Theorem 3.1
for state reachability in AVASS (Section 4.1). Regarding the fixed dimen-

sional cases, we also show in [Section 4.2| that our EXPTIME upper bound is
optimal—note that the case where both the dimension and the bitsize are
fixed is trivially PTiME-hard by reduction from the emptiness problem for
tree automata. These lower bounds on decision problems also entail that our
bounds in [Proposition 3.2| for the complexity of computing Pareto frontiers
are optimal.

4.1. A General Lower Bound. We extend the classical EXPSPACE-hardness
proof of Lipton [I7] for state reachability in VASS to the AVASS case. In-
stead of reducing from the halting problem for Minsky machines with counter
valuations bounded by 22", we reduce instead from the same problem for
alternating Minsky machines.

More precisely, a Minsky machine can be defined as a VASS with addi-

tional zero-test rules T, of the form ¢ ﬁi) q for 1 < < d with deduction

semantics

g, v v(i)=0

————— zero-test

q,v

An alternating Minsky machine (Q,d, T, Ty, T.) can similarly be defined
by allowing fork rules. By adapting the usual encoding of Turing machines
into Minsky machines [I1] to the alternating case, the halting problem for
alternating Minsky machines with counter values bounded by 22" is hard for
AEXpPSPACE = 2-ExpTIME. With this in mind, the necessary adaptations

of |Lipton/s reduction are straightforward.

Proposition 4.1. State reachability and non-termination in AVASS are
hard for 2-EXPTIME.

Proof Idea. Consider an alternating Minsky machine M = (Q,d, Ty, T¢,T>)

with vector components bounded by 22" for n oof M| and a target state gy
with no applicable rule. Note that we can assume that M always termi-
nates: we can otherwise reduce to this case by constructing a padded M’
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that first initialises an additional counter to |Q| - 22" the number of dis-
tinct configurations of M and then decrements it at every step. Then state
reachability and non-termination are essentially the same, as it suffices to
add a self-loop on ¢.

The main issue is to handle zero-tests using only unary rules (and forks).
Liptons idea to this end is to introduce complementary coordinates i for
each coordinate ¢ of the original machine, such that after an initialisation
phase v(i)+v(i) = 22" in any configuration (g, v) of the constructed AVASS.
Maintaining such an invariant is easy by encoding unary rules ¢ — ¢’ by

q utu, ¢’ where 1 applies —u to the complement coordinates. Then a zero-

test q =0, ¢’ can be replaced by a fork ¢ — ¢’ A ¢; where ¢; is a new
state such that a computation starting from (g;,v) eventually reaches g,
only if v(i) = 22" and deadlocks otherwise. The subsystem reachable from
¢; is constructed by |Lipton using only unary rules, just like the initialisation
subsystem, which guarantees that (¢, v) can be reached from the new initial
configuration (q.,0) only if v(i) = 0 and v(i) = 22" for all 1 < i < d and
deadlocks otherwise.

As can be noticed in this proof sketch, some aspects of [Lipton/s construc-
tion could be simplified by the use of forks, namely the somewhat delicate
handling of ‘return states’ in the subsystems. However shows
that forks offer only limited additional computational power. O

Propositionwas implicit in the 2-EXPTIME lower bound proofs of [9] 3]
for similar questions. Reducing instead from AVASS would simplify these
proofs by separating the extension of |[Lipton's arguments from the actual
reduction.

4.2. Fixed Dimension. Similarly to[Proposition 4.1 proving an EXPTIME
lower bound in the case where the dimension d is fixed is rather easy: Rosier
and Yen [20, Theorem 3.1] show indeed that the boundedness problem for
VASS of dimension d > 4 is PSPACE-hard by reducing from the accep-
tance problem in linear bounded automata (LBA). Their proof easily ex-
tends to the state reachability and non-termination problems for VASS, and
for AVASS by reducing instead from alternating LBA.

Proposition 4.2. State reachability and non-termination in AVASS of fixed
dimension d > 4 are EXPTIME-hard.

Proof Idea. Let us first fix some notation. An alternating linear bounded au-
tomaton is an alternating Turing machine A = (Q¢, Qo, %, T, 6, qo, F, -, F)

where Q)¢ and (o are two disjoint finite sets of states with union @ o
QoW o, ¥ C I are finite input and tape alphabets, go € @ and F C @
are an initial state and a set of final states, - and - are the left and right
endmarkers in X, and § is a transition relation in @ x I' x @ x I" x {—1,1}.

A configuration of A is a triple (Fay - --a,,q,7) where a;---a, is a se-
quence in I'* ¢ is the current state, and 0 < i < n+1 is the current position
of the head. A transition (g, a;, ¢, b, m) in 6 updates such a configuration to
(Fay---a;—1bajt1 -+ an,q,i + m). Because A is linearly bounded, it can
never move left of F nor right of 4 nor overwrite them. A configuration
with ¢ in Q¢ is existential, and universal otherwise. We assume without
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loss of generality that I' = {0, 1} and that there are exactly two transitions
(go, c1,q1,b1,m1) and (qo, 2, g2, b2, ma) for each state go in Q.

Alternation is handled as usual by seeing a computation as a finite tree
with a single successor for existential configurations and all the successors
for universal ones, and a computation is accepting if all its leaves are in
accepting states. The acceptance problem for an alternating LBA A and an
input xg in X* asks whether there exists an accepting computation rooted
by (Fzo, qo,0), and is complete for APSPACE = EXPTIME.

Consider an instance (A, xo) of the alternating LBA acceptance problem

with n & |zg|. The idea behind Rosier and Yen’s reduction in the non-

alternating case is to encode a (Fap - - - a,,¢,7) of A using a 4-dimensional
vector v such that aj---a;—1 is a binary representation of v(1), a;---a,
one of v(2), and the complement sequences (1 —aj)---(1 —a;—1) and (1 —
a;)--- (1 — ay) binary representations of v(3) and v(4). The current state
q and head position i are encoded in the states of the AVASS. Testing and
rewriting the current symbol and moving the head left or right can then be
performed using unary rules, relying for this on the fact that update values
exponential in n can be succinctly represented in an AVASS of polynomial
size.

It thus remains to see how LBA alternation, i.e. a pair of universal tran-
sitions (¢, c1,q1,b1,m1) and (g, c2,q2, b2, m2) with ¢ in Qo can be imple-
mented. Without entering the details of [Rosier and Yen|s encoding, we
simply need the fact that there exist

. . r0,i7
e vectors 70,77 and "1,77 in N* such that a rule ¢ —— ¢ (resp.

X

q SESAN q") can be applied in an AVASS configuration (¢, v) if and
only if v encodes an LBA configuration with a; = 0 (resp. a; = 1),
and

e states "¢,i"; for j € {1,2} whose applicable rules implement transi-
tion (g, ¢, gj, bj, m;) assuming head position 1.

We construct the following gadget:

0
I a'pply (Q7cl7q17b17m1)
7

N

0
22
@ : /\
LY
%3
Ve
<N

0 @ apply (q7027q27b27m2)

Observe that Environment cannot ‘cheat’ by attempting to force Controller
into a deadlock by forcing the application of a transition (g, ¢j, ¢;,bj, m;)
where ¢; does not match the current symbol a; under the head: Controller
would punish such a move by going directly to ¢, the target state using the

Ml—cj,i"
———— unary rule. O
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q

"®

FiGure 3. Translation of Environment rules from energy
games to AVASS games [2].

- AZ;@
o

5. ENERGY GAMES

The asymmetric game semantics described in is easily seen to be
equivalent to one-sided VASS games as defined in [I9, 2]. Such a game
is played on a VASS with a partitioned state space @ = Q¢ W Qn, where
Controller owns the states in ()¢ and can freely manipulate the current
vector value, while Environment owns the states in ()g and can only change
the current state: if go — ¢’ is a rule in T, and g € Qp, then u = 0; these
restricted Environment rules correspond to AVASS fork rules.

5.1. Multi-dimensional Energy Games. Abdulla et al. [2] have shown
the equivalence of AVASS games with the (multi-dimensional) energy games
of Brazdil et al. [5] and Chatterjee et al. [7], where the asymmetry between
Controller and Environment is not enforced in the structure of the AVASS
or in restricted unary rules for Environment: in such a game, Environment
can use arbitrary unary rules. This would lead to an undecidable state
reachability game when played on the Q x N arena [I], but energy games
are played instead over Q x Z%—which means that unary rules can be applied
even if they yield some negative vector components.

Asymmetry appears instead in the victory conditions for Controller. In
addition to a winning condition Win C Q¥ U Q* on the sequence of states
q0,q1, - - - appearing during the play, Controller must also ensure that all the
components of the vectors vy, vy, ... remain non-negative. Such games are
motivated by the synthesis of controllers that ensure that multiple quantita-
tive values (represented by the integer vectors) are maintained above some
critical values. illustrates |Abdulla et al./s translation from energy
games to AVASS: state ‘1’ denotes a losing state ensuring that no play that
visits it can satisfy Win—typically a deadlock state.

Various regular winning conditions Win can be employed in this setting:
the simplest one is (state) reachability, i.e. Win = Q*{q,}, which is in 2-
ExPTIME by Non-termination, i.e. Win = Q%, is shown to
be in TOWER, i.e. iterated exponential time, by Brazdil et al. [5]. Finally,
parity is shown decidable by Abdulla et al. [2]. Theorem furthermore
entails that state reachability and non-termination (and thus parity) multi-
dimensional energy games are 2-EXPTIME-hard.

5.2. Unknown Initial Credit. Chatterjee et al. [7] focus on the case where
the initial credit is unknown in these decision problems: given an AVASS
(Q,d,T,,Ty) a state ¢, and a winning condition Win, does there exist v,
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in N? such that Controller has a winning strategy from the configuration
(gr,vr)? This can be applied to decide whether Controller has a winning
finite-memory strategy in multi-dimensional mean-payoff games with un-
known initial credit [7].

This question is trivial in the case of state reachability, because it does
not depend on the update values u of unary rules:

Fact 5.1. State reachability with unknown initial credit in AVASS is PTIME-
complete.

Chatterjee, Randour, and Raskin [8] show that the unknown initial credit
problem is co-NPTIME-complete with parity winning conditions. In di-
mension d = 2 with fixed bitsize, Chaloupka [6] shows the problem to be
PTiME-complete for the non-termination objective.

6. REGULAR SIMULATIONS

Jancar and Moller [12] proved in 1995 that the two regular VASS simu-
lation problems VASS < FS and FS < VASS, which ask whether a VASS is
simulated by a finite-state system and vice versa, are decidable. They relied
however on well quasi orders in their proofs and no complexity upper bounds
have been published since—although ACKERMANN upper bounds are deriv-
able from [I0]. Regarding lower bounds, no improvement has appeared in
the general case over the easy EXPSPACE-hardness one can derive by reduc-
tions from the state reachability and non-termination problems for VASS
and the lower bounds of Lipton [I7] for these. However, in the particular
case where we restrict ourselves to basic parallel processes (BPP) instead of
VASS, Kucera and Mayr [14] proved that FS < BPP is PSpacE-hard and
BPP < FS is co-NPTiME-hard, and both bounds were later improved to
EXPSPACE-hardness by Lasota [15].

By presenting reductions to and from the state reachability and non-
termination problems in AVASS, we improve on all these results:

e BPP < FS and VASS < FS are both 2-EXPTIME-complete by
[Proposition 4.1 and [Theorem 3.1} and

e 'S < BPP and FS < VASS are both 2-ExpTiME-hard by
and in TOWER by the results of Brazdil et al. [5].

We conclude the section by discussing some related problems: in
we show that the simulation equivalence problem FS ~ BPP is
also 2-ExpTIME-hard, and in we show match the EXPSPACE-
hardness proof of Lasota [15] for the trace inclusion problem BPP C FS by
an EXPSPACE upper bound for VASS C FS.

6.1. Transition Systems and Simulations.

6.1.1. Labelled Transition Systems. Operational semantics are typically de-
fined through labelled transition systems (LTS) S = (S, %, —) where S is a
set of states, X is a set of actions, and — C S x X x S is a labelled transition
relation, whose elements (s1,a,s2) are denoted by ‘sy 2 89 When S is
finite we call S a finite-state system (FS).

For instance, the operational semantics of a VASS V = (Q,d,T,) along

with a labelling o:7T;, — X using a set of actions ¥ is the LTS Sy ot (Q x
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N4, ¥, —) with transitions (¢,v) = (¢/,v 4+ u) whenever r = ¢ = ¢ is a
unary rule in T, with label o(r) = a (which we write more simply ¢ 2
in the following).

6.1.2. Simulations. Given two LTS (S1,%,—1) and (S, 3, —2), a simula-
tion is a relation R C S7 x Sy such that, whenever (s1, s2) belongs to R then
for each action a in X, if there exists s} in S with s1 N s}, then there also
exists s, in Sy such that sy 9 s and (s}, sh) is also in R. A state s1 is
simulated by a state so, written s1 =< sg, if there exists a simulation R such
that (s1,s2) is in R.

Simulations can also be characterised by two-players turn-based simula-
tion games between ‘Spoiler’, who wishes to disprove simulation, and ‘Du-
plicator’, who aims to establish its existence, played over the arena S; X Ss.
In a position (s1, s2), Spoiler first chooses a transition s; 4 sy in &1, and
Duplicator must answer with a transition s Ly 8’2 with the same label a,
and the game then proceeds from (s, s)). A player loses if during one of
its turns no suitable transition can be found, otherwise the play is infinite
and Duplicator wins. Then s; =< ss if and only if Duplicator has a winning
strategy starting from (s, s2).

Given two classes of (finitely-presented) systems A and B, the simulation
problem A =< B takes as input two systems A in A and B in B with
operational semantics S4 and Sg, and two initial states s4 from S4 and spg
from Sp, and asks whether sy < sp. In the following we focus on regular
VASS simulations, where one of A and B is the class of labelled VASS and
the other the class FS.

6.2. From Regular VASS Simulations to AVASS. Our two reductions
from regular VASS simulations essentially implement the simulation game
as an AVASS game. Given a finite set of action X, a labelled VASS defined
by V =(Q,d,T,) and 0:T,, — 3, a finite-state system A = (S, X, —4), and
a pair of states (qo, o) from @ x S, we construct in both cases a state space

Q@ E(QxS5)w(Q xS xT)w{q)
for our AVASS. For convenience we allow forks of arbitrary finite arity ¢ —
A WARRAY S

6.2.1. VASS <X F'S. We actually reduce in this case from the complement
problem VASS A FS to AVASS state reachability from (qo, sgp). Controller
plays the role of Spoiler, owns the states in @@ x .S, and tries to reach the

distinguished state qy. Environment plays the role of Duplicator and owns
the states in @) x S x ¥. The rules of the AVASS are then:

(q,5) = (¢, s,a) whenever ¢ =% ¢’ € T, (6)
(¢ s,a) = an J\ (d,). (7)
si>As’

Observe that Spoiler has a winning strategy from (qo, so) in the simulation
game if and only if it can force Duplicator into a deadlock, i.e. a state s
and an action a where no transition s — 4 s’ exists. This occurs if and only
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if Environment can be forced into going to gy in in the AVASS game
starting from (qo, so).

Proposition 6.1. There is a logarithmic space reduction from VASS A FS
to AVASS state reachability.

6.2.2. FS < VASS. This direction is actually a particular case of [2, The-
orem 5], who show the decidability of weak simulation by reducing it to a
parity energy game. Controller now plays the role of Duplicator, owns the
states in @ x S x X, and attempts to force an infinite play. Environment

plays the role of Spoiler and owns the states in @ x S. The rules of the
AVASS are then:

(@)= N (@5,a), (8)
si)As’

(q,8,a) = (¢, ) whenever ¢ =% ¢’ € T, . 9)

Then, Duplicator has a winning strategy in the simulation game from (qo, so)
if and only if Controller has a winning strategy for non-termination in the
AVASS game starting in (qo, so):

Proposition 6.2. There is a logarithmic space reduction from FS < VASS
to AVASS non-termination.

6.3. From AVASS to Regular VASS Simulations.

6.3.1. Basic Parallel Processes. As announced at the beginning of the sec-
tion, we prove our lower bounds on the more restricted BPP rather than
VASS. Formally, a BPP net is a Petri net N' = (P,T,W) where P and T
are finite sets of places and transitions and W:(P x T) U (T x P) — N is
the weighted flow, where additionally for all transitions ¢ in T there is ex-
actly one place p in P with W(p,t) = 1 and for all p’ # p, W(p',t) = 0.
Given a labelling function o:T — ¥, its semantics is defined by the LTS
Sy aef (NIPLS =) where m 55 m — W(P,t) + W(t, P) if and only if
there exists ¢ with o(t) = a and m > W(P,t). In figures we represent places
as circles, transitions as rectangles, and positive flows as arrows.

In both our reductions, we want to implement an AVASS game as a sim-
ulation game where the FS is in charge of maintaining the state information
and the BPP is in charge of maintaining the vector values. We assume we
are given an AVASS (Q,d, Ty, T¢) in ordinary form, i.e. where the only up-
dates vectors in Ty, are unit vectors, and in binary form, i.e. for each state ¢
of ), either

e there is a fork ¢ — ¢1 A g2 (and we call ¢ an universal state), or

e there are exactly two unary rules ¢ — ¢; and ¢ — ¢» with origin ¢
(and we call it an ezistential state), or
e there are no applicable rules at all (and we call it a deadlock state).

We can ensure these two conditions through logarithmic space reductions.
Our action alphabet is then defined as

€UV, 3,1,2} U {ine;, dec; |1 < i< d} .
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! @
ineg dec; - g ‘ Vq—qi1/Ag2 € Ty :
2 .
ool L @l

V1<i<d

2

e o1 %3 r TCk, s
(if ¢ = ¢ and ¢ — gy € Ty

FI1GURE 4. Reducing AVASS state reachability to a simula-
tion BPP A FS.

6.3.2. BPP <X FS. We actually reduce AVASS state reachability to BPP A FS
and assume wlog. that the target state g, is a deadlock state. We construct
a BPP net for Spoiler with places

P = {run} U{ci |1 <i<d}
where run contains a single token at all times and the ¢;’s encode the current
vector value of the AVASS. Its transitions, labels and flows are depicted on
the left of Its purpose is to force Duplicator, which is playing
on the FS depicted on the right of into state go. Because ¢y is a
deadlock state and Spoiler can always fire transitions (e.g. V), it then wins
the simulation game.

Duplicator plays the role of Environment in the original AVASS game
and maintains the AVASS state using its state space, which contains Q.
When in a universal state it can choose the following state, but when in an
existential state Spoiler chooses instead the branch by firing transition 1 or
2. Duplicator ensures that the sequence of transitions of Spoiler is indeed
valid in the original AVASS, by punishing invalid transitions by entering
state ‘T,” where it can play any symbol and thus win the simulation game.

Proposition 6.3. There is a logarithmic space reduction from AVASS state
reachability to BPP A FS.

6.3.3. FS <X BPP. In this direction we reduce from the non-termination
problem. Spoiler now plays in an FS depicted on the left of and
plays for Environment in the original AVASS game. It still maintains the
current state of the AVASS in its state space.

Duplicator now plays on a BPP depicted on the right of It plays
the role of Controller in the original VASS game and maintains the vector
values in its places ¢; as before. We rely on Duplicator’s choice: using the
‘3’ label in existential states, Spoiler leaves the choice to Duplicator, who
can punish Spoiler if it does not comply with its choice between actions ‘1’
and ‘2’ by putting a token in place ‘T’ from where it wins.



ALTERNATING VECTOR ADDITION SYSTEMS WITH STATES 15

dec; .

@ N "

| v Vqﬁ?lAqgeT{“ ; ?
e ) ol N
()= Ak oL
2 2O~ ,

decy, g
oo Sig oy ’ TSk a
tif ¢ — ¢} and ¢ —= q5 € Ty

VaeX

FI1GURE 5. Reducing AVASS non-termination to a simula-
tion FS < BPP.

Proposition 6.4. There is a logarithmic space reduction from AVASS non-
termination to FS < BPP.

6.4. Simulation Equivalence. Two states s; and sy of two LTS &1 and S»
are simulation equivalent, noted s1 =~ s9, if they simulate each other—though
not necessarily by a single symmetric relation R—: s1 = s9 and s9 < s1. The
reduction from AVASS state reachability to BPP A FS in [Proposition 6.3
can easily be lifted to a reduction to BPP £ FS. This proves that BPP ~ FS
is 2-EXPTIME-hard, and improves on the EXPSPACE lower bound of Lasota
[15].

Indeed, as noted by [Lasota, N/ < A is equivalent to N+ A ~ A, where
‘+’ denotes a non-deterministic choice. Since a finite state system is also
a BPP, N' 4+ A can be represented by a BPP A/ with copies of N' and A
and an initial place marked pg and two transitions with label ‘init’ from pg
to run and g,. We match this new action on the FS side by adding a new
initial state ¢, and a transition labelled by init to ¢, to A to form A’. Then
Controller has a winning strategy to reach ¢, from ¢, in the AVASS game if
and only if Spoiler has a winning strategy in the simulation game between
N’ and A’ starting from ({po}, q.).

Proposition 6.5. There is a logarithmic space reduction from AVASS state
reachability to BPP % FS.

6.5. Trace Inclusion. Given a LTS § = (S,%,—), a trace of S from a
state sg is a finite sequence aqas - - - a, in X* that labels some sequence of
transitions sg R N sy of S. Given two LTS S; and S; and two
initial states s1 and so, we write ‘s; C so’ if the set of traces originating in
s1 is included in that originating in ss. If also s C s then s; and sy are
trace equivalent, noted ‘s; = so.” The corresponding regular trace inclusion
problems VASS C FS and FS C VASS were shown decidable by Jan¢ar and
Moller [12].

If S = (S9,%,—) is deterministic, i.e. if for all s in Sy and a in X,
there is at most one s’ in Sy such that s = s’, then s; < s9 if and only
if s1 C s9. This property was exploited by Lasota [I5] to show that the
problems BPP C FS, FS C BPP, and BPP = FS were all EXPSPACE-hard:
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indeed the ‘right-hand’ systems he constructed in this proofs were always
deterministic. Inspecting our proofs in we see that we cannot
use this argument.

6.5.1. VASS C F'S. We show here an EXPSPACE upper bound to VASS C FS.
Together with the EXPSPACE lower bound of Lasota [15] for BPP C F'S, this
yields the following;:

Proposition 6.6. VASS C FS is EXPSPACE-complete.

Proof Idea. Consider an instance of VASS C FS: let V = (Q,d,T,) be a
VASS with labelling function o:T,, — ¥ and A = (5,3, —4) be a FS, and
?

the trace inclusion question (qo, 0) C s for some initial g in Q and sg in S.
We first apply the subset construction to A from sg, yielding a deter-

ministic finite-state system D . (29,5, —p) of exponential size. By the
previous discussion, (go,0) C s¢ if and only if (go,0) < {so}.

We now build a synchronous product of V and D: this is a VASS V' &
(Qx25,d,T") where (¢, E) % (¢/, E') if and only if there exists a in ¥ such
that ¢ =% ¢/ in V and E %p E’ in D. In this product V', the triples in

FE{(qEv)eQx25xN |[FaeNTuezddf €eQv+u>0
AN 25 gA BAE'CS.ES E'}

(10)

denote the set of immediately winning positions ((¢q,v), E) for Spoiler in the
simulation game between V and D: it can fire the corresponding transition
q =24 ¢’ in V but Duplicator cannot reply with a transition £ = E’ in D.
Note that F' is upward-closed, with a finite set of minimal elements min F’
of size bounded by |Q| - 2!5 - || T} || -

Then Spoiler has a winning strategy from the initial pair ((qo,0),{so}) if
and only if there exists (¢, £, v) in min F' such that there exists an execution
of the VASS )V’

(a0, {s0},0) = -+~ == (¢, E, V) (11)

for some n and v/ > v. In other words, we can reduce (qp,0) C s to a
disjunction of coverability problems in V' a VASS with exponentially many
states but the same dimension d and same bitsize log(||T,|| + 1).

By the complexity upper bounds of Rackoff [I§] (see also Rosier and
Yen [20] and Blockelet and Schmitz [4]), such a disjunction of coverability
instances can be solved by a nondeterministic algorithm that guesses the
element (q, F/,v) to cover, and guess and check a coverability witness of the
form . This requires exponential space in the dimension but polynomial
space in the bitsize and number of states of V', hence overall exponential
space in the size of the original instance (X, V), 0,4, qo, So)- O

6.5.2. FS C VASS. The previous argument does not work for this direc-
tion. In fact, this is not surprising considering that Totzke [21] recently
claimed the problem FS C OCN to be ACKERMANN-complete, where ‘OCN’
denotes one-dimensional VASS.
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7. CONCLUDING REMARKS

Alternating VASS provide a unified formalism to reason about VASS
games, along with simple complexity arguments for state reachability ob-
jectives. This allows us to improve on all the previously known complexity
bounds for regular VASS simulations, and show in particular that VASS <FS
is 2-EXPTIME-complete.

The main open question at this point is whether the upper bounds for
non-termination and parity objectives on AVASS could be lowered to 2-
ExPTIME, and thus to close the gap between 2-EXPTIME-hardness and
TowER for FS < VASS. A first step to this end could be to extend the
PT1ME upper bound of Chaloupka [6] for the fixed bitsize and unknown ini-
tial credit case from dimension two to arbitrary fixed dimensions. However,
quoting [Chaloupka), ‘since the presented results about 2-dimensional VASS
are relatively complicated, we suspect this problem is difficult.’

Acknowlegements. The authors thank Stefan Goller who drew our atten-
tion to [12} [15] and to the fact that the exact complexities of the two regular
simulation problems were unknown.
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