V. R. Basili, The role of experimentation in software engineering: past, current, and future, Proc. of the 18th international conference on Software engineering, pp.442-449, 1996.

S. Becker, H. Koziolek, and R. Reussner, The Palladio component model for model-driven performance prediction, Journal of Systems and Software, vol.82, issue.1, pp.3-22, 2009.
DOI : 10.1016/j.jss.2008.03.066

M. Berthold, C. Borgelt, and F. Höppner, Guide to intelligent data analysis, 2010.
DOI : 10.1007/978-1-84882-260-3

M. R. Berthold, Mixed fuzzy rule formation, International Journal of Approximate Reasoning, vol.32, issue.2-3, pp.67-84, 2003.
DOI : 10.1016/S0888-613X(02)00077-4

M. R. Berthold and J. Diamond, Constructive training of probabilistic neural networks, Neurocomputing, vol.19, issue.1-3, pp.167-183, 1998.
DOI : 10.1016/S0925-2312(97)00063-5

G. E. Box, G. M. Jenkins, and G. C. , Time series analysis: forecasting and control, 2013.
DOI : 10.1002/9781118619193

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

S. Cheng, V. V. Poladian, D. Garlan, and B. Schmerl, Improving Architecture-Based Self-Adaptation through Resource Prediction, Software Engineering for Self-Adaptive Systems, pp.71-88, 2009.
DOI : 10.1109/5254.769885

I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, Model evolution by run-time parameter adaptation, 2009 IEEE 31st International Conference on Software Engineering, pp.111-121, 2009.
DOI : 10.1109/ICSE.2009.5070513

F. Fouquet, E. Daubert, N. Plouzeau, O. Barais, J. Bourcier et al., Dissemination of Reconfiguration Policies on Mesh Networks, Distributed Applications and Interoperable Systems, pp.16-30, 2012.
DOI : 10.1007/978-3-642-30823-9_2

URL : https://hal.archives-ouvertes.fr/hal-00688707

F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau et al., A dynamic component model for cyber physical systems, Proceedings of the 15th ACM SIGSOFT symposium on Component Based Software Engineering, CBSE '12, pp.135-144, 2012.
DOI : 10.1145/2304736.2304759

URL : https://hal.archives-ouvertes.fr/hal-00713769

J. Gama, Functional Trees, Machine Learning, vol.55, issue.3, pp.219-250, 2004.
DOI : 10.1023/B:MACH.0000027782.67192.13

D. Garlan, A 10-year perspective on software engineering self-adaptive systems (keynote), 2013 8th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pp.2-2, 2013.
DOI : 10.1109/SEAMS.2013.6595486

A. Guazzelli, M. Zeller, W. Lin, and G. Williams, PMML : An Open Standard for Sharing Models, The R Journal, pp.60-65, 2009.

N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, Self-adaptive workload classification and forecasting for proactive resource provisioning, Proc. of the ACM/SPEC International Conference on Performance Engineering (ICPE), pp.187-198, 2013.

J. Hielscher, R. Kazhamiakin, A. Metzger, and M. Pistore, A Framework for Proactive Self-adaptation of Service-Based Applications Based on Online Testing, Towards a Service-Based Internet, pp.122-133, 2008.
DOI : 10.1007/978-3-540-89897-9_11

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. Murthy, Improvements to Platt's SMO Algorithm for SVM Classifier Design, Neural Computation, vol.13, issue.3, pp.637-649, 2001.
DOI : 10.1080/10556789208805504

J. O. Kephart and D. M. Chess, The vision of autonomic computing, Computer, vol.36, issue.1, pp.41-50, 2003.
DOI : 10.1109/MC.2003.1160055

N. Landwehr, M. Hall, and E. Frank, Logistic model trees, Machine Learning, pp.161-205, 2005.
DOI : 10.1007/978-3-540-39857-8_23

T. Mitsa, Temporal data mining, 2010.
DOI : 10.1201/9781420089776

B. Morin, O. Barais, J. Jézéquel, F. Fleurey, and A. Solberg, Models@ run. time to support dynamic adaptation, Computer, issue.10, pp.4244-51, 2009.

B. Morin, O. Barais, G. Nain, and J. Jezequel, Taming Dynamically Adaptive Systems using models and aspects, 2009 IEEE 31st International Conference on Software Engineering, pp.122-132, 2009.
DOI : 10.1109/ICSE.2009.5070514

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. C. Platt, 12 fast training of support vector machines using sequential minimal optimization, 1999.

V. Poladyan, Tailoring Configuration to User's Tasks under Uncertainty, 2008.

M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning: the RPROP algorithm, IEEE International Conference on Neural Networks, pp.586-591, 1993.
DOI : 10.1109/ICNN.1993.298623

M. Salehie and L. Tahvildari, Self-adaptive software, ACM Transactions on Autonomous and Adaptive Systems, vol.4, issue.2, pp.1-42, 2009.
DOI : 10.1145/1516533.1516538

F. Salfner, M. Lenk, and M. Malek, A survey of online failure prediction methods, ACM Computing Surveys, vol.42, issue.3, pp.1-42, 2010.
DOI : 10.1145/1670679.1670680

E. B. Swanson, The dimensions of maintenance, Proc. of the 2nd international conference on Software engineering, pp.492-497, 1976.

V. S. Tseng and K. W. Lin, Efficient mining and prediction of user behavior patterns in mobile web systems. Information and software technology, pp.357-369, 2006.

J. Wu and S. Coggeshall, Foundations of Predictive Analytics. Chapman & Hall/CRC data mining and knowledge discovery series, 2012.

L. Yu, Z. Zheng, Z. Lan, and S. Coghlan, Practical online failure prediction for Blue Gene/P: Period-based vs event-driven, 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-W), pp.259-264, 2011.
DOI : 10.1109/DSNW.2011.5958823