Bayesian View Synthesis and Image-Based Rendering Principles

Sergi Pujades 1, * Frédéric Devernay 1 Bastian Goldluecke 2
* Corresponding author
1 PRIMA - Perception, recognition and integration for observation of activity
Inria Grenoble - Rhône-Alpes, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble , CNRS - Centre National de la Recherche Scientifique : UMR5217
Abstract : In this paper, we address the problem of synthesizing novel views from a set of input images. State of the art methods, such as the Unstructured Lumigraph, have been using heuristics to combine information from the original views, often using an explicit or implicit approximation of the scene geometry. While the proposed heuristics have been largely explored and proven to work effectively, a Bayesian formulation was recently introduced, formalizing some of the previously proposed heuristics, pointing out which physical phenomena could lie behind each. However, some important heuristics were still not taken into account and lack proper formalization. We contribute a new physics-based generative model and the corresponding Maximum a Posteriori estimate, providing the desired unification between heuristics-based methods and a Bayesian formulation. The key point is to systematically consider the error induced by the uncertainty in the geometric proxy. We provide an extensive discussion, analyzing how the obtained equations explain the heuristics developed in previous methods. Furthermore, we show that our novel Bayesian model significantly improves the quality of novel views, in particular if the scene geometry estimate is inaccurate.
Document type :
Conference papers
Complete list of metadatas

Cited literature [31 references]  Display  Hide  Download

https://hal.inria.fr/hal-00983315
Contributor : Sergi Pujades <>
Submitted on : Monday, February 9, 2015 - 10:02:32 AM
Last modification on : Tuesday, June 25, 2019 - 1:26:28 AM

Identifiers

Collections

Citation

Sergi Pujades, Frédéric Devernay, Bastian Goldluecke. Bayesian View Synthesis and Image-Based Rendering Principles. CVPR - 27th IEEE Conference on Computer Vision and Pattern Recognition, Jun 2014, Columbus, United States. pp.3906 - 3913, ⟨10.1109/CVPR.2014.499⟩. ⟨hal-00983315⟩

Share

Metrics

Record views

1156

Files downloads

943