. Expérimentaux-semblent-indiquer-que-la-complexité, agents présents dans le problème, mais uniquement du couplage entre les activités des agents, i.e., des interactions positives. Plusieurs pistes pour la poursuite de ce travail sont envisagées : ? la prise en compte de la robustesse des plans. Par robustesse, nous entendons la capacité d'un plan à tolérer plus ou moins des aléas d'exécution ou des croyances erronées sur l'état du monde. Supposons que nous soyons capables de construire un faisceau de plans solutions, i.e., un plan contenant différentes alternatives. La question qui se pose alors est la suivante : comment choisir les plans individuels les plus robustes minimisant ainsi le risque d'échec à l'exécution ?

A. R. Fleury-s, I. F. Herrb-m, and . Robert-f, Multi robot cooperation in the MARTHA project, IEEE Robotics and Automation Magazine, vol.5, issue.1, pp.36-47, 1998.

B. R. Bar-yehuda, N. J. Freund-a, and . Schieber-b, A unified approach to approximating resource allocation and scheduling, Journal of Association for Computing Machinery, vol.48, issue.5, pp.1069-1090, 2001.

B. A. Furst-m, Fast planning through planning graph analysis, Artificial Intelligence, vol.90, issue.12, pp.281-300, 1997.

C. B. Barrett, Continual coordination through shared activities, Proceedings of the International Conference on Autonomous Agent and Muti-Agent Systems, pp.57-67, 2003.

C. J. Durfee-e, An efficient algorithm for multiagent plan coordination, Proceedings of the International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp.828-835, 2005.

F. M. , G. A. , and L. D. Serina, Plan stability : Replanning versus plan repair, Proceedings of the International Conference on Planning and Scheduling, 2006.

I. M. Mali-a, Automatic problem decomposition for distributed planning, Proceedings of the International Conference on Artificial Intelligence, pp.411-417, 2002.

L. V. Decker-k, . Wagner-t, G. A. Carver-n, N. D. Horling-b, . R. Podo-rozhny et al., Evolution of the gpgp/taems domain-independent coordination framework, Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems, pp.87-143, 2004.

N. D. Au-t, . Ilghami-o, M. W. Kuter-u, and W. D. Yaman-y, Shop2 : An HTN planning system, Journal of Artificial Intelligence Research, vol.20, issue.1, pp.379-404, 2003.

P. J. Weld-d, UCPO : A sound, complete, partial order planner for ADL, Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, pp.103-114, 1992.

S. Y. Tennenholtz-m, On social laws for artificial agents societies : off-line design, Artificial Intelligence, vol.73, issue.12, pp.231-252, 1995.

T. M. Jung-h, The benefits of arguing in a team, Artificial Intelligence Magazine, vol.20, issue.4, pp.85-92, 1999.

T. H. Bos-a, W. M. De, and . Witteveen-c, Plan coordination by revision in collective agent-based systems, Artificial Intelligence, vol.142, issue.2, pp.121-145, 2002.

W. D. Parsia-b, E. J. Sirin, and . Nau-d, Automating daml-s web services composition using shop2, Proceedings of International Semantic Web Conference, 2003.

Y. H. Simmons-r, VHPOP : Versatile heuristic partial order planner, Journal of Artificial Intelligence Research, vol.20, issue.1, pp.405-430, 2003.

Z. G. Rosenschein-j, Negotiation and conflict resolution in non-cooperative domains, Proceedings of the American National Conference on Artificial Intelligence, pp.100-105, 1990.