A. Auger, D. Brockhoff, and N. Hansen, Benchmarking the local metamodel CMA-ES on the noiseless BBOB'2013 test bed, Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion, GECCO '13 Companion, pp.1225-1232, 2013.
DOI : 10.1145/2464576.2482701

URL : https://hal.archives-ouvertes.fr/hal-00825840

A. Auger, S. Finck, N. Hansen, R. Ros, and . Bbob, Comparison Tables of All Algorithms on All Noiseless Functions, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00471251

M. Brand, Fast low-rank modifications of the thin singular value decomposition. Linear algebra and its applications, pp.20-30, 2006.

O. A. Elhara, A. Auger, and N. Hansen, A median success rule for non-elitist evolution strategies, Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference, GECCO '13
DOI : 10.1145/2463372.2463429

URL : https://hal.archives-ouvertes.fr/hal-00801414

S. García, D. Molina, M. Lozano, and F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms??? behaviour: a??case study on??the??CEC???2005 Special Session on??Real Parameter Optimization, Journal of Heuristics, vol.48, issue.1, pp.617-644, 2009.
DOI : 10.1007/s10732-008-9080-4

N. Hansen, S. Müller, and P. Koumoutsakos, Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES), Evolutionary Computation, vol.11, issue.1, pp.1-18, 2003.
DOI : 10.1162/106365601750190398

N. Hansen, A. S. Niederberger, L. Guzzella, and P. Koumoutsakos, A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion, IEEE Transactions on Evolutionary Computation, vol.13, issue.1, pp.180-197, 2009.
DOI : 10.1109/TEVC.2008.924423

URL : https://hal.archives-ouvertes.fr/inria-00276216

N. Hansen and A. Ostermeier, Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation, Proceedings of IEEE International Conference on Evolutionary Computation, pp.312-317, 1996.
DOI : 10.1109/ICEC.1996.542381

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

N. Hansen and R. Ros, Benchmarking a weighted negative covariance matrix update on the BBOB-2010 noiseless testbed, Proceedings of the 12th annual conference comp on Genetic and evolutionary computation, GECCO '10, pp.1673-1680, 2010.
DOI : 10.1145/1830761.1830788

URL : https://hal.archives-ouvertes.fr/hal-00545728

N. Hansen, D. V. Arnold, and A. Auger, Evolution Strategies, Handbook of Computational Intelligence, 2013.
DOI : 10.1016/j.tcs.2006.04.004

URL : https://hal.archives-ouvertes.fr/hal-01155533

C. Igel, N. Hansen, and S. Roth, Covariance Matrix Adaptation for Multi-objective Optimization, Evolutionary Computation, vol.15, issue.1, pp.1-28, 2007.
DOI : 10.1109/TEVC.2003.810758

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. A. Jastrebski and D. V. Arnold, Improving Evolution Strategies through Active Covariance Matrix Adaptation, 2006 IEEE International Conference on Evolutionary Computation, pp.2814-2821, 2006.
DOI : 10.1109/CEC.2006.1688662

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. N. Knight and M. Lunacek, Reducing the space-time complexity of the CMA-ES, Proceedings of the 9th annual conference on Genetic and evolutionary computation , GECCO '07, pp.658-665, 2007.
DOI : 10.1145/1276958.1277097

D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, Mathematical Programming, vol.32, issue.2, pp.503-528, 1989.
DOI : 10.1007/BF01589116

I. Loshchilov, CMA-ES with restarts for solving CEC 2013 benchmark problems, 2013 IEEE Congress on Evolutionary Computation, pp.369-376, 2013.
DOI : 10.1109/CEC.2013.6557593

URL : https://hal.archives-ouvertes.fr/hal-00823880

I. Loshchilov, M. Schoenauer, and M. Sebag, Self-adaptive surrogate-assisted covariance matrix adaptation evolution strategy, Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, GECCO '12, pp.321-328, 2012.
DOI : 10.1145/2330163.2330210

URL : https://hal.archives-ouvertes.fr/hal-00686570

I. Loshchilov, M. Schoenauer, and M. Sebag, Bi-population CMA-ES agorithms with surrogate models and line searches, Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion, GECCO '13 Companion, pp.1177-1184, 2013.
DOI : 10.1145/2464576.2482696

I. Rechenberg, Evolutionsstrategie: optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog, 1973.

R. Ros and N. Hansen, A simple modification in CMA-ES achieving and space complexity, Parallel Problem Solving from Nature?PPSN X, pp.296-305, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00287367

D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Mathematics of Computation, vol.24, issue.111, pp.647-656, 1970.
DOI : 10.1090/S0025-5718-1970-0274029-X

Y. Sun, F. Gomez, T. Schaul, and J. Schmidhuber, A linear time natural evolution strategy for non-separable functions. arXiv preprint arXiv:1106, 1998.

T. Suttorp, N. Hansen, and C. Igel, Efficient covariance matrix update for variable metric evolution strategies, Machine Learning, pp.167-197, 2009.
DOI : 10.1007/s10994-009-5102-1

URL : https://hal.archives-ouvertes.fr/inria-00369468