A. Dennunzio, E. Formenti, and L. Manzoni, Computing issues of asynchronous CA, Fundamenta Informaticae, vol.120, issue.2, pp.165-180, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01312565

N. Fatès, A Guided Tour of Asynchronous Cellular Automata, Lecture Notes in Computer Science, vol.8155, pp.15-30978, 2013.
DOI : 10.1007/978-3-642-40867-0_2

N. Fatès, A Note on the Classification of the Most Simple Asynchronous Cellular Automata, Proceedings of Automata'13, pp.31-45978, 2013.
DOI : 10.1007/978-3-642-40867-0_3

N. Fatès, M. Morvan, N. Schabanel, and E. Thierry, Fully asynchronous behavior of double-quiescent elementary cellular automata, Theoretical Computer Science, vol.362, issue.1-3, pp.1-16, 2006.
DOI : 10.1016/j.tcs.2006.05.036

C. Grilo and L. Correia, Effects of asynchronism on evolutionary games, Journal of Theoretical Biology, vol.269, issue.1, pp.109-122, 2011.
DOI : 10.1016/j.jtbi.2010.10.022

URL : https://hal.archives-ouvertes.fr/hal-00653673

B. Sethi, S. Roy, and S. Das, Experimental study on convergence time of elementary cellular automata under asynchronous update, 2013.

T. Worsch, (Intrinsically?) Universal Asynchronous CA, Proceedings of ACRI 2012, pp.689-698, 2012.
DOI : 10.1007/978-3-642-33350-7_71

A. Eh, The case of EH is slightly more complicated as it is easier to establish the proof with a non-blanced function. We take W = e + 3h This potential verifies C1 as it is p-linear. We can check by hand that verifies C2 as W decreases by 1 each time an E is updated and by at least 1 each time an H is updated. (The entries H1, H2, H3, H4 have a corresponding variation of potential of -1,-5,-5,-9, respectively) It respects C3 because it is i-linear