Border Basis relaxation for polynomial optimization

Marta Abril Bucero, Bernard Mourrain

To cite this version:

Marta Abril Bucero, Bernard Mourrain. Border Basis relaxation for polynomial optimization. Journal of Symbolic Computation, 2015, 74, pp.378-399. 10.1016/j.jsc.2015.08.004 . hal-00981546v3

HAL Id: hal-00981546 https://inria.hal.science/hal-00981546v3

Submitted on 21 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

@(®)

Border basis relaxation for polynomial optimization

Marta Abril Bucero ${ }^{\text {a }}$, Bernard Mourrain ${ }^{\text {a }}$
${ }^{\text {a }}$ EPI GALAAD, INRIA Méditerranée, 2004 Route des Lucioles, BP 93, 06902 Valbonne, France

Abstract

A relaxation method based on border basis reduction which improves the efficiency of Lasserre's approach is proposed to compute the infimum of a polynomial function on a basic closed semialgebraic set. A new stopping criterion is given to detect when the relaxation sequence reaches the infimum, using a sparse flat extension criterion. We also provide a new algorithm to reconstruct a finite sum of weighted Dirac measures from a truncated sequence of moments, which can be applied to other sparse reconstruction problems. As an application, we obtain a new algorithm to compute zero-dimensional minimizer ideals and the minimizer points or zero-dimensional G-radical ideals. Experiments show the impact of this new method on significant benchmarks.

Key words: Polynomial optimization, moment matrices, flat extension, border basis

1. Introduction

Computing the global infimum of a polynomial function f on a semi-algebraic set is a difficult but important problem, with many applications. A relaxation approach was proposed in (Lasserre, 2001) (see also (Parrilo, 2003), (Shor, 1987)) which approximates this problem by a sequence of finite dimensional convex optimization problems. These optimization problems can be formulated in terms of linear matrix inequalities on moment matrices associated to the set of monomials of degree $\leq t \in \mathbb{N}$ for increasing values of t. They can be solved by Semi-Definite Programming (SDP) techniques. The sequence of minima converges to the actual infimum f^{*} of the function under some hypotheses (Lasserre, 2001). In some cases, the sequence even reaches the infimum in a finite number of steps (Laurent, 2007; Nie et al., 2006; Marshall, 2009; Demmel et al., 2007; Ha and Pham, 2010; Nie, 2011). This approach has proved to be particularly fruitful in many problems (Lasserre, 2009). In contrast with numerical methods such as gradient descent

[^0]methods, which converge to a local extremum but with no guaranty for the global solution, this relaxation approach can provide certificates for the infimum value f^{*} in terms of sums of squares representations.

From an algorithmic and computational perspective, however some issues need to be considered.

The size of the SDP problems to be solved is a bottleneck of the method. This size is related to the number of monomials of degree $\leq t$ and increases exponentially with the number of variables and the degree t. Many SDP solvers are based on interior point methods which provide an approximation of the optimal moment sequence within a given precision in a polynomial time: namely $\mathcal{O}\left(\left(p s^{3.5}+c p^{2} s^{2.5}+c p^{3} s^{0.5}\right) \log \left(\epsilon^{-1}\right)\right)$ arithmetic operations where $\epsilon>0$ is the precision of the approximation, s is the size of the moment matrices, p is the number of parameters (usually of the order s^{2}) and c is the number of constraints (Nesterov and Nemirovski, 1994). Thus reducing the size s or the number of parameters p can significantly improve the performance of these relaxation methods. Some recent works address this issue, using symmetries (see e.g. (Riener et al., 2013)) or polynomial reduction (see e.g. (Lasserre et al., 2012)). In this paper, we extend this latter approach.

While determining the infimum value of a polynomial function on a semi-algebraic set is important, computing the minimizer points, is also critical in many applications. Determining when and how these minimizer points can be computed from the relaxation sequence is a problem that has been addressed, for instance in (Henrion and Lasserre., 2005; Nie, 2012) using full moment matrices. This approach has been used for solving polynomial equations (Laurent, 2007; Lasserre et al., 2008, 2009; Lasserre, 2009).

The optimization problem can be reformulated as solving polynomial equations related to the (minimal) critical value of the polynomial f on a semi-algebraic set. Polynomial solvers based, for instance, on Gröbner basis or border basis computation can then be used to recover the real critical points from the complex solutions of (zero-dimensional) polynomial systems (see e.g. (Parrilo and Sturmfels, 2003; Safey El Din, 2008; Greuet and Safey El Din, 2011)). This type of methods relies entirely on polynomial algebra and univariate root finding. So far, there is no clear comparison of these elimination methods and the relaxation approaches.
Contributions. We propose a new method which combines Lasserre's SDP relaxation approach with polynomial algebra, in order to increase the efficiency of the optimization algorithm. Border basis computations are considered for their numerical stability (Mourrain and Trébuchet, 2005; Mourrain and Trébuchet, 2008). In principle, any graded normal form technique could be used here.

A new stopping criterion is given to detect when the relaxation sequence reaches the infimum, using a flat extension criterion from (Laurent and Mourrain, 2009). We also provide a new algorithm to reconstruct a finite sum of weighted Dirac measures from a truncated sequence of moments. This reconstruction method can be used in other problems such as tensor decomposition (Brachat et al., 2010) and multivariate sparse interpolation (Giesbrecht et al., 2009).

As shown in (Abril Bucero and Mourrain, 2013; Nie et al., 2006; Demmel et al., 2007; Marshall, 2009; Nie, 2011; Ha and Pham, 2010), an exact SDP relaxation can be constructed for "well-posed" optimization problems. As an application, we obtain a new algorithm to compute zero-dimensional minimizer ideals and the minimizer points, or
zero-dimensional G-radicals. Experiments show the impact of this new method compared to the previous relaxation constructions.
Content. The paper is organized as follows. Section 2 describes the minimization problem and includes a running example to explain the different steps of our method. In Section 3-5, we describe the ingredients of the main algorithm, which is described in Section 7. In section 3, we describe the SDP relaxation hierarchies (full moment matrices and border basis). In Section 4, we tackle the sub-problem of how to compute the optimal linear form through the solution of a SDP problem. In Section 5, we tackle the sub-problem of how to verify that we have found the infimum, checking the flat extension property using orthogonal polynomials. In Section 6, we tackle the sub-problem of how to compute the minimizer points using multiplication matrices. Section 7 gives a description of the complete minimization algorithm. Section 8 analyses cases for which an exact relaxation can be constructed. Section 9 concludes experimentation.

2. Minimization problem

Let $f \in \mathbb{R}[\mathbf{x}]$ be a polynomial function with real coefficients and let $\mathbf{g}=\left\{g_{1}^{0}, \ldots, g_{n_{1}}^{0}\right.$; $\left.g_{1}^{+}, \ldots, g_{n_{2}}^{+}\right\} \in \mathbb{R}[\mathbf{x}]$ be a set of constraints which is the union of a finite subset $\mathbf{g}^{0}=$ $\left\{g_{1}^{0}, \ldots, g_{n_{1}}^{0}\right\}$ of polynomials corresponding to the equality constraints and a finite subset $\mathrm{g}^{+}=\left\{g_{1}^{+}, \ldots, g_{n_{2}}^{+}\right\}$corresponding to the non-negativity constraints. The basic semialgebraic set defined by the constraints \mathbf{g} will be denoted $S:=\mathcal{S}(\mathbf{g})=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid g_{1}^{0}(\mathbf{x})=\right.$ $\left.\cdots=g_{n_{1}}^{0}(\mathbf{x})=0, g_{1}^{+}(\mathbf{x}) \geq 0, \ldots, g_{n_{2}}^{+}(\mathbf{x}) \geq 0\right\}$. We assume that $S \neq \emptyset$ and that f is bounded by below on S (i.e. $\left.\inf _{\mathbf{x} \in S} f(\mathbf{x})>-\infty\right)$. The minimization problem that we consider throughout the paper is the following: compute

$$
\begin{array}{r}
\inf _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x}) \tag{1}\\
\text { s.t. } g_{1}^{0}(\mathbf{x})=\cdots=g_{n_{1}}^{0}(\mathbf{x})=0 \\
g_{1}^{+}(\mathbf{x}) \geq 0, \ldots, g_{n_{2}}^{+}(\mathbf{x}) \geq 0
\end{array}
$$

When $n_{1}=n_{2}=0$, there is no constraint and $S=\mathbb{R}^{n}$. In this case, we are considering a global unconstrained minimization problem.

The points $\mathbf{x}^{*} \in \mathbb{R}^{n}$ which satisfy $f\left(\mathbf{x}^{*}\right)=\inf _{\mathbf{x} \in S} f(\mathbf{x})$ are called the minimizer points of f on S. The set of minimizer points is denoted $V_{\text {min }}=\left\{\mathbf{x}^{*} \in S\right.$ s.t $f\left(\mathbf{x}^{*}\right)=$ $\left.\inf _{\mathbf{x} \in S} f(\mathbf{x})\right\}$. The ideal of $\mathbb{R}[\mathbf{x}]$ defining the set $V_{\text {min }}$ is denoted $I_{\text {min }}$. The value $f^{*}=$ $\inf _{\mathbf{x} \in S} f(\mathbf{x})$ is called the minimum of f on S, when the set of minimizers is not empty.

If the set of minimizer points is not empty, we say that the minimization problem is feasible. The minimization problem is not feasible means that $V_{\min }=\emptyset$ and $I_{\text {min }}=\mathbb{R}[\mathbf{x}]$.

We present a running problem to explain the different steps of our method to solve Problem (1).

Example 2.1.

$$
\inf _{\mathbf{x} \in \mathbb{R}^{2}} f(x, y)=(x-1)^{2}(x-2)^{2}\left(x^{2}+1\right)+(y-1)^{2}\left(y^{2}+1\right)
$$

This example is a global unconstrained minimization problem. We take its gradient ideal and hereafter we consider the problem of minimizing the aforementioned function over its gradient ideal.

$$
\begin{array}{r}
\inf _{\mathbf{x} \in \mathbb{R}^{2}} f(x, y)=(x-1)^{2}(x-2)^{2}\left(x^{2}+1\right)+(y-1)^{2}\left(y^{2}+1\right) \\
\text { s.t. } 6 x^{5}-30 x^{4}+56 x^{3}-54 x^{2}+34 x-12=0 \\
4 y^{3}-6 y^{2}+4 y-2=0
\end{array}
$$

The minimizer points are $(1,1)$ and $(2,1)$. The minimum is $f^{*}=0$.

3. Convex relaxations

In this section, we describe the finite dimensional convex optimization problems that we consider to solve the polynomial optimization problem (1). We recall the well-known full moment matrix relaxation and then we explain the border basis relaxation that we use. At the end of the section we compute the border basis for our running example.

But first, we introduce the notation we are going to use. Let $\mathbb{R}[\mathbf{x}]$ be the set of the polynomials in the variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, with real coefficients in \mathbb{R}. For $\alpha \in \mathbb{N}^{n}$, $\mathbf{x}^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is the monomial with exponent α and degree $|\alpha|=\sum_{i} \alpha_{i}$. The set of all monomials in \mathbf{x} is denoted $\mathcal{M}=\mathcal{M}(\mathbf{x})$. For a polynomial $f=\sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha}$, its support is $\operatorname{supp}(f):=\left\{\mathbf{x}^{\alpha} \mid f_{\alpha} \neq 0\right\}$, the set of monomials occurring with a nonzero coefficient in f.

For $t \in \mathbb{N}$ and $F \subseteq \mathbb{R}[\mathbf{x}]$, we introduce the following sets: F_{t} is the set of elements of F of degree $\leq t ;\langle F\rangle=\left\{\sum_{f \in F} \lambda_{f} f \mid f \in F, \lambda_{f} \in \mathbb{R}\right\}$ is the linear span of F; if F is a vector space, F^{*} is the dual space of linear forms from F to $\mathbb{R} ;(F)=\left\{\sum_{f \in F} p_{f} f \mid p_{f} \in\right.$ $\mathbb{R}[\mathbf{x}], f \in F\}$ is the ideal in $\mathbb{R}[\mathbf{x}]$ generated by $F ;\langle F \mid t\rangle$ is the vector space spanned by $\left\{\mathbf{x}^{\alpha} f\left|f \in F_{t},|\alpha| \leq t-\operatorname{deg}(f)\right\} ; F \cdot F:=\{p q \mid p, q \in F\} ; \Sigma^{2}(F)=\left\{\sum_{i=1}^{s} f_{i}^{2} \mid f_{i} \in F\right\}\right.$ is the set of finite sums of squares of elements of F; for $F=\left\{f_{1}, \ldots, f_{m}\right\} \subset \mathbb{R}[\mathbf{x}]$, $\Pi(F)=\left\{\prod_{i=1}^{m} f_{i}^{\epsilon_{i}} \mid \epsilon_{i} \in\{0,1\}\right\}$.

3.1. Hierarchies of relaxation problems

Definition 3.1. Given a finite dimensional vector space $E \subset \mathbb{R}[\mathbf{x}]$ and a set of constraints $G \subset \mathbb{R}[\mathbf{x}]$, we define the quadratic module of G on E as

$$
\begin{aligned}
\mathcal{Q}_{E, G} & =\left\{\sum_{g \in G^{0}} g h+\sum_{g^{\prime} \in G^{+}} g^{\prime} h^{\prime}\right. \\
\mid h & \left.\in E, g h \in\langle E \cdot E\rangle, h^{\prime} \in \Sigma^{2}(E), g^{\prime} h^{\prime} \in\langle E \cdot E\rangle\right\}
\end{aligned}
$$

If $G^{\star} \subset \mathbb{R}[\mathbf{x}]$ is the set of constraints such that $G^{\star 0}=G^{0}$ and $G^{\star+}=\prod\left(G^{+}\right)$, the (truncated) quadratic module $\mathcal{Q}_{E, G^{\star}}$ is called the (truncated) preordering of G and denoted $\mathcal{Q}_{E, G}^{\star}$ or $\mathcal{P}_{E, G}$.

By construction, $\mathcal{Q}_{E, G} \subset\langle E \cdot E\rangle$ is a cone of polynomials which are non-negative on the semi-algebraic set S.

We consider now its dual cone.

Definition 3.2. Given a finite dimensional vector space $E \subset \mathbb{R}[\mathbf{x}]$ which contains 1 and a set of constraints $G \subset \mathbb{R}[\mathbf{x}]$, we define

$$
\mathcal{L}_{E, G}:=\left\{\Lambda \in\langle E \cdot E\rangle^{*} \mid \Lambda(p) \geq 0, \forall p \in \mathcal{Q}_{E, G}, \Lambda(1)=1\right\} .
$$

The convex set associated to the preordering $\mathcal{Q}_{E, G}^{\star}=\mathcal{Q}_{E, G^{\star}}$ is denoted $\mathcal{L}_{E, G}^{\star}$.
By this definition, for any element $\Lambda \in \mathcal{L}_{E, G}$ and any $g \in\left\langle G^{0}\right\rangle \cap E$, we have $\Lambda(g)=0$.
We introduce now truncated Hankel operators, which will play a central role in the construction of the minimizer ideal of f on S.

Definition 3.3. For a linear form $\Lambda \in\langle E \cdot E\rangle^{*}$, we define the map $H_{\Lambda}^{E}: E \rightarrow E^{*}$ by $H_{\Lambda}^{E}(p)(q)=\Lambda(p q)$ for $p, q \in E$. It is called the truncated Hankel operator of Λ on the subspace E.

Its matrix in the monomial and dual bases of E and E^{*} is usually called the moment matrix of Λ. The kernel of this truncated Hankel operator will be used to compute generators of the minimizer ideal, as we will see.

Definition 3.4. Let $E \subset \mathbb{R}[\mathbf{x}]$ such that $1 \in E$ and a set of constraints $G \subset \mathbb{R}[\mathbf{x}]$. We define the following extrema:

- $f_{E, G}^{\mu}=\inf \left\{\Lambda(f)\right.$ s.t. $\left.\Lambda \in \mathcal{L}_{E, G}\right\}$,
- $f_{E, G}^{s o s}=\sup \left\{\gamma \in \mathbb{R}\right.$ s.t. $\left.f-\gamma \in \mathcal{Q}_{E, G}\right\}$.

By convention if the sets are empty, $f_{E, G}^{\text {sos }}=-\infty$ and $f_{E, G}^{\mu}=+\infty$.
If $E=\mathbb{R}[\mathbf{x}]_{t}$ and $G^{0}=\left\langle\mathbf{g}^{0} \mid 2 t\right\rangle$, we also denote $f_{E, G}^{\mu}$ by $f_{t, G}^{\mu}$ and $f_{E, G}^{s o s}$ by $f_{t, G}^{s o s}$.
We easily check that $f_{E, G}^{s o s} \leq f_{E, G}^{\mu}$, since if there exists $\gamma \in \mathbb{R}$ such that $f-\gamma=q \in$ $\mathcal{Q}_{E, G}$ then $\forall \Lambda \in \mathcal{L}_{E, G}, \Lambda(f-\gamma)=\Lambda(f)-\gamma=\Lambda(q) \geq 0$.

If $\mathcal{S}(G) \subset S$, we also have $f_{E, G}^{\mu} \leq f^{*}$ since for any $\mathbf{s} \in S$, the evaluation $\mathbf{1}_{\mathbf{s}}: p \in$ $\mathbb{R}[\mathbf{x}] \mapsto p(\mathbf{s})$ is in $\mathcal{L}_{E, G}$.

Notice that if $E \subset E^{\prime}, G \subset G^{\prime}$ then $\mathcal{Q}_{E, G} \subset \mathcal{Q}_{E^{\prime}, G^{\prime}}, \mathcal{L}_{E^{\prime}, G^{\prime}} \subset \mathcal{L}_{E, G}, f_{E, G}^{\mu} \leq f_{E^{\prime}, G^{\prime}}^{\mu}$ and $f_{E, G}^{s o s} \leq f_{E^{\prime}, G^{\prime}}^{s o s}$.

3.2. Full moment matrix relaxation hierarchy

The relaxation hierarchies introduced in (Lasserre, 2001) correspond to the case where $E=\mathbb{R}[\mathbf{x}]_{t}, G^{0}=\left\langle\mathbf{g}^{0} \mid 2 t\right\rangle$ and $G^{+}=\mathbf{g}^{+}$.

The quadratic module $\mathcal{Q}_{\mathbb{R}[\mathbf{x}]_{t}, G}$ is denoted $\mathcal{Q}_{t, \mathbf{g}}$ and $\mathcal{L}_{\mathbb{R}[\mathbf{x}]_{t}, G}$ is denoted $\mathcal{L}_{t, \mathbf{g}}$. Hereafter, we will also call the Lasserre hierarchy, the full moment matrix relaxation hierarchy. It corresponds to the sequences

$$
\cdots \subset \mathcal{L}_{t+1, \mathbf{g}} \subset \mathcal{L}_{t, \mathbf{g}} \subset \cdots \text { and } \cdots \subset \mathcal{Q}_{t, \mathbf{g}} \subset \mathcal{Q}_{t+1, \mathbf{g}} \subset \cdots
$$

which yield the following increasing sequences for $t \in \mathbb{N}$:

$$
\cdots f_{t, \mathbf{g}}^{\mu} \leq f_{t+1, \mathrm{~g}}^{\mu} \leq \cdots \leq f^{*} \text { and } \cdots f_{t, \mathbf{g}}^{s o s} \leq f_{t+1, \mathrm{~g}}^{s o s} \leq \cdots \leq f^{*}
$$

The foundation of Lasserre's method is to show that these sequences converge to f^{*}. This is proved under some conditions in (Lasserre, 2001). It has also been shown that the limit can even be reached in a finite number of steps in some cases, see e.g. (Lasserre et al., 2009; Nie et al., 2006; Marshall, 2009; Ha and Pham, 2010; Nie, 2011; Abril Bucero and Mourrain, 2013). In this case, the relaxation is said to be exact.

3.3. Border basis relaxation hierarchy

In the following we are going to use another type of relaxation hierarchy, which involves border basis computation. Its aim is to reduce the size of the convex optimization problems solved at each level of the relaxation hierarchy. As we will see in Section 9, the impact on the performance of the relaxation approach is significant. We briefly recall the properties of border basis that we need and describe how they are used in the construction of this relaxation hierarchy.

Given a vector space $E \subseteq \mathbb{R}[\mathbf{x}]$, its prolongation $E^{+}:=E+x_{1} E+\ldots+x_{n} E$ is again a vector space.

The vector space E is said to be connected to 1 if $1 \in E$ and there exists a finite increasing sequence of vector spaces $E_{0} \subset E_{1} \subset \cdots \subset E$ such that $E_{0}=\langle 1\rangle, E_{i+1} \subset E_{i}^{+}$. For a monomial set $B \subseteq \mathcal{M}, B^{+}=B \cup x_{1} B \cup \cdots \cup x_{n} B$ and $\partial B=B^{+} \backslash B$. We easily check that $\langle B\rangle^{+}=\left\langle B^{+}\right\rangle$and $\langle B\rangle$ is connected to 1 iff $1 \in B$ and for every monomial $m \neq 1$ in $B, m=x_{i_{0}} m^{\prime}$ for some $i_{0} \in[1, n]$ and some monomial $m^{\prime} \in B$. In this case, we will say that the monomial set B is connected to 1 .

Definition 3.5. Let $B \subset \mathcal{M}$ be connected to 1 . A family $F \subset \mathbb{R}[\mathbf{x}]=R$ is a border basis for B in degree $t \in \mathbb{N}$, if $\forall f, f^{\prime} \in F_{t}$,

- $\operatorname{supp}(f) \subseteq B^{+} \cap R_{t}$,
- f has exactly one monomial in ∂B, denoted $\gamma(f)$ and called the leading monomial of f.
- $\gamma(f)=\gamma\left(f^{\prime}\right)$ implies $f=f^{\prime}$,
- $\forall m \in \partial B \cap R_{t}, \exists f \in F$ s.t. $\gamma(f)=m$,
- $R_{t}=\langle B\rangle_{t} \oplus\langle F \mid t\rangle$.

A border basis F for B in all degrees t is called a border basis for $B . F$ is graded if moreover $\operatorname{deg}(\gamma(f))=\operatorname{deg}(f) \forall f \in F$.

There are efficient algorithms to check that a given family F is a border basis for B in degree t and to construct such family from a set of polynomials. We refer to (Mourrain, 1999; Mourrain and Trébuchet, 2005; Mourrain and Trébuchet, 2008, 2012) for more details. We will use these tools as "black boxes" in the following.

For a border basis F for B in degree t, we denote by $\pi_{F, B}$ the projection of R_{t} on $\left\langle B_{t}\right\rangle$ along $\langle F \mid t\rangle$. We easily check that

- $\forall m \in B_{t}, \pi_{B, F}(m)=m$,
- $\forall m \in \partial B \cap R_{t}, \pi_{B, F}(m)=m-f$, where f is the (unique) polynomial in F for which $\gamma(f)=m$, assuming the polynomials $f \in F$ are normalized so that the coefficient of $\gamma(f)$ is 1 .
If F is a graded border basis in degree t, one easily verifies that $\operatorname{deg}\left(\pi_{F, \mathcal{B}}(m)\right) \leq \operatorname{deg}(m)$ for $m \in \mathcal{M}_{t}$.

Border basis hierarchy. The sequence of relaxation problems that we will use hereafter is defined as follows. For each $t \in \mathbb{N}$, we construct the graded border basis $F_{2 t}$ of \mathbf{g}^{0} in degree $2 t$. Let B be the set of monomials (connected to 1) for which F is a border basis in degree $2 t$. We define $E_{t}:=\left\langle B_{t}\right\rangle, G_{t}$ is the set of constraints such that $G_{t}^{0}=\left\{m-\pi_{B_{t}, F_{2 t}}(m), m \in B_{t} \cdot B_{t}\right\}$ and $G_{t}^{+}=\pi_{B_{t}, F_{2 t}}\left(\mathrm{~g}^{+}\right)$, and consider the relaxation sequence

$$
\begin{equation*}
\mathcal{Q}_{E_{t}, G_{t}} \subset\left\langle B_{t} \cdot B_{t}\right\rangle \text { and } \mathcal{L}_{E_{t}, G_{t}} \subset\left\langle B_{t} \cdot B_{t}\right\rangle^{*} \tag{2}
\end{equation*}
$$

for $t \in \mathbb{N}$. Since the subsets B_{t} are not necessarily nested, these convex sets are not necessarily included in each other. However, by construction of the graded border basis of \mathbf{g}, we have the following inclusions

$$
\cdots \subset\left\langle F_{2 t} \mid 2 t\right\rangle \subset\left\langle F_{2 t+2} \mid 2 t+2\right\rangle \subset \cdots\left(\mathbf{g}^{0}\right),
$$

and we can relate the border basis relaxation sequences with the corresponding full moment matrix relaxation hierarchy, using the following proposition:

Proposition 3.6. Let $t \in \mathbb{N}, B \subset \mathbb{R}[\mathbf{x}]_{2 t}$ be a monomial set connected to $1, F \subset \mathbb{R}[\mathbf{x}]$ be a border basis for B in degree $2 t, E:=\left\langle B_{t}\right\rangle, E^{\prime}:=\mathbb{R}[\mathbf{x}]_{t}, G, G^{\prime}$ be sets of constraints such that $G^{0}=\left\{m-\pi_{B, F}(m), m \in B_{t} \cdot B_{t}\right\}, G^{\prime 0}=\langle F \mid 2 t\rangle, G^{+}=G^{\prime+}$. Then for all $\Lambda \in \mathcal{L}_{E, G}$, there exists a unique $\Lambda^{\prime} \in \mathcal{L}_{E^{\prime}, G^{\prime}}$ which extends Λ. Moreover, Λ^{\prime} satisfies $\operatorname{rank} H_{\Lambda^{\prime}}^{E^{\prime}}=\operatorname{rank} H_{\Lambda}^{E}$ and $\operatorname{ker} H_{\Lambda^{\prime}}^{E^{\prime}}=\operatorname{ker} H_{\Lambda}^{E}+\langle F \mid t\rangle$.

Proof. As $F \subset \mathbb{R}[\mathbf{x}]$ is a border basis for B in degree $2 t$, we have $\mathbb{R}[\mathbf{x}]_{2 t}=\langle B\rangle_{2 t} \oplus$ $\langle F \mid 2 t\rangle$. As $\left\langle B_{t} \cdot B_{t}\right\rangle \subset\langle B\rangle_{2 t} \oplus\left\langle G^{0}\right\rangle,\left\langle G^{0}\right\rangle \subset\left\langle G^{\prime 0}\right\rangle=\langle F \mid 2 t\rangle$ and $\mathbb{R}[\mathbf{x}]_{2 t}=\langle B\rangle_{2 t} \oplus$ $\langle F \mid 2 t\rangle$, we deduce that for all $\Lambda \in \mathcal{L}_{E, G}$, there exists a unique $\Lambda^{\prime} \in \mathbb{R}[\mathbf{x}]_{2 t}^{*}$ s.t. $\Lambda_{\mid\langle B\rangle_{2 t}}^{\prime}=\Lambda$ and $\Lambda^{\prime}(\langle F \mid 2 t\rangle)=0$.

Let us first prove that $\Lambda^{\prime} \in \mathcal{L}_{E^{\prime}, G^{\prime}}=\mathcal{L}_{t, G^{\prime}}$. As any element q^{\prime} of $\mathcal{Q}_{E^{\prime}, G^{\prime}}$ can be decomposed as a sum of an element q of $\mathcal{Q}_{E, G}$ and an element $p \in\langle F \mid 2 t\rangle$, we have $\Lambda^{\prime}\left(q^{\prime}\right)=\Lambda^{\prime}(q)+\Lambda^{\prime}(p)=\Lambda(q) \geq 0$. This shows that $\Lambda^{\prime} \in \mathcal{L}_{E^{\prime}, G^{\prime}}$.

Let us prove now that $\operatorname{ker} H_{\Lambda^{\prime}}^{E^{\prime}}=\operatorname{ker} H_{\Lambda}^{E}+\langle F \mid t\rangle$ where $E:=\left\langle B_{t}\right\rangle, E^{\prime}:=\mathbb{R}[\mathbf{x}]_{t}$. As $E \cdot\langle F \mid t\rangle \subset\langle F \mid 2 t\rangle=G^{\prime 0}$, we have $\Lambda^{\prime}(E \cdot\langle F \mid t\rangle)=0$ so that

$$
\begin{equation*}
\langle F \mid t\rangle \subset \operatorname{ker} H_{\Lambda^{\prime}}^{E^{\prime}} \tag{3}
\end{equation*}
$$

For any element $b \in \operatorname{ker} H_{\Lambda}^{E}$ we have $\forall b^{\prime} \in E, \Lambda\left(b b^{\prime}\right)=\Lambda^{\prime}\left(b b^{\prime}\right)=0$. As $\Lambda^{\prime}(E \cdot\langle F \mid t\rangle)=$ 0 and $E^{\prime}=E \oplus\langle F \mid t\rangle$, for any element $e \in E, \Lambda^{\prime}(b e)=0$. This proves that

$$
\begin{equation*}
\operatorname{ker} H_{\Lambda}^{E} \subset \operatorname{ker} H_{\Lambda^{\prime}}^{E^{\prime}} \tag{4}
\end{equation*}
$$

Conversely as $E^{\prime}=E \oplus\langle F \mid t\rangle$, any element of E^{\prime} can be reduced modulo $\langle F \mid t\rangle$ to an element of E, which shows that

$$
\begin{equation*}
\operatorname{ker} H_{\Lambda^{\prime}}^{E^{\prime}} \subset \operatorname{ker} H_{\Lambda}^{E}+\langle F \mid t\rangle \tag{5}
\end{equation*}
$$

From the inclusions (3), (4) and (5), we deduce that $\operatorname{ker} H_{\Lambda^{\prime}}^{E^{\prime}}=\operatorname{ker} H_{\Lambda}^{E}+\langle F \mid t\rangle$ and that $\operatorname{rank} H_{\Lambda^{\prime}}^{E^{\prime}}=\operatorname{rank} H_{\Lambda}^{E}$.

We deduce from this proposition that $f_{E_{t}, G_{t}}^{\mu}=f_{t,\left\langle F_{2 t} \mid 2 t\right\rangle}^{\mu}$. The sequence of convex sets $\mathcal{L}_{E_{t}, G_{t}}$ can be seen as the projections of nested convex sets

$$
\cdots \supset \mathcal{L}_{t, \mathbf{g}} \supset \mathcal{L}_{t+1, \mathrm{~g}} \supset \cdots
$$

so that we have $\cdots \leq f_{E_{t}, G_{t}}^{\mu} \leq f_{E_{t+1}, G_{t+1}}^{\mu} \leq \cdots \leq f^{*}$. We check that similar properties hold for $\mathcal{Q}_{E_{t}, G_{t}}, \mathcal{Q}_{t, \mathbf{g}}$ and $f_{E_{t}, G_{t}}^{s o s}=f_{t, \mathbf{g}}^{s o s}$, taking the quotient modulo $\left\langle F_{2 t} \mid 2 t\right\rangle$.

Now we compute the border basis for our running example 2.1 and the monomials that we can reduce by using this border basis.

Example 3.7. We take the set of constraint $g^{0}=\left\{6 x^{5}-30 x^{4}+56 x^{3}-54 x^{2}+34 x-\right.$ $\left.12,4 y^{3}-6 y^{2}+4 y-2\right\}$ and $t=3$.

- The border basis is $F_{3}=\left\{x^{5}-5 x^{4}+9.333 x^{3}-9 x^{2}+5.66 x-2, y^{3}-1.5 y^{2}+y-0.5\right\}$
- The monomial basis in degree ≤ 3 is:

$$
B_{3}=\left\{1, x, y, x^{2}, x y, y^{2}, x^{3}, x^{2} y, x y^{2}\right\}
$$

The monomial y^{3} is the leading term of an element of F_{3}.

- The border basis SDP relaxation is constructed from the reduction of the monomials in $B_{3} \cdot B_{3}$. The following monomials are reduced by the border basis

$$
\left\{y^{3}, x y^{3}, y^{4}, x^{5}, x^{2} y^{3}, x y^{4}, x^{6}, x^{5} y, x^{3} y^{3}, x^{2} y^{4}\right\}
$$

This yields the following constraints:

$$
\begin{aligned}
& y^{3} \equiv 0.5-y+1.5 y^{2} \\
& x y^{3} \equiv 0.5 x-x y+1.5 x y^{2} \\
& y^{4} \equiv 0.75-y+1.25 y^{2} \\
& x^{2} y^{3} \equiv 0.5 x^{2}-x^{2} y+1.5 x^{2} y^{2} \\
& x y^{4} \equiv 0.75 x-x y+1.25 x y^{2} \\
& x^{5} \equiv 2-5.666 x+9 x^{2}-9.333 x^{3}+5 x^{4} \\
& x^{6} \equiv 10-26.333 x+39.333 x^{2}-37.666 x^{3}+15.666 x^{4} \\
& x^{5} y \equiv 2 y-5.666 x y+9 x^{2} y-9.333 x^{3} y+5 x^{4} y \\
& x^{3} y^{3} \equiv 0.5 x^{3}-x^{3} y+1.5 x^{3} y^{2} \\
& x^{2} y^{4} \equiv 0.75 x^{2}-x^{2} y+1.25 x^{2} y^{2}
\end{aligned}
$$

4. Optimal linear form

In this section we introduce the notion of optimal linear form for f, involved in the computation of $I_{\min }$ (also called generic linear form when $f=0$ in (Lasserre et al., 2009, 2012)). In order to find this optimal linear form we solve a Semi-Definite Programming (SDP) problem, which involves truncated Hankel matrices associated with the monomial basis and the reduction of their products by the border basis, as described in the previous section. This allows us to reduce the size of the matrix and the number of parameters. At the end of this section we compute the optimal linear form for our running example.

Definition 4.1. $\Lambda^{*} \in \mathcal{L}_{E, G}$ is optimal for f if

$$
\operatorname{rank} H_{\Lambda^{*}}^{E}=\max _{\Lambda \in \mathcal{L}_{E, G}, \Lambda(f)=f_{E, G}^{\mu}} \operatorname{rank} H_{\Lambda}^{E}
$$

The next result shows that only elements in $I_{\min }$ are involved in the kernel of a truncated Hankel operator associated with an optimal linear form for f.

Theorem 4.2. Let $E \subset \mathbb{R}[\mathbf{x}]$ such that $1 \in E$ and $f \in\langle E \cdot E\rangle$ and let $G \subset \mathbb{R}[\mathbf{x}]$ be a set of constraints with $V_{\min } \subset \mathcal{S}(G)$. If $\Lambda^{*} \in \mathcal{L}_{E, G}$ is optimal for f and such that $\Lambda^{*}(f)=f^{*}$, then $\operatorname{ker} H_{\Lambda^{*}}^{E} \subset I_{\text {min }}$.

Proof. The proof is similar e.g. to (Lasserre et al., 2012)[Theorem 4.9].
Let us describe how optimal linear forms are computed by solving convex optimization problems:
Algorithm 4.1: Optimal Linear Form
Input: $f \in \mathbb{R}[\mathbf{x}], B_{t}=\left(\mathbf{x}^{\alpha}\right)_{\alpha \in A}$ a monomial set of degree $\leq t$ containing 1 with $f=\sum_{\alpha \in A+A} f_{\alpha} \mathbf{x}^{\alpha} \in\left\langle B_{t} \cdot B_{t}\right\rangle, G \subset \mathbb{R}[\mathbf{x}]$.
Output: the infimum $f_{t, G}^{\mu}$ of $\sum_{\alpha \in A+A} \lambda_{\alpha} f_{\alpha}$ subject to:
$-H_{\Lambda^{*}}^{B_{t}}=\left(h_{\alpha, \beta}\right)_{\alpha, \beta \in A} \succcurlyeq 0$,

- $H_{\Lambda^{*}}^{B_{t}}$ satisfies the Hankel constraints

$$
h_{0,0}=1, \text { and } h_{\alpha, \beta}=h_{\alpha^{\prime}, \beta^{\prime}} \text { if } \alpha+\beta=\alpha^{\prime}+\beta^{\prime}
$$

$-\Lambda^{*}\left(g^{0}\right)=\sum_{\alpha \in A+A} g_{\alpha}^{0} \lambda_{\alpha}=0$ for all $g^{0}=\sum_{\alpha \in A+A} g_{\alpha}^{0} \mathbf{x}^{\alpha} \in G^{0} \cap\left\langle B_{t} \cdot B_{t}\right\rangle$.
$-H_{g^{+-\Lambda^{*}}}^{B_{t-}} \succcurlyeq 0$ for all $g^{+} \in G^{+}$where $w=\left\lceil\frac{\operatorname{deg}\left(g^{+}\right)}{2}\right\rceil$.
and $\Lambda^{*} \in\left\langle B_{t} \cdot B_{t}\right\rangle^{*}$ represented by the vector $\left[\lambda_{\alpha}\right]_{\alpha \in A+A}$.
This optimization algorithm involves a Semidefinite programming problem, corresponding to the optimization of a linear functional on the intersection of a linear subspace with the convex set of positive semidefinite matrices. It is a convex optimization problem, which can be solved efficiently by SDP solvers. If an interior point method is used, the solution Λ^{*} is in the interior of a face on which the infimum $\Lambda^{*}(f)$ is reached so that Λ^{*} is optimal for f. This is the case for tools such as CSDP, SDPA, SDPA-GMP, and MOSEK that we will use in the experiments.

Example 4.3. For the running example 2.1 and the relaxation order $t=3$, we solve the following SDP problem:
$\inf \Lambda(f)=2.75-\Lambda(y)-4.333 \Lambda(x)+0.25 \Lambda\left(y^{2}\right)+2.333 \Lambda\left(x^{2}\right)+0.333 \Lambda\left(x^{3}\right)-0.333 \Lambda\left(x^{4}\right)$
with Λ s.t.
$\Lambda\left(y^{3}\right)=0.5-\Lambda(y)+1.5 \Lambda\left(y^{2}\right)$
$\Lambda\left(x y^{3}\right)=0.5 \Lambda(x)-\Lambda(x y)+1.5 \Lambda\left(x y^{2}\right)$
$\Lambda\left(y^{4}\right)=0.75-\Lambda(y)+1.25 \Lambda\left(y^{2}\right)$
$\Lambda\left(x^{5}\right)=2-5.666 \Lambda(x)+9 \Lambda\left(x^{2}\right)-9.333 \Lambda\left(x^{3}\right)+5 \Lambda\left(x^{4}\right)$
$\Lambda\left(x^{2} y^{3}\right)=0.5 \Lambda\left(x^{2}\right)-\Lambda\left(x^{2} y\right)+1.5 \Lambda\left(x^{2} y^{2}\right)$
$\Lambda\left(x y^{4}\right)=0.75 \Lambda(x)-\Lambda(x y)+1.25 \Lambda\left(x y^{2}\right)$
$\Lambda\left(x^{6}\right)=10-26.333 \Lambda(x)+39.333 \Lambda\left(x^{2}\right)-37.666 \Lambda\left(x^{3}\right)+15.666 \Lambda\left(x^{4}\right)$
$\Lambda\left(x^{5} y\right)=2 \Lambda(y)-5.666 \Lambda(x y)+9 \Lambda\left(x^{2} y\right)-9.333 \Lambda\left(x^{3} y\right)+5 \Lambda\left(x^{4} y\right)$
$\Lambda\left(x^{3} y^{3}\right)=0.5 \Lambda\left(x^{3}\right)-\Lambda\left(x^{3} y\right)+1.5 \Lambda\left(x^{3} y^{2}\right)$
$\Lambda\left(x^{2} y^{4}\right)=0.75 \Lambda\left(x^{2}\right)-\Lambda\left(x^{2} y\right)+1.25 \Lambda\left(x^{2} y^{2}\right)$
$\Lambda(1)=1$
and

$$
H_{\Lambda}^{B_{3}}:=\left(\begin{array}{ccccccccc}
1 & a & b & c & d & e & f & g & h \\
a & c & d & f & g & h & i & j & k \\
b & d & e & g & h & \Lambda\left(y^{3}\right) & j & k & \Lambda\left(x y^{3}\right) \\
c & f & g & i & j & k & \Lambda\left(x^{5}\right) & l & m \\
d & g & h & j & k & \Lambda\left(x y^{3}\right) & l & m & \Lambda\left(x^{2} y^{3}\right) \\
e & h & \Lambda\left(y^{3}\right) & k & \Lambda\left(x y^{3}\right) & \Lambda\left(y^{4}\right) & m & \Lambda\left(x^{2} y^{3}\right) & \Lambda\left(x y^{4}\right) \\
f & i & j & \Lambda\left(x^{5}\right) & l & m & \Lambda\left(x^{6}\right) & \Lambda\left(x^{5} y\right) & n \\
g & j & k & l & m & \Lambda\left(x^{2} y^{3}\right) & \Lambda\left(x^{5} y\right) & n & \Lambda\left(x^{3} y^{3}\right) \\
h & k & \Lambda\left(x y^{3}\right) & m & \Lambda\left(x^{2} y^{3}\right) & \Lambda\left(x y^{4}\right) & n & \Lambda\left(x^{3} y^{3}\right) & \Lambda\left(x^{2} y^{4}\right)
\end{array}\right) \succcurlyeq 0
$$

where $a=\Lambda(x), b=\Lambda(y), c=\Lambda\left(x^{2}\right), d=\Lambda(x y), e=\Lambda\left(y^{2}\right), f=\Lambda\left(x^{3}\right)$,
$g=\Lambda\left(x^{2} y\right), h=\Lambda\left(x y^{2}\right), i=\Lambda\left(x^{4}\right), j=\Lambda\left(x^{3} y\right), k=\Lambda\left(x^{2} y^{2}\right), l=\Lambda\left(x^{4} y\right)$, $m=\Lambda\left(x^{3} y^{2}\right), n=\Lambda\left(x^{4} y^{2}\right)$ and $\Lambda\left(y^{3}\right)=0.5-b+1.5 e, \Lambda\left(y^{4}\right)=0.75-b+1.25 e$, $\Lambda\left(x^{2} y^{3}\right)=0.5 c-g+1.5 k, \Lambda\left(x y^{3}\right)=0.5 a-d+1.5 h$, $\Lambda\left(x^{5}\right)=2-5.666 a+9 c-9.333 f+5 i, \Lambda\left(x^{5} y\right)=2 b-5.666 d+9 g-9.333 j+5 l$, $\Lambda\left(x^{6}\right)=10-26.333 a+39.333 c-37.666 f+15.666 i, \Lambda\left(x y^{4}\right)=0.75 a-d+1.25 h$, $\Lambda\left(x^{3} y^{3}\right)=0.5 f-j+1.5 m, \Lambda\left(x^{2} y^{4}\right)=0.75 c-g+1.25 k$.

A solution is: $\Lambda^{*}(1)=1, \Lambda^{*}(x)=1.5, \Lambda^{*}(y)=1, \Lambda^{*}\left(x^{2}\right)=2.5, \Lambda^{*}(x y)=1.5, \Lambda^{*}\left(y^{2}\right)=$ $1, \Lambda^{*}\left(x y^{2}\right)=1.5, \Lambda^{*}\left(x^{2} y\right)=2.5, \Lambda^{*}\left(x^{3}\right)=4.5, \Lambda^{*}\left(x^{2} y^{2}\right)=2.5, \Lambda^{*}\left(x^{3} y\right)=4.5, \Lambda^{*}\left(x^{4}\right)=$ $8.5, \Lambda^{*}\left(x^{4} y\right)=4.5, \Lambda^{*}\left(x^{3} y^{2}\right)=8.5, \Lambda^{*}\left(x^{4} y^{2}\right)=8.5$.
The minimum is $\Lambda^{*}(f)=0$.

5. Decomposition

To be able to compute the minimizer points from an optimal linear form, we need to detect when the infimum is reached. In this section, we describe new criterion to check when the kernel of a truncated Hankel operator associated to an optimal linear form for f yields the generators of the minimizer ideal. It involves the flat extension theorem of (Laurent and Mourrain, 2009) and applies to polynomial optimization problems where the minimizer ideal $I_{\min }$ is zero-dimensional. At the end of this section we verify the flat extension property in our running example.

5.1. Flat extension criterion

Definition 5.1. Given vector subspaces $E_{0} \subset E \subset \mathbb{R}[\mathbf{x}]$ and $\Lambda \in\langle E \cdot E\rangle^{*}, H_{\Lambda}^{E}$ is said to be a flat extension of its restriction $H_{\Lambda}^{E_{0}}$ if $\operatorname{rank} H_{\Lambda}^{E}=\operatorname{rank} H_{\Lambda}^{E_{0}}$.

We recall here a result from (Laurent and Mourrain, 2009), which gives a rank condition for the existence of a flat extension of a truncated Hankel operator ${ }^{1}$.

[^1]Theorem 5.2. Let $V \subset E \subset \mathbb{R}[\mathbf{x}]$ be vector spaces connected to 1 with $V^{+} \subset E$ and let $\Lambda \in\langle E \cdot E\rangle^{*}$. Assume that $\operatorname{rank} H_{\Lambda}^{E}=\operatorname{rank} H_{\Lambda}^{V}=\operatorname{dim} V$. Then there exists a (unique) linear form $\tilde{\Lambda} \in \mathbb{R}[\mathbf{x}]^{*}$ which extends Λ, i.e., $\tilde{\Lambda}(p)=\Lambda(p)$ for all $p \in\langle E \cdot E\rangle$, satisfying $\operatorname{rank} H_{\tilde{\Lambda}}=\operatorname{rank} H_{\Lambda}^{E}$. Moreover, we have $\operatorname{ker} H_{\tilde{\Lambda}}=\left(\operatorname{ker} H_{\Lambda}^{E}\right)$.

In other words, the condition rank $H_{\Lambda}^{E}=\operatorname{rank} H_{\Lambda}^{V}=\operatorname{dim} V$ implies that the truncated Hankel operator H_{Λ}^{E} has a (unique) flat extension to a (full) Hankel operator $H_{\tilde{\Lambda}}$ defined on $\mathbb{R}[\mathbf{x}]$.

Theorem 5.3. Let $V \subset E \subset \mathbb{R}[\mathbf{x}]$ be finite dimensional vector spaces connected to 1 with $V^{+} \subset E, G^{0} \cdot V \subset\langle E \cdot E\rangle, G^{+} \cdot V \cdot V \subset\langle E \cdot E\rangle$.

Let $\Lambda \in \mathcal{L}_{E, G}$ such that $\operatorname{rank} H_{\Lambda}^{E}=\operatorname{rank} H_{\Lambda}^{V}=\operatorname{dim} V$. Then there exists a linear form $\tilde{\Lambda} \in \mathbb{R}[\mathbf{x}]^{*}$ which extends Λ and is supported on points of $\mathcal{S}(G)$ with positive weights:

$$
\tilde{\Lambda}=\sum_{i=1}^{r} \omega_{i} \mathbf{1}_{\xi_{i}} \text { with } \omega_{i}>0, \xi_{i} \in \mathcal{S}(G)
$$

Moreover, $\left(\operatorname{ker} H_{\Lambda}^{E}\right)=\mathcal{I}\left(\xi_{1}, \ldots, \xi_{r}\right)$.
Proof. As rank $H_{\Lambda}^{E}=\operatorname{rank} H_{\Lambda}^{V}=\operatorname{dim} V$, Theorem 5.2 implies that there exists a (unique) linear function $\tilde{\Lambda} \in \mathbb{R}[\mathbf{x}]^{*}$ which extends Λ. As $\operatorname{rank} H_{\tilde{\Lambda}}=\operatorname{rank} H_{\Lambda}^{V}=|V|$ and $\operatorname{ker} H_{\tilde{\Lambda}}=\left(\operatorname{ker} H_{\Lambda}^{E}\right)$, any polynomial $p \in \mathbb{R}[\mathbf{x}]$ can be reduced modulo ker $H_{\tilde{\Lambda}}$ to a polynomial $b \in V$ so that $p-b \in \operatorname{ker} H_{\tilde{\Lambda}}$. Then $\tilde{\Lambda}\left(p^{2}\right)=\tilde{\Lambda}\left(b^{2}\right)=\Lambda\left(b^{2}\right) \geq 0$ since $\Lambda \in \mathcal{L}_{E, G}$. By Theorem 3.14 of (Lasserre et al., 2012), $\tilde{\Lambda}$ has a decomposition of the form $\tilde{\Lambda}=\sum_{i=1}^{r} \omega_{i} \mathbf{1}_{\xi_{i}}$ with $\omega_{i}>0$ and $\xi_{i} \in \mathbb{R}^{n}$.

By Lemma 3.5 of (Lasserre et al., 2012), V is isomorphic to $\mathbb{R}[\mathbf{x}] / \mathcal{I}\left(\xi_{1}, \ldots, \xi_{r}\right)$ and there exist (interpolation) polynomials $b_{1}, \ldots, b_{r} \in V$ satisfying $b_{i}\left(\xi_{j}\right)=1$ if $i=j$ and $b_{i}\left(\xi_{j}\right)=0$ otherwise. We deduce that for $i=1, \ldots, r$ and for all elements $g \in G^{0}$,

$$
\Lambda\left(b_{i} g\right)=0=\tilde{\Lambda}\left(b_{i} g\right)=\omega_{i} g\left(\xi_{i}\right) .
$$

As $\omega_{i}>0$ then $g\left(\xi_{i}\right)=0$. Similarly, for all $h \in G^{+}$,

$$
\Lambda\left(b_{i}^{2} h\right)=\tilde{\Lambda}\left(b_{i}^{2} h\right)=\omega_{i} h\left(\xi_{i}\right) \geq 0
$$

and $h\left(\xi_{i}\right) \geq 0$, hence $\xi_{i} \in \mathcal{S}(G)$.
By Theorem 3.14 of (Lasserre et al., 2012) and Theorem 5.2, we also have ker $H_{\tilde{\Lambda}}=$ $\mathcal{I}\left(\xi_{1}, \ldots, \xi_{r}\right)=\left(\operatorname{ker} H_{\Lambda}^{E}\right)$.

This theorem applied to an optimal linear form Λ^{*} for f gives a convergence certificate to check when the infimum f^{*} is reached and when a generating family of the minimizer ideal is obtained. It generalizes the flat truncation certificate given in (Nie, 2012). As we will see in the experiments, it allows to detect more efficiently when the infimum is reached. Notice that if the test is satisfied, necessarily $I_{\min }$ is zero-dimensional.

5.2. Flat extension algorithm

In this section, we describe a new algorithm to check the flat extension property for a linear form for which some moments are known.

Let E be a finite dimensional subspace of $\mathbb{R}[\mathbf{x}]$ connected to 1 and let Λ^{*} be a linear form defined on $\langle E \cdot E\rangle$ given by its "moments" $\Lambda^{*}\left(e_{i}\right):=\Lambda_{i}^{*}$, where e_{1}, \ldots, e_{s} is a basis of
$\langle E \cdot E\rangle$ (for instance a monomial basis). In the context of global polynomial optimization that we consider here, this linear form is an optimal linear form for f (see Section 4) computed by SDP.

We define the linear functional Λ^{*} from its moments as $\Lambda^{*}: p=\sum_{i=1}^{s} p_{i} e_{i} \in\langle E \cdot E\rangle \mapsto$ $\sum_{i=1}^{s} p_{i} \Lambda_{i}$ and the corresponding inner product:

$$
\begin{align*}
E \times E & \rightarrow \mathbb{R} \\
(p, q) & \mapsto\langle p, q\rangle_{*}:=\Lambda^{*}(p q) \tag{6}
\end{align*}
$$

To check the flat extension property, we are going to inductively define vector spaces V_{i} as follows. Start with $V_{0}=\langle 1\rangle$. Suppose V_{i} is known and compute a vector space L_{i} of maximal dimension in V_{i}^{+}such that L_{i} is orthogonal to $V_{i}:\left\langle L_{i}, V_{i}\right\rangle_{*}=0$ and $L_{i} \cap \operatorname{ker} H_{\Lambda^{*}}^{V_{i}^{+}}=\{0\}$. Then we define $V_{i+1}=V_{i}+L_{i}$.

Suppose that $b_{1}, \ldots, b_{r_{i}}$ is an orthogonal basis of $V_{i}:\left\langle b_{i}, b_{j}\right\rangle_{*}=0$ if $i \neq j$ and $\left\langle b_{i}, b_{i}\right\rangle_{*} \neq$ 0 . Then L_{i} can be constructed as follows: Compute the vectors

$$
b_{i, j}=x_{j} b_{i}-\sum_{k=1}^{r_{i}} \frac{\left\langle x_{j} b_{i}, b_{k}\right\rangle_{*}}{\left\langle b_{k}, b_{k}\right\rangle_{*}} b_{k},
$$

generating V_{i}^{\perp} in V_{i}^{+}and extract a maximal orthogonal family $b_{r_{i}+1}, \ldots, b_{r_{i}+s}$ for the inner product $\langle., .\rangle_{*}$, that form a basis of L_{i}. This can be done for instance by computing a QR decomposition of the matrix $\left[\left\langle b_{i, j}, b_{i^{\prime}, j^{\prime}}\right\rangle_{*}\right]_{1 \leqslant i, i^{\prime} \leqslant r_{i}, 1 \leqslant j, j^{\prime} \leqslant n}$. The process can be repeated until either

- $V_{i}^{+} \not \subset E$ and the algorithm will stop and return failed,
- or $L_{i}=\{0\}$ and $V_{i}^{+}=V_{i} \oplus \operatorname{ker} H_{\Lambda^{*}}^{V_{i}^{+}}$. In this case, the algorithm stops with success. Here is the complete description of the algorithm:

```
Algorithm 5.1: DECOMPOSITION
Input: a vector space \(E\) connected to 1 and a linear form \(\Lambda^{*} \in\langle E \cdot E\rangle^{*}\).
```

Output: failed or success with

- a basis $B=\left\{b_{1}, \ldots, b_{r}\right\} \subset \mathbb{R}[\mathbf{x}]$;
- the relations $x_{k} b_{j}-\sum_{i=1}^{r} \frac{\left\langle x_{k} b_{j}, b_{i}\right\rangle_{*}}{\left\langle b_{i}, b_{i}\right\rangle_{*}} b_{i}, j=1 \ldots r k=1 \ldots n$.

Begin

(1) Take $B:=\{1\} ; s:=1 ; r:=1$;
(2) While $s>0$ and $B^{+} \subset E$ do
(a) compute $b_{j, k}:=x_{k} b_{j}-\sum_{i=1}^{r} \frac{\left\langle x_{k} b_{j}, b_{i}\right\rangle_{*}}{\left\langle b_{i}, b_{i}\right\rangle_{*}} b_{i}$ for $j=1, \ldots, r, k=1, \ldots, n$;
(b) compute a maximal subset $B^{\prime} \stackrel{=}{=}\left\{b_{1}^{\prime}, \ldots, b_{s}^{\prime}\right\}$ of $\left\langle b_{j, k}\right\rangle$ of orthogonal vectors for the inner product $\langle., .\rangle_{*}$ and let $B:=B \cup B^{\prime}, s=\left|B^{\prime}\right|$ and $r+=s$;
(3) If $B^{+} \not \subset E$ then return failed
else $(s=0)$ return success.

End

Let us describe the computation performed on the moment matrix, during the main loop of the algorithm. At each step, the moment matrix of Λ^{*} on V_{i}^{+}is of the form

$$
H_{\Lambda^{*}}^{V_{i}^{+}}=\left[\begin{array}{c|c}
H_{\Lambda^{*}}^{B_{i}, B_{i}} & H_{\Lambda^{*}}^{B_{i}, \partial B_{i}} \\
\hline H_{\Lambda^{*}}^{\partial B_{i}, B_{i}} & H_{\Lambda^{*}}^{\partial B_{i}}, \partial B_{i}
\end{array}\right]
$$

where ∂B_{i} is a subset of $\left\{b_{i, j}\right\}$ such that $B_{i} \cup \partial B_{i}$ is a basis of $\left\langle B_{i}^{+}\right\rangle$. By construction, the matrix $H_{\Lambda^{*}}^{B_{i}, B_{i}}$ is diagonal since B_{i} is orthogonal for $\langle\cdot, \cdot\rangle_{*}$. As the polynomials $b_{i, j}$ are orthogonal to B_{i}, we have $H_{\Lambda^{*}}^{B_{i}, \partial B_{i}}=H_{\Lambda^{*}}^{\partial B_{i}, B_{i}}=0$. If $H_{\Lambda^{*}}^{\partial B_{i}, \partial B_{i}}=0$ then the algorithm stops with success and all the elements $b_{i, j}$ are in the kernel of $H_{\Lambda^{*}}^{B_{i}, B_{i}}$. Otherwise an orthogonal basis $b_{1}^{\prime}, \ldots, b_{s}^{\prime}$ is extracted. It can then be completed in a basis of $\left\langle b_{i, j}\right\rangle$ so that the matrix $H_{\Lambda^{*}}^{\partial B_{i}, \partial B_{i}}$ in this basis is diagonal with zero entries after the $(s+1)^{t h}$ index. In the next loop of the algorithm, the basis B_{i+1} contains the maximal orthogonal family $b_{1}^{\prime}, \ldots, b_{s}^{\prime}$ so that the matrix $H_{\Lambda^{*}}^{B_{i+1}, B_{i+1}}$ remains diagonal and invertible.

Proposition 5.4. Let $\Lambda^{*} \in \mathcal{L}_{E, G}$ be optimal for f. If Algorithm 5.1 applied to Λ^{*} and E stops with success, then
(1) there exists a linear form $\tilde{\Lambda} \in \mathbb{R}[\mathbf{x}]^{*}$ which extends Λ^{*} and is supported on points in $\mathcal{S}(G)$ with positive weights:

$$
\tilde{\Lambda}=\sum_{i=1}^{r} \omega_{i} \mathbf{1}_{\xi_{i}} \text { with } \omega_{i}>0, \xi_{i} \in \mathbb{R}^{n}
$$

(2) $B=\left\{b_{1}, \ldots, b_{r}\right\}$ is a basis of $\mathcal{A}_{\tilde{\Lambda}}=\mathbb{R}[\mathbf{x}] / I_{\tilde{\Lambda}}$ where $I_{\tilde{\Lambda}}=\operatorname{ker} H_{\tilde{\Lambda}}$,
(3) $x_{k} b_{j}-\sum_{i=1}^{r} \frac{\left\langle x_{k} b_{j}, b_{i}\right\rangle_{*}}{\left\langle b_{i}, b_{i}\right\rangle_{*}} b_{i}, j=1, \ldots, r, k=1, \ldots, n$ are generators of $I_{\tilde{\Lambda}}=\mathcal{I}\left(\xi_{1}, \ldots, \xi_{r}\right)$,
(4) $f_{E, G}^{\mu}=f^{*}$,
(5) $V_{\text {min }}=\left\{\xi_{1}, \ldots, \xi_{r}\right\}$.

Proof. When the algorithm terminates with success, the set B is such that rank $H_{\Lambda^{*}}^{B^{+}}=$ $\operatorname{rank} H_{\Lambda^{*}}^{B}=|B|$. By Theorem 5.3, there exists a linear form $\tilde{\Lambda} \in \mathbb{R}[\mathbf{x}]^{*}$ extends Λ^{*} and is supported on points in $\mathcal{S}(G)$ with positive weights:

$$
\tilde{\Lambda}=\sum_{i=1}^{r} \omega_{i} \mathbf{1}_{\xi_{i}} \text { with } \omega_{i}>0, \xi_{i} \in \mathcal{S}(G)
$$

This implies that $\mathcal{A}_{\tilde{\Lambda}}$ is of dimension r and that $I_{\tilde{\Lambda}}=\mathcal{I}\left(\xi_{1}, \ldots, \xi_{r}\right)$. As $H_{\Lambda^{*}}^{B}$ is invertible, B is a basis of $\mathcal{A}_{\tilde{\Lambda}}$ which proves the second point.

Let K be the set of polynomials $x_{j} b_{i}-\sum_{k=1}^{r} \frac{\left\langle x_{j} b_{i}, b_{k}\right\rangle_{*}}{\left\langle b_{k}, b_{k}\right\rangle_{*}} b_{k}$. If the algorithm terminates with success, we have $\operatorname{ker} H_{\Lambda^{*}}^{B^{+}}=\langle K\rangle$ and by Theorem 5.3, we deduce that $(K)=$ $\left(\operatorname{ker} H_{\Lambda^{*}}^{B^{+}}\right)=I_{\tilde{\Lambda}}$, which proves the third point.

As $\tilde{\Lambda}(1)=1$, we have $\sum_{i=1}^{r} w_{i}=1$ and

$$
\tilde{\Lambda}(f)=\sum_{i=1}^{r} \omega_{i} f\left(\xi_{i}\right) \geq f^{*}
$$

since $\xi_{i} \in \mathcal{S}(G)$ and $f\left(\xi_{i}\right) \geq f^{*}$. The relation $f_{E, G}^{\mu} \leq f^{*}$ implies that $f\left(\xi_{i}\right)=f^{*}$ for $i=1, \ldots, r$ and the fourth point is true: $f_{E, G}^{\mu}=f^{*}$.

As $f\left(\xi_{i}\right)=f^{*}$ for $i=1, \ldots, r$, we have $\left\{\xi_{1}, \ldots, \xi_{r}\right\} \subset V_{\text {min }}$. By Theorem 4.2, the polynomials of K are in $I_{\min }$ so that $V_{\min } \subset \mathcal{V}(K)=\left\{\xi_{1}, \ldots, \xi_{r}\right\}$. This shows that $V_{\min }=\left\{\xi_{1}, \ldots, \xi_{r}\right\}$ and concludes the proof of this proposition

Example 5.5. We apply Algorithm 5.1 to our running example. A solution of the SDP problem output by Algorithm 4.1 is:
$\Lambda^{*}(1)=1, \Lambda^{*}(x)=1.5, \Lambda^{*}(y)=1, \Lambda^{*}\left(x^{2}\right)=2.5, \Lambda^{*}(x y)=1.5, \Lambda^{*}\left(y^{2}\right)=1, \Lambda^{*}\left(x y^{2}\right)=$ $1.5, \Lambda^{*}\left(x^{2} y\right)=2.5, \Lambda^{*}\left(x^{3}\right)=4.5, \Lambda^{*}\left(x^{2} y^{2}\right)=2.5, \Lambda^{*}\left(x^{3} y\right)=4.5, \Lambda^{*}\left(x^{4}\right)=8.5, \Lambda^{*}\left(x^{4} y\right)=$ $4.5, \Lambda^{*}\left(x^{3} y^{2}\right)=8.5, \Lambda^{*}\left(x^{4} y^{2}\right)=8.5$
We verify the flat extension criterion for $\mathbb{R}[\mathbf{x}]_{3}$.

- $B_{0}=\{1\}, \partial B_{0}=\{x, y\}, B_{0}^{+}=\{1, x, y\}$

$$
\begin{gathered}
H_{\Lambda^{*}}^{B_{0}^{+}}=\left(\begin{array}{ccc}
1 & 1.5 & 1 \\
1.5 & 2.5 & 1.5 \\
1 & 1.5 & 1
\end{array}\right) \rightarrow H_{\Lambda^{*}}^{\{1, x-1.5, y-1\}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.25 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\operatorname{rank} H_{\Lambda^{*}}^{B_{0}^{+}}=2, \\
\{y-1\} \in \operatorname{ker} H_{\Lambda^{*}}^{B_{0}^{+}},\{x-1.5\} \perp B_{0} \text { and }\{x-1.5\} \notin \operatorname{ker} H_{\Lambda^{*}}^{B_{0}^{+}}, \\
L_{0}=\{x-1.5\} .
\end{gathered}
$$

- $B_{1}=B_{0} \cup L_{0}=\{1, x-1.5\}, \partial B_{1}=\left\{y, x^{2}-1.5 x, x y-1.5 y\right\}$, $B_{1}^{+}=\left\{1, x-1.5, y, x^{2}-1.5 x, x y-1.5 y\right\}$

$$
H_{\Lambda^{*}}^{B_{1}^{+}}=\left(\begin{array}{ccccc}
1 & 0 & 1 & 0.25 & 0 \\
0 & 0.25 & 0 & 0.375 & 0.25 \\
1 & 0 & 1 & 0.25 & 0 \\
0.25 & 0.375 & 0.25 & 0.625 & 0.375 \\
0 & 0.25 & 0 & 0.375 & 0.25
\end{array}\right) \longrightarrow H_{\Lambda^{*}}^{\tilde{B}}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 0.25 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where $\tilde{B}=\left\{1, x-1.5, y-1, x^{2}-3 x+2, x y-1.5 y-x+1.5\right\}$
rank $H_{\Lambda^{*}}^{B_{1}^{+}}=2$, and $L_{1}=\{0\}$.

The algorithm stops with success, the flat extension property is satisfied,

$$
\operatorname{ker} H_{\Lambda^{*}}^{B_{1}^{+}}=\left\{y-1, x^{2}-3 x+2, x y-1.5 y-x+1.5\right\}
$$

and

$$
B_{1}=\{1, x-1.5\} .
$$

6. Minimizers

In this section we tackle the computation of the minimizer points, once Algorithm 5.1 stops with success for $\Lambda^{*} \in \mathcal{L}_{E, G}$ optimal for f. The minimizer points can be computed from the eigenvalues of the multiplication operators $M_{k}: a \in \mathcal{A}_{\text {min }} \mapsto x_{k} a \in \mathcal{A}_{\text {min }}$ for $k=1, \ldots, n$ where $\mathcal{A}_{\text {min }}=\mathbb{R}[\mathbf{x}] / I_{\text {min }}$ and $I_{\text {min }}=I_{\tilde{\Lambda}}=\mathcal{I}\left(\xi_{1}, \ldots, \xi_{r}\right)$. At the end of this section we compute the minimizers for our running example.

Proposition 6.1. The matrix of M_{k} in the basis B of $\mathcal{A}_{\text {min }}$ is $\left[M_{k}\right]=\left(\frac{\Lambda^{*}\left(x_{k} b_{i} b_{j}\right)}{\Lambda^{*}\left(b_{i} b_{i}\right)}\right)_{1 \leq i, j \leq r}$. The operators $M_{k}, k=1 \ldots n$ have r common eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ which satisfy $M_{k} \mathbf{u}_{i}=\xi_{i, k} \mathbf{u}_{i}$, with $\xi_{i, k}$ the $k^{t h}$ coordinate of the minimizer point $\xi_{i}=\left(\xi_{i, 1}, \ldots, \xi_{i, n}\right) \in S$.

Proof. By Proposition 5.4 and by definition of the inner-product (6), $B=\left\{b_{1}, \ldots, b_{r}\right\}$ is a basis of $\mathcal{A}_{\tilde{\Lambda}}$ and

$$
x_{k} b_{j} \equiv \sum_{i=1}^{r} \frac{\Lambda^{*}\left(x_{k} b_{i} b_{j}\right)}{\Lambda^{*}\left(b_{i} b_{i}\right)} b_{i} \quad \bmod I_{\min }
$$

for $j=1 \ldots r, k=1 \ldots n$.
This yields the matrix of the operator M_{k} in the basis B : $\left[M_{k}\right]=\left(\frac{\Lambda^{*}\left(x_{k} b_{i} b_{j}\right)}{\Lambda^{*}\left(b_{i} b_{i}\right)}\right)_{1 \leq i, j \leq r}$.
As the roots of $I_{\text {min }}$ are simple, by (Elkadi and Mourrain, 2007)[Theorem 4.23] the eigenvectors of all $M_{k}, k=1 \ldots n$ are the so-called idempotents $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ of $\mathcal{A}_{\min }$ and the corresponding eigenvalues are $\xi_{1, k}, \ldots, \xi_{r, k}$.

```
Algorithm 6.1: Minimizer Points
Input: \(B\) and the output relations from Algorithm 5.1.
Output: the minimizer points \(\xi_{i}=\left(\xi_{i, 1}, \ldots, \xi_{i, n}\right), i=1 \ldots r\).
Begin
    (1) Compute the matrices \(\left[M_{k}\right]=\left(\frac{\Lambda^{*}\left(x_{k} b_{i} b_{j}\right)}{\Lambda^{*}\left(b_{i} b_{i}\right)}\right)_{1 \leq i, j \leq r}\).
    (2) For a generic choice of \(l_{1}, \ldots, l_{n} \in \mathbb{R}\), compute the eigenvectors \(\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\) of
    \(l_{1}\left[M_{1}\right]+\cdots+l_{n}\left[M_{n}\right]\).
    (3) Compute \(\xi_{i, k} \in \mathbb{R}\) such that \(M_{k} \mathbf{u}_{i}=\xi_{i, k} \mathbf{u}_{i}\).
```


End

Now we compute the minimizer points of our running example 2.1.
Example 6.2. With the basis $B=\{1, x-1.5\}$ and the kernel ker $H_{\Lambda}^{B^{+}}=\left\langle y-1, x^{2}-\right.$ $3 x+2, x y-1.5 y-x+1.5\rangle$ produced by Algorithm 5.5, we can compute the multiplication matrices.

$$
\begin{gathered}
M_{x}^{B=\{1, x-1.5\}}=\left(\begin{array}{cc}
1.5 & 0.25 \\
1 & 1.5
\end{array}\right) \longrightarrow\left\{\begin{array}{l}
x \times 1=1.5 \cdot 1+1 \cdot(x-1.5) \\
x \times(x-1.5)=0.25 \cdot 1+1.5 \cdot(x-1.5)
\end{array}\right. \\
M_{y}^{B=\{1, x-1.5\}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \longrightarrow\left\{\begin{array}{l}
y \times 1=1 \cdot 1+0 \cdot(x-1.5) \\
y \times(x-1.5)=0 \cdot 1+1 \cdot(x-1.5)
\end{array}\right.
\end{gathered}
$$

We take a linear combination of these matrices

$$
M=M_{x}^{B}+M_{y}^{B}=\left(\begin{array}{cc}
2.5 & 0.25 \\
1 & 2.5
\end{array}\right)
$$

and compute its eigenvalues $\lambda_{1}=2, \lambda_{2}=3$ and its eigenvectors:

$$
M \cdot u_{1}=\lambda_{1} \cdot u_{1} \rightarrow u_{1}^{T}=(-0.5,1) ; M \cdot u_{2}=\lambda_{2} \cdot u_{2} \rightarrow u_{2}^{T}=(0.5,1)
$$

From these eigenvectors, we compute the eigenvalues associated to each multiplication matrix M_{x}^{B}, M_{y}^{B}. Each computed eigenvalue corresponds to a coordinate of the corresponding minimizer point as we have seen in Proposition 6.1:

$$
\begin{gathered}
M_{x}^{B} \cdot u_{1}^{T}=x_{1} \cdot u_{1}^{T} \rightarrow x_{1}=1 ; M_{x}^{B} \cdot u_{2}^{T}=x_{2} \cdot u_{2}^{T} \rightarrow x_{2}=2 \\
M_{y}^{B} \cdot u_{1}^{T}=y_{1} \cdot u_{1}^{T} \rightarrow y_{1}=1 ; M_{y}^{B} \cdot u_{2}^{T}=y_{2} \cdot u_{2}^{T} \rightarrow y_{2}=1
\end{gathered}
$$

We recover the minimizer points $(1,1)$ and $(2,1)$.

7. Main algorithm

In this section we describe the algorithm to compute the infimum of a polynomial on S and the minimizer points when the minimizer ideal is zero-dimensional. It can be seen as a type of border basis algorithm, in which in the main loop we compute the optimal linear form (section 4), we then check when the minimun is reached (section 5) and finally we compute the minimizer points (section 6). This algorithm is closely connected to the real radical border basis algorithm presented in (Lasserre et al., 2012).
Algorithm 7.1: MinIMIZATION OF f ON S
Input: A real polynomial function f and a set of constraints $\mathbf{g} \subset \mathbb{R}[\mathbf{x}]$ with $V_{\text {min }}$ non-empty finite.
Output: the minimum $f^{*}=f_{G_{t}, B_{t}}^{*}$, the minimizer points $V_{\min }=V, I_{\text {min }}=(K)$ and B^{\prime} such that K is a border basis for B^{\prime}.

Begin

(1) Take $t=\max \left(\left\lceil\frac{\operatorname{deg}(f)}{2}\right\rceil, d^{0}, d^{+}\right)$where $d^{0}=\max _{g^{0} \in \mathbf{g}^{0}}\left(\left\lceil\frac{\operatorname{deg}\left(g^{0}\right)}{2}\right\rceil\right), d^{+}=\max _{g^{+} \in \mathbf{g}^{+}}\left(\left\lceil\frac{\operatorname{deg}\left(g^{+}\right)}{2}\right\rceil\right)$
(2) Compute the graded border basis $F_{2 t}$ of \mathbf{g}^{0} for B in degree $2 t$.
(3) Let B_{t} be the set of monomials in B of degree $\leq t$.
(4) Let G_{t} be the set of constraints such that $G_{t}^{0}=\left\{m-\pi_{B_{t}, F_{2 t}}(m), m \in B_{t} \cdot B_{t}\right\}$ and $G^{+}=\pi_{B_{t}, F_{2 t}}\left(g^{+}\right)$
(5) $\left[f_{G_{t}, B_{t}}^{*}, \Lambda^{*}\right]:=$ Optimal Linear $\operatorname{Form}\left(f, B_{t}, G_{t}\right)$.
(6) $\left[c, B^{\prime}, K\right]:=\operatorname{Decomposition}\left(\Lambda^{*}, B_{t}\right)$ where $c=$ failed, $B^{\prime}=\emptyset, K=\emptyset$ or c =success, B^{\prime} is the basis and K is the set of the relations.
(7) if $c=$ success then $V=$ Minimizer $\operatorname{Points}\left(B^{\prime}, K\right)$ else go to step 2 with $t:=t+1$.
End

8. Finite convergence

In this section we analyse cases for which an exact relaxation can be constructed.
Our approach to compute the minimizer points relies on the fact that the border basis relaxation is exact.

By Proposition 3.6, the reduced border basis relaxation is exact if and only if the corresponding full moment matrix relaxation is exact.

Despite the full moment matrix relaxation is not always exact, it is possible to add constraints so that the relaxation becomes exact.

In (Abril Bucero and Mourrain, 2013), a general strategy to construct exact SDP relaxation hierarchies and to compute the minimizer ideal is described. It applies to the following problems:
Global optimization. Consider the case $n_{1}=n_{2}=0$ with $f^{*}=\inf _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})$ reached at a point of \mathbb{R}^{n}. Taking G such that $G^{0}=\left\{\frac{\partial f}{\partial_{x_{1}}}, \ldots, \frac{\partial f}{\partial_{x_{n}}}\right\}$ and $G^{+}=\emptyset$, the relaxation associated to the sequence $\mathcal{L}_{t, G}$ is exact and yields $I_{\min }$ (see (Nie et al., 2006; Abril Bucero and Mourrain, 2013)). If $I_{\min }$ is finite then the border basis relaxation yields the minimizer points and the corresponding border basis.

Regular case.

We say that $\mathbf{g}=\left(g_{1}^{0}, \ldots g_{n_{1}}^{0} ; g_{1}^{+}, \ldots, g_{n_{2}}^{+}\right)$is regular if for all points $\mathbf{x} \in \mathcal{S}(\mathbf{g})$ with $\left\{j_{1}, \ldots, j_{k}\right\}=\left\{j \in\left[1, n_{2}\right] \mid g_{j}^{+}(\mathbf{x})=0\right\}$, the vectors $\nabla g_{1}^{0}(\mathbf{x}), \ldots, \nabla g_{n_{1}}^{0}(\mathbf{x}), \nabla g_{j_{1}}^{+}(\mathbf{x}), \ldots$, $\nabla g_{j_{k}}^{+}(\mathrm{x})$ are linearly independent.

For $\nu=\left\{j_{1}, \ldots, j_{k}\right\} \subset\left[0, n_{2}\right]$ with $|\nu| \leq n-n_{1}$, let

$$
\begin{aligned}
A_{\nu} & =\left[\nabla f, \nabla g_{1}^{0}, \ldots, \nabla g_{n_{1}}^{0}, \nabla g_{j_{1}}^{+}, \ldots, \nabla g_{j_{k}}^{+}\right] \\
\Delta_{\nu} & =\operatorname{det}\left(A_{\nu} A_{\nu}^{T}\right) \\
g_{\nu} & =\Delta_{\nu} \prod_{j \notin \nu} g_{j}^{+} .
\end{aligned}
$$

Let $G \subset \mathbb{R}[\mathbf{x}]$ be the set of constraints such that $G^{0}=\mathbf{g}^{0} \cup\left\{g_{\nu}\left|\nu \subset\left[0, n_{2}\right],|\nu| \leq n-n_{1}\right\}\right.$. Then the relaxation associated to the preordering sequence $\mathcal{L}_{t, G}^{\star}$ is exact and yields $I_{\min }$ (see (Ha and Pham, 2010; Abril Bucero and Mourrain, 2013) or (Nie, 2011) for \mathbb{C}-regularity and constraints G^{0} that involve minors of A_{ν}).

If $I_{\text {min }}$ is non-empty and finite then the border basis relaxation (2) yields the points $V_{\min }$ and the border basis of $I_{\text {min }}$.
Boundary Hessian Conditions. If f and \mathbf{g} satisfies the so-called Boundary Hessian Conditions then $f-f^{*} \in \mathcal{Q}_{t, g}$ and the relaxation associated to $\mathcal{L}_{t, \mathrm{~g}}$ is exact and yields $I_{\text {min }}$ (see (Marshall, 2009)). If moreover $I_{\min }$ is finite then the border basis relaxation yields the points $V_{\min }$ and the corresponding border basis of $I_{\text {min }}$.
\mathbf{g}^{+}-radical computation. If we optimize $f=0$ on the set $S=\mathcal{S}(\mathbf{g})$, then all the points of S are minimizer points, $V_{\min }=S$ and by the Positivstellensatz, $I_{\min }$ is equal to

$$
\sqrt[\mathbf{g}^{+}]{\mathbf{g}^{0}}=\left\{p \in \mathbb{R}[\mathbf{x}] \mid \exists m \in \mathbb{N} \text { s.t. } p^{2 m}+q=0, q \in \mathcal{P}_{\mathbb{R}[\mathbf{x}], \mathbf{g}}\right\}
$$

Here again, the preordering sequence $\mathcal{L}_{t, \mathbf{g}}^{\star}$ is exact. If we assume that $S=\mathcal{S}(\mathbf{g})$ is finite, then the corresponding border basis relaxation yields the points of S and the generators of $\sqrt[\mathrm{g}^{+}]{\mathrm{g}^{0}}$. See also (Lasserre et al., 2009, 2012) for zero dimensional real radical computation and (Ma et al., 2013).

9. Performance

In this section, we analyse the practical behavior of Algorithm 7.1. In all the examples the minimizer ideal is zero-dimensional hence our algorithm stops in a finite number of steps and yields the minimizer points and generators of the minimizer ideal.

The implementation of the previous algorithm has been performed using the BORDERBASIX ${ }^{2}$ package of the MATHEMAGIX ${ }^{3}$ software, which provides a C++ implementation of the border basis algorithm of (Mourrain and Trébuchet, 2012).

For the computation of border basis, we use a choice function that is tolerant to numerical inestability i.e. a choice function that chooses as leading monomial a monomial whose coefficient is maximal among the choosable monomials as described in (Mourrain and Trébuchet, 2008).

The Semi-Definite Programming problems are solved using SDPA, SDPA-GMP ${ }^{4}$, CSDP and MOSEK ${ }^{5}$ software. For the link with SDPA, CSDP and SDPA-GMP we use a file interface. In the case of MOSEK, we use the distributed library.

Once we have computed the moment matrix, we call the Decomposition Algorithm which is available in the BORDERBASIX package.

The minimizer points are computed from the eigenvalues of the multiplication matrices. This is performed using Lapack routines.

Experiments are made on an Intel Core i5 2.40 GHz .
In Table 1, we compare our algorithm 7.1 (bbr) with the full moment matrix relaxation algorithm ($f m r$) inside the same environment. This latter (implemented by ourselves in C++ inside the BORDERBASIX package) reproduces the algorithm described in (Lasserre, 2009), which is also implemented in the package GLOPTIPOLY of mATLAB developed by D. Henrion and J.B. Lasserre. In this table, we record the problem name or the source of the problem, the number of decision variables (v), the number of inequality and equality constraints, we mark in parenthesis the number of equality constraints (c), the maximum degree of the constraints and of the polynomial to minimize (d), the number of minimizer points (sol). For the two algorithms bbr and $f m r$ we report the total CPU time in seconds using MOSEK (t), the order of the relaxation (o), the number of parameters of the SDP problem (p) and the size of the moment matrices (s). The first part of the table contains examples of positive polynomials, which are not sums of squares. New equality constraints are added following (Abril Bucero and Mourrain, 2013) to compute the minimizer points in the examples marked with \diamond. When there are equality constraints, the border basis computation reduces the size of the moment matrices, as well as the localization matrices associated to the inequalities. This speeds up the SDP computation as shown the examples Ex 1.4.8, Ex 2.1.8, Ex 2.1.9 and simplex. In the case where there are only inequalities, the size of the moment matrices and number of parameters do not change but once the optimal linear form is computed using the SDP solver mosek, the Decomposition algorithm which computes the minimizers is more efficient and quicker than the reconstruction algorithm used in the full moment matrix relaxation approach. The performance is not the only issue: numerical problems can also occur due to the bigger size of the moment matrices in the flat extension test and the reconstruction of minimizer points. Such examples where the fmr algorithm fails are marked with *. In these three problems, there is not a big enough gap between the singular values to determine correctly the numerical rank and the flat extension property cannot be verified. The examples that gloptipoly cannot treat due to the high number

[^2]of variables (Lasserre, 2009) are marked with ${ }^{* *}$. We can treat three of this examples (with $f m r$) because as we said $f m r$ is implemented in C++ so it is more efficient than GLOTIPOLY, which is implemented inside matlab. We cannot treat the example 2.1.8 with the $f m r$ algorithm due to the large number of parameters.

These experiments show that when the size of the SDP problems becomes significant, most of the time is spent during the SDP computation and the border basis time and reconstruction time are negligible. The use of MOSEK software provides a speed-up factor of 1.5 to 5 compared to the SDPA software for small examples (such as Robinson, Moztkin, Ex 3, Ex 5, Ex 2.1.1, Ex 2.1.2, Ex 2.1.4 and Ex 2.1.6). For large examples (such as Ex 2.1.3, Ex 2.1.7, Ex 2.1.8 and simplex) the improvement factors are between 10-30 times. These improvements are due to the new fast Cholesky decomposition inside of mosek software ${ }^{6}$. In all the examples, the new border basis relaxation algorithm outperforms the full moment matrix relaxation method.

In Table 2, we apply our algorithm bbr to find the best rank-1 and rank-2 tensor approximation for symmetric and non symmetric tensors on examples from (Nie and Wang, 2013) and (Ottaviani et al., 2013). For best rank-1 approximation problems with several minimizers (which is the case when there are symmetries), the method proposed in (Nie and Wang, 2013) cannot certify the result and uses a local method to converge to a local extrema. We apply the global border basis relaxation algorithm to find all the minimizers for the best rank 1 approximation problem.

The last example in Table 2 is a best rank- 2 tensor approximation example from the paper (Ottaviani et al., 2013). The eight solutions come from the symmetries due to the invariance of the solution set by permutation and negation of the factors.

Acknowledgements

We would like to thank Philippe Trebuchet and Matthieu Dien for their development in the BORDERBASIX package.

References

Abril Bucero, M., Mourrain, B., 2013. Exact relaxation for polynomial optimization on semi-algebraic sets, http://hal.inria.fr/hal-00846977.
Brachat, J., Comon, P., Mourrain, B., Tsigaridas, E., 2010. Symmetric tensor decomposition. Linear Algebra and Applications 433, 1851-1872.
Demmel, J., Nie, J., Powers, V., 2007. Representations of positive polynomials on noncompact semialgebraic sets via kkt ideals. Journal of Pure and Applied Algebra 209 (1), 189 - 200.
Elkadi, M., Mourrain, B., 2007. Introduction à la résolution des systèmes d'équations algébriques. Vol. 59 of Mathématiques et Applications. Springer-Verlag.
Floudas, C. A., Pardalos, P. M., Adjiman, C. S., Esposito, W. R., Gumus, Z. H., Harding, S. T., Klepeis, J. L., Meyer, C. A., Schweiger, C. A., 1999. Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers.
Giesbrecht, M., Labahn, G., Lee, W.-S., Aug. 2009. Symbolic-numeric sparse interpolation of multivariate polynomials. J. Symb. Comput. 44 (8), 943-959.

[^3]| problem | v | c | d | sol | $O_{b b r}$ | $p_{b b r}$ | $S_{b b r}$ | $t_{b b r}$ | $O_{f m r}$ | $p_{f m r}$ | $s_{f m r}$ | $t_{f m r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \diamond Robinson | 2 | 0 | 6 | 8 | 4 | 20 | 15 | 0.07 | 7 | 119 | 36 | * |
| \diamond Motzkin | 2 | 0 | 6 | 4 | 4 | 25 | 15 | 0.060 | 9 | 189 | 55 | * |
| \diamond Motzkin perturbed | 3 | 1 | 6 | 1 | 5 | 127 | 35 | 0.18 | 5 | 286 | 56 | 8.01 |
| \diamond L'01, Ex. 1 | 2 | 0 | 4 | 1 | 2 | 8 | 6 | 0.020 | 2 | 14 | 6 | 0.035 |
| \diamond L'01, Ex. 2 | 2 | 0 | 4 | 1 | 2 | 8 | 6 | 0.020 | 2 | 14 | 6 | 0.026 |
| \diamond L'01, Ex. 3 | 2 | 0 | 6 | 4 | 4 | 25 | 15 | 0.057 | 8 | 152 | 45 | * |
| L'01, Ex. 5 | 2 | 3 | 2 | 3 | 2 | 14 | 6 | 0.032 | 2 | 14 | 6 | 0.045 |
| F, Ex. 4.1.4 | 1 | 2 | 4 | 2 | 2 | 4 | 3 | 0.016 | 2 | 4 | 3 | 0.023 |
| F, Ex. 4.1.6 | 1 | 2 | 6 | 2 | 3 | 6 | 4 | 0.018 | 3 | 6 | 4 | 0.020 |
| F, Ex. 4.1.7 | 1 | 2 | 4 | 1 | 2 | 4 | 3 | 0.017 | 2 | 4 | 3 | 0.020 |
| F, Ex. 4.1.8 | 2 | $5(1)$ | 4 | 1 | 2 | 13 | 6 | 0.021 | 2 | 14 | 6 | 0.12 |
| F, Ex. 2.1.1 | 5 | 11 | 2 | 1 | 3 | 461 | 56 | 3.10 | 3 | 461 | 56 | 3.12 |
| F, Ex. 2.1.2 | 6 | 13 | 2 | 1 | 2 | 209 | 26 | 0.32 | 2 | 209 | 26 | 0.36 |
| F, Ex. 2.1.3 | 13 | 35 | 2 | 1 | 2 | 2379 | 78 | 19.68 | 2 | 2379 | 78 | 25.60 |
| F, Ex. 2.1.4 | 6 | 15 | 2 | 1 | 2 | 209 | 26 | 0.30 | 2 | 209 | 26 | 0.33 |
| F, Ex. 2.1.5 | 10 | 31 | 2 | 1 | 2 | 1000 | 66 | 9.15 | 2 | 1000 | 66 | 9.7 |
| F, Ex. 2.1.6 | 10 | 25 | 2 | 1 | 2 | 1000 | 66 | 3.6 | 2 | 1000 | 66 | 4.17 |
| **F, Ex. 2.1.7(1) | 20 | 30 | 2 | 1 | 2 | 10625 | 231 | 730.24 | 2 | 10625 | 231 | 1089.31 |
| ** F , Ex. 2.1.7(5) | 20 | 30 | 2 | 1 | 2 | 10625 | 231 | 747.94 | 2 | 10625 | 231 | 1125.27 |
| ** F, Ex. 2.1.8 | 24 | 58(10) | 2 | 1 | 2 | 3875 | 136 | 311.54 | 2 | 20474 | 325 | $>14 \mathrm{~h}$ |
| F, Ex. 2.1.9 | 10 | 11(1) | 2 | 1 | 2 | 714 | 44 | 0.62 | 2 | 1000 | 55 | 1.67 |
| ** simplex | 15 | 16(1) | 2 | 1 | 2 | 3059 | 120 | 15.30 | 2 | 3875 | 136 | 47.50 |

Table 1. Examples from F-(Floudas et al., 1999)), L’01-(Lasserre, 2001).

Greuet, A., Safey El Din, M., 2011. Deciding reachability of the infimum of a multivariate polynomial. In: Proceedings of the 36th international symposium on Symbolic and algebraic computation. ISSAC '11. ACM, New York, NY, USA, pp. 131-138.
Ha, H. V., Pham, T., 2010. Representation of positive polynomials and optimization on noncompact semialgebraic sets. SIAM Journal on Optimization 20 (6), 3082-3103.
Henrion, D., Lasserre., J., 2005. Positive Polynomials in Control. Lectures Notes in Control and Information Sciences. Springer, Ch. Detecting Global Optimality and Extracting Solutions in GloptiPoly., pp. 293-310.
Lasserre., J., 2001. Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796-817.
Lasserre, J., 2009. Moments, positive polynomials and their applications. Imperial College Press.

problem	v	c	d	sol	$o_{b b r}$	$p_{b b r}$	$s_{b b r}$	$t_{b b r+m s k}$
(Nie and Wang, 2013) Ex. 3.1	2	1	3	1	2	8	5	0.028
(Nie and Wang, 2013) Ex. 3.2	3	1	3	1	2	24	9	0.025
(Nie and Wang, 2013) Ex. 3.3	3	1	3	1	2	24	9	0.035
(Nie and Wang, 2013) Ex. 3.4	4	1	4	2	2	24	9	0.097
(Nie and Wang, 2013) Ex. 3.5	5	1	3	1	2	104	20	0.078
(Nie and Wang, 2013) Ex. 3.6	5	1	4	2	4	824	105	15.39
(Nie and Wang, 2013) Ex. 3.8	3	1	6	4	3	48	16	1.14
(Nie and Wang, 2013) Ex. 3.11	8	4	4	8	3	84	25	0.17
(Nie and Wang, 2013) Ex. 3.12	9	3	3	4	2	552	52	1.55
(Nie and Wang, 2013) Ex. 3.13	9	3	3	12	3	3023	190	223.27
(Ottaviani et al., 2013) Ex. 4.2	6	0	8	4	8	2340	210	59.38

Table 2. Best rank-1 and rank-2 approximation tensors

Lasserre, J., Laurent, M., Rostalski., P., 2008. Semidefinite characterization and computation of real radical ideals. Foundations of Computational Mathematics 8 (5), 607-647.
Lasserre, J., Laurent, M., Rostalski, P., 2009. A unified approach for real and complex zeros of zero-dimensional ideals. In: Putinar, M., Sullivant, S. (Eds.), Emerging Applications of Algebraic Geometry. Vol. 149. Springer, pp. 125-156.
Lasserre, J.-B., Laurent, M., Mourrain, B., Rostalski, P., Trébuchet, P., 2012. Moment matrices, border bases and real radical computation. Journal of Symbolic Computation.
Laurent, M., 2007. Semidefinite representations for finite varieties. Math. Progr 109, 1-26.
Laurent, M., Mourrain, B., July 2009. A generalized flat extension theorem for moment matrices. Arch. Math. (Basel) 93 (1), 87-98.
Ma, Y., Wang, C., L., Z., 2013. A certificate for semidefinite relaxations in computing positive dimensional real varieties, http://arxiv.org/abs/1212.4924.
Marshall, M., 2009. Representations of non-negative polynomials, degree bounds and applications to optimization. Can. J. Math. 61 (1), 205-221.
Mourrain, B., 1999. A new criterion for normal form algorithms. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (Eds.), Proc. AAECC. Vol. 1719 of LNCS. Springer, Berlin, pp. 430-443
Mourrain, B., Trébuchet, P., 2005. Generalized normal forms and polynomials system solving. In: Kauers, M. (Ed.), ISSAC: Proceedings of the ACM SIGSAM International Symposium on Symbolic and Algebraic Computation. pp. 253-260.
Mourrain, B., Trébuchet, P., 2008. Stable normal forms for polynomial system solving. Theoretical Computer Science 409 (2), 229-240.
Mourrain, B., Trébuchet, P., Jul. 2012. Border basis representation of a general quotient algebra. In: van der Hoeven, J. (Ed.), ISSAC 2012. pp. 265-272.
Nesterov, Y., Nemirovski, A., 1994. Interior-point polynomial algorithms in convex programming. SIAM, Philaldelphia.
Nie, J., 2011. An exact jacobian SDP relaxation for polynomial optimization. Mathematical Programming, 1-31.

Nie, J., 2012. Certifying convergence of Lasserre's hierarchy via flat truncation. Mathematical Programming, 1-26.
Nie, J., Demmel, J., Sturmfels, B., 2006. Minimizing polynomials via sum of squares over gradient ideal. Math. Program. 106 (3), 587-606.
Nie, J., Wang, L., 2013. Semidefinite relaxations for best rank-1 tensor approximations, http://arxiv.org/abs/1308.6562v2.
Ottaviani, G., Spaenlehauer, P.-J., Sturmfels, B., 2013. Exact solutions in structured low-rank approximation, http://arxiv.org/abs/1311.2376v2.
Parrilo, P., 2003. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming Ser. B 96 (2), 293-320.
Parrilo, P., Sturmfels, B., 2003. Minimizing polynomial functions. In: Proceedings of the DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science. American Mathematical Society, pp. 83-100.
Riener, C., Theobald, T., Andrén, L. J., Lasserre, J. B., Feb. 2013. Exploiting symmetries in SDP-relaxations for polynomial optimization. Math. Oper. Res. 38 (1), 122-141.
Safey El Din, M., 2008. Computing the global optimum of a multivariate polynomial over the reals. In: Proceedings of the twenty-first international symposium on Symbolic and algebraic computation. ISSAC '08. ACM, New York, NY, USA, pp. 71-78.
Shor, N., 1987. Class of global minimum bounds of polynomial functions. Cybernetics 23, 731-734.

A. Results of Best rank-1 approximation tensors

Example 3.1: Consider the tensor $\mathcal{F} \in S^{3}\left(\mathbb{R}^{2}\right)$ with entries
$\mathcal{F}_{111}=1.5578, \mathcal{F}_{222}=1.1226, \mathcal{F}_{112}=-2.443, \mathcal{F}_{221}=-1.0982$
We get the rank-1 tensor $\lambda \cdot u^{\otimes 3}$ with:
$\lambda=3.11551, u=(0.926433,-0.376457)$ and $\left\|\mathcal{F}-\lambda \cdot u^{\otimes 3}\right\|=3.9333$.
Example 3.2: Consider the tensor $\mathcal{F} \in S^{3}\left(\mathbb{R}^{3}\right)$ with entries
$\mathcal{F}_{111}=-0.1281, \mathcal{F}_{112}=0.0516, \mathcal{F}_{113}=-0.0954, \mathcal{F}_{122}=-0.1958, \mathcal{F}_{123}=-0.1790$,
$\mathcal{F}_{133}=-0.2676, \mathcal{F}_{222}=0.3251, \mathcal{F}_{223}=0.2513, \mathcal{F}_{233}=0.1773, \mathcal{F}_{333}=0.0338$
We get the rank-1 tensor $\lambda \cdot u^{\otimes 3}$ with:
$\lambda=0.87298, u=(-0.392192,0.7248,0.5664)$ and $\left\|\mathcal{F}-\lambda \cdot u^{\otimes 3}\right\|=0.4498$.
Example 3.3: Consider the tensor $\mathcal{F} \in S^{3}\left(\mathbb{R}^{3}\right)$ with entries
$\mathcal{F}_{111}=0.0517, \mathcal{F}_{112}=0.3579, \mathcal{F}_{113}=0.5298, \mathcal{F}_{122}=0.7544, \mathcal{F}_{123}=0.2156$,
$\mathcal{F}_{133}=0.3612, \mathcal{F}_{222}=0.3943, \mathcal{F}_{223}=0.0146, \mathcal{F}_{233}=0.6718, \mathcal{F}_{333}=0.9723$
We get the rank-1 tensor $\lambda \cdot u^{\otimes 3}$ with:
$\lambda=2.11102, u=(0.52048,0.511264,0.683891)$ and $\left\|\mathcal{F}-\lambda \cdot u^{\otimes 3}\right\|=1.2672$.
Example 3.4: Consider the tensor $\mathcal{F} \in S^{4}\left(\mathbb{R}^{3}\right)$ with entries
$\mathcal{F}_{1111}=0.2883, \mathcal{F}_{1112}=-0.0031, \mathcal{F}_{1113}=0.1973, \mathcal{F}_{1122}=-0.2458, \mathcal{F}_{1123}=-0.2939$,
$\mathcal{F}_{1133}=0.3847, \mathcal{F}_{1222}=0.2972, \mathcal{F}_{1223}=0.1862, \mathcal{F}_{1233}=0.0919, \mathcal{F}_{1333}=-0.3619$
$\mathcal{F}_{2222}=0.1241, \mathcal{F}_{2223}=-0.3420, \mathcal{F}_{2233}=0.2127, \mathcal{F}_{2333}=0.2727, \mathcal{F}_{3333}=-0.3054$
We get the rank-1 tensor $\lambda \cdot u_{i}^{\otimes 3}$ with:
$\lambda=-1.0960, u_{1}=(-0.59148,0.7467,0.3042) ; u_{2}=(0.59148,-0.7467,-0.3042)$ and
$\left\|\mathcal{F}-\lambda \cdot u_{i}^{\otimes 4}\right\|=1.9683$.
Example 3.5: Consider the tensor $\mathcal{F} \in S^{3}\left(\mathbb{R}^{5}\right)$ with entries
$\mathcal{F}_{i_{1}, i_{2}, i_{3}}=\frac{(-1)^{i_{1}}}{i_{1}}+\frac{(-1)^{i_{2}}}{i_{2}}+\frac{(-1)^{i_{3}}}{i_{3}}$
We get the rank-1 tensor $\lambda \cdot u^{\otimes 3}$ with:
$\lambda=9.9776, u=(-0.7313,-0.1375,-0.46737,-0.23649,-0.4146)$ and
$\left\|\mathcal{F}-\lambda \cdot u^{\otimes 3}\right\|=5.3498$.
Example 3.6: Consider the tensor $\mathcal{F} \in S^{4}\left(\mathbb{R}^{5}\right)$ with entries
$\mathcal{F}_{i_{1}, i_{2}, i_{3}, i_{4}}=\arctan \left((-1)^{i_{1}} \frac{i_{1}}{5}\right)+\arctan \left((-1)^{i_{2}} \frac{i_{2}}{5}\right)+\arctan \left((-1)^{i_{3}} \frac{i_{3}}{5}\right)+\arctan \left((-1)^{i_{4}} \frac{i_{4}}{5}\right)$
We get the rank-1 tensor $\lambda \cdot u^{\otimes 4}$ with:
$\lambda=-23.56525, u_{1}=(0.4398,0.2383,0.5604,0.1354,0.6459)$;
$u_{2}=(-0.4398,-0.2383,-0.5604,-0.1354,-0.6459)$ and
$\left\|\mathcal{F}-\lambda \cdot u_{i}^{\otimes 4}\right\|=16.8501$.
Example 3.8: Consider the tensor $\mathcal{F} \in S^{6}\left(\mathbb{R}^{3}\right)$ with entries
$\mathcal{F}_{111111}=2, \mathcal{F}_{111122}=1 / 3, \mathcal{F}_{111133}=2 / 5, \mathcal{F}_{112222}=1 / 3, \mathcal{F}_{112233}=1 / 6$,
$\mathcal{F}_{113333}=2 / 5, \mathcal{F}_{222222}=2, \mathcal{F}_{222233}=2 / 5, \mathcal{F}_{223333}=2 / 5, \mathcal{F}_{333333}=1$
We get the rank- 1 tensor $\lambda \cdot u_{i}^{\otimes 6}$ with:
$\lambda=2, u_{1}=(1,0,0) ; u_{2}=(-1,0,0) ; u_{3}=(0,1,0) ; u_{4}=(0,-1,0)$ and $\left\|\mathcal{F}-\lambda \cdot u_{i}^{\otimes 6}\right\|=20.59$.

Example 3.11: Consider the tensor $\mathcal{F} \in \mathbb{R}^{2 \times 2 \times 2 \times 2}$ with entries
$\mathcal{F}_{1111}=25.1, \mathcal{F}_{1212}=25.6, \mathcal{F}_{2121}=24.8, \mathcal{F}_{2222}=23$
We get the rank- 1 tensor $\lambda \cdot u_{i}^{1} \otimes u_{i}^{2} \otimes u_{i}^{3} \otimes u_{i}^{4}$ with:
$\lambda=25.6, u_{1}^{1}=(1,0), u_{1}^{2}=(0,1), u_{1}^{3}=(1,0), u_{1}^{4}=(0,1)$;
$u_{2}^{1}=(-1,0), u_{2}^{2}=(0,-1), u_{2}^{3}=(-1,0), u_{2}^{4}=(0,-1)$;
$u_{3}^{1}=(-1,0), u_{3}^{2}=(0,-1), u_{3}^{3}=(1,0), u_{3}^{4}=(0,1)$;
$u_{4}^{1}=(1,0), u_{4}^{2}=(0,1), u_{4}^{3}=(-1,0), u_{4}^{4}=(0,-1)$;
$u_{5}^{1}=(-1,0), u_{5}^{2}=(0,1), u_{5}^{3}=(-1,0), u_{5}^{4}=(0,1)$;
$u_{6}^{1}=(1,0), u_{6}^{2}=(0,-1), u_{6}^{3}=(1,0), u_{6}^{4}=(0,-1)$;
$u_{7}^{1}=(1,0), u_{7}^{2}=(0,-1), u_{7}^{3}=(-1,0), u_{7}^{4}=(0,1)$;
$u_{8}^{1}=(-1,0), u_{8}^{2}=(0,1), u_{8}^{3}=(1,0), u_{8}^{4}=(0,-1)$.
The distance between \mathcal{F} and one of these solutions is $\left\|\mathcal{F}-\lambda \cdot u_{i}^{1} \otimes u_{i}^{2} \otimes u_{i}^{3} \otimes u_{i}^{4}\right\|=42.1195$.
Example 3.12: Consider the tensor $\mathcal{F} \in \mathbb{R}^{3 \times 3 \times 3}$ with entries
$\mathcal{F}_{111}=0.4333, \mathcal{F}_{121}=0.4278, \mathcal{F}_{131}=0.4140, \mathcal{F}_{211}=0.8154, \mathcal{F}_{221}=0.0199$,
$\mathcal{F}_{231}=0.5598, \mathcal{F}_{311}=0.0643, \mathcal{F}_{321}=0.3815, \mathcal{F}_{331}=0.8834, \mathcal{F}_{112}=0.4866$,
$\mathcal{F}_{122}=0.8087, \mathcal{F}_{132}=0.2073, \mathcal{F}_{212}=0.7641, \mathcal{F}_{222}=0.9924, \mathcal{F}_{232}=0.8752$,
$\mathcal{F}_{312}=0.6708, \mathcal{F}_{322}=0.8296, \mathcal{F}_{332}=0.1325, \mathcal{F}_{113}=0.3871, \mathcal{F}_{123}=0.0769$,
$\mathcal{F}_{133}=0.3151, \mathcal{F}_{213}=0.1355, \mathcal{F}_{223}=0.7727, \mathcal{F}_{233}=0.4089, \mathcal{F}_{313}=0.9715$,
$\mathcal{F}_{323}=0.7726, \mathcal{F}_{333}=0.5526$
We get the rank- 1 tensor $\lambda \cdot u_{i}^{1} \otimes u_{i}^{2} \otimes u_{i}^{3}$ with:
$\lambda=2.8166, u_{1}^{1}=(0.4279,0.6556,0.62209), u_{1}^{2}=(0.5705,0.6466,0.5063), u_{1}^{3}=(0.4500,0.7093,0.5425) ;$
$u_{2}^{1}=(0.4279,0.6556,0.62209), u_{2}^{2}=(-0.5705,-0.6466,-0.5063), u_{2}^{3}=(-0.4500,-0.7093,-0.5425) ;$
$u_{3}^{1}=(-0.4279,-0.6556,-0.62209), u_{3}^{2}=(0.5705,0.6466,0.5063), u_{3}^{3}=(-0.4500,-0.7093,-0.5425) ;$
$u_{4}^{1}=(-0.4279,-0.6556,-0.62209), u_{4}^{2}=(-0.5705,-0.6466,-0.5063), u_{4}^{3}=(0.4500,0.7093,0.5425)$,

The distance between \mathcal{F} and one of these solutions is $\left\|\mathcal{F}-\lambda \cdot u_{i}^{1} \otimes u_{i}^{2} \otimes u_{i}^{3}\right\|=1.3510$.
Example 3.13: Consider the tensor $\mathcal{F} \in \mathbb{R}^{3 \times 3 \times 3}$ with entries
$\mathcal{F}_{111}=0.0072, \mathcal{F}_{121}=-0.4413, \mathcal{F}_{131}=0.1941, \mathcal{F}_{211}=-04413, \mathcal{F}_{221}=0.0940$,
$\mathcal{F}_{231}=0.5901, \mathcal{F}_{311}=0.1941, \mathcal{F}_{321}=-0.4099, \mathcal{F}_{331}=-0.1012, \mathcal{F}_{112}=-0.4413$,
$\mathcal{F}_{122}=0.0940, \mathcal{F}_{132}=-0.4099, \mathcal{F}_{212}=0.0940, \mathcal{F}_{222}=0.2183, \mathcal{F}_{232}=0.2950$,
$\mathcal{F}_{312}=0.5901, \mathcal{F}_{322}=0.2950, \mathcal{F}_{332}=0.2229, \mathcal{F}_{113}=0.1941, \mathcal{F}_{123}=0.5901$,
$\mathcal{F}_{133}=-01012, \mathcal{F}_{213}=-0.4099, \mathcal{F}_{223}=0.2950, \mathcal{F}_{233}=0.2229, \mathcal{F}_{313}=-0.1012$,
$\mathcal{F}_{323}=0.2229, \mathcal{F}_{333}=-0.4891$
We get the rank- 1 tensor $\lambda \cdot u_{i}^{1} \otimes u_{i}^{2} \otimes u_{i}^{3}$ with $\lambda=1.000$ and the 12 solutions
$u_{1}^{1}=(0.7955,0.2491,0.5524), u_{1}^{2}=(-0.0050,0.9142,-0.4051), u_{1}^{3}=(-0.6060,0.3195,0.7285) ;$
$u_{2}^{1}=(-0.0050,0.9142,-0.4051), u_{2}^{2}=(-0.6060,0.3195,0.7285), u_{2}^{3}=(0.7955,0.2491,0.5524) ;$
$u_{3}^{1}=(-0.6060,0.3195,0.7285), u_{3}^{2}=(0.7955,0.2491,0.5524), u_{3}^{2}=(-0.0050,0.9142,-0.4051) ;$
$u_{4}^{1}=(0.7955,0.2491,0.5524), u_{4}^{2}=(0.0050,-0.9142,0.4051), u_{4}^{3}=(0.6060,-0.3195,-0.7285) ;$
$u_{5}^{1}=(0.6060,-0.3195,-0.7285), u_{5}^{2}=(0.7955,0.2491,0.5524), u_{5}^{2}=(0.0050,-0.9142,0.4051)$;
$u_{6}^{1}=(-0.6060,0.3195,0.7285), u_{6}^{2}=(-0.7955,-0.2491,-0.5524), u_{6}^{2}=(0.0050,-0.9142,0.4051)$;
$u_{7}^{1}=(0.6060,-0.3195,-0.7285), u_{7}^{2}=(-0.7955,-0.2491,-0.5524), u_{7}^{2}=(-0.0050,0.9142,-0.4051) ;$
$u_{8}^{1}=(-0.7955,-0.2491,-0.5524), u_{8}^{2}=(-0.0050,0.9142,-0.4051), u_{8}^{3}=(0.6060,-0.3195,-0.7285) ;$
$u_{9}^{1}=(-0.7955,-0.2491,-0.5524), u_{9}^{2}=(0.0050,-0.9142,0.4051), u_{9}^{3}=(-0.6060,0.3195,0.7285) ;$
$u_{10}^{1}=(-0.0050,0.9142,-0.4051), u_{10}^{2}=(0.6060,-0.3195,-0.7285), u_{10}^{3}=(-0.7955,-0.2491,-0.5524) ;$
$u_{11}^{1}=(0.0050,-0.9142,0.4051), u_{11}^{2}=(0.6060,-0.3195,-0.7285), u_{11}^{3}=(0.7955,0.2491,0.5524)$;
$u_{12}^{1}=(0.0050,-0.9142,0.4051), u_{12}^{2}=(-0.6060,0.3195,0.7285), u_{12}^{3}=(-0.7955,-0.2491,-0.5524)$.
The distance between \mathcal{F} and one of these solutions is $\left\|\mathcal{F}-\lambda \cdot u_{i}^{1} \otimes u_{i}^{2} \otimes u_{i}^{3}\right\|=1.4143$.
Example 4.2: Consider the tensor $\mathcal{F} \in S^{4}\left(\mathbb{R}^{3}\right)$ with entries
$\mathcal{F}_{1111}=0.1023, \mathcal{F}_{1112}=-0.002, \mathcal{F}_{1113}=0.0581, \mathcal{F}_{1122}=0.0039, \mathcal{F}_{1123}=-0.00032569$,
$\mathcal{F}_{1133}=0.0407, \mathcal{F}_{1222}=0.0107, \mathcal{F}_{1223}=-0.0012, \mathcal{F}_{1233}=-0.0011, \mathcal{F}_{1333}=0.0196$,
$\mathcal{F}_{2222}=0.0197, \mathcal{F}_{2223}=-0.0029, \mathcal{F}_{2233}=-0.00017418, \mathcal{F}_{2333}=-0.0021$,
$\mathcal{F}_{3333}=0.1869$
We get the rank-2 tensor $\tilde{\mathcal{F}}(s, t, u)=(a s+b t+c u)^{4}+(d s+e t+f u)^{4}$ with the 8 solutions: $s_{1}=(a, b, c, d, e, f)=(0.01877,0.006239,-0.6434,-0.5592,0.008797,-0.3522)$;
$s_{2}=(-0.01877,-0.006239,0.6434,0.5592,-0.008797,0.3522)$;
$s_{3}=(0.01877,0.006239,-0.6434,0.5592,-0.008797,0.3522) ;$
$s_{4}=(-0.01877,-0.006239,0.6434,-0.5592,0.008797,-0.3522) ;$
$s_{5}=(-0.5592,0.008797,-0.3522,0.01877,0.006239,-0.6434) ;$
$s_{6}=(0.5592,-0.008797,0.3522,-0.01877,-0.006239,0.6434) ;$
$s_{7}=(-0.5592,0.008797,-0.3522,-0.01877,-0.006239,0.6434) ;$
$s_{8}=(0.5592,-0.008797,0.3522,0.01877,0.006239,-0.6434) ;$.
The distance between \mathcal{F} and one of these solutions is $\|\mathcal{F}-\tilde{\mathcal{F}}\|=0.00108483$.
The other possible real rank-2 approximations $\tilde{\mathcal{F}}(s, t, u)= \pm(a s+b t+c u)^{4} \pm(d s+e t+f u)^{4}$ yield solutions which are not as close to \mathcal{F} as these solutions.

[^0]: Email addresses: Marta.Abril_Bucero@inria.fr (Marta Abril Bucero), Bernard.Mourrain@inria.fr (Bernard Mourrain).

[^1]: ${ }^{1}$ In (Laurent and Mourrain, 2009), it is stated with a vector space spanned by a monomial set connected to 1 , but its extension to vector spaces connected to 1 is straightforward.

[^2]: 2 http://www-sop.inria.fr/teams/galaad/software/bbx/
 3 www.mathemagix.org
 ${ }^{4}$ http://sdpa.sourceforge.net
 5 http://www.mosek.com

[^3]: 6 http://www.mosek.com

