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Abstract—In this paper, all the rate-pairs that are achievable
at a Nash equilibrium (NE) in the two-user linear deterministic
symmetric decentralized interference channel (LD-S-DIC) with
noisy feedback are identified. More specifically, the Nash region
(NR) of the LD-S-DIC with noisy feedback is fully character-
ized. The relevance of these rate-pairs is that once they are
achieved by using NE transmit-receive configurations, none of the
transmitter-receiver pairs can increase their individual rates by
unilaterally changing their configurations. More importantly, it is
shown that the NR of the LD-S-DIC with noisy feedback is larger
than the NR of the LD-S-DIC without feedback only in certain
cases. When interference is stronger than the desired signals, a
larger NR is observed only if the signal to noise ratios (SNRs) of
the feedback links are higher than the SNRs of the direct links.
Conversely, when desired signals are stronger than interference,
a larger NR is observed only if the SNRs of the feedback links are
higher than both the signal to interference ratios (SIRs) and the
interference to noise ratios (INRs) of the direct links. Previous
results, namely the NE region of the two-user LD-S-DIC without
feedback and with perfect output feedback are obtained as special
cases of the results presented in this contribution.

I. INTRODUCTION

The traditional role of feedback in wireless communications
systems has been to improve their reliability. Recently, a
transformative role of feedback has emerged in the context
of interference networks: harnessing interference as side in-
formation [1], [2], [3]. More specifically, when a transmitter
receives a feedback signal from its intended receiver, it ob-
tains a degraded version of the sum of its own transmitted
signal and the interfering signals from other transmitters. This
implies that subject to a finite delay, both transmitters know
at least partially the information transmitted by each other.
This induces a type of cooperation between transmitters in
the sense that they share their information bits. This effect is a
consequence of the broadcast nature of wireless channels, and
thus, even if this sort of cooperation is not explicitly desired
by the transmitters, it incontestably appears as long as all code
books are known by all transmitter-receiver pairs.

This paper studies the benefits of feedback in fully de-
centralized wireless networks, that is, networks in which
transmitter-receiver pairs are solely interested in transmitting
at their highest achievable rates, despite the rates that other
transmitter-receiver pairs might achieve. To this end, the two-
user Gaussian decentralized interference channel (DIC) with
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noisy feedback is studied using a linear deterministic (LD)
approximation and tools from game theory. In this setting, it
is shown that the sort of cooperation induced by feedback
allows both links to achieve Nash equilibria (NEs) that lie
in the Pareto optimal region, i.e., the set of sum-rate optimal
transmitter-receiver configurations. All the rate-pairs that are
achievable at an NE in the two-user linear deterministic sym-
metric decentralized interference channel (LD-S-DIC) with
noisy feedback are identified. More importantly, it is shown
that the set of rate pairs that are achievable at an NE, i.e.,
Nash region of the LD-S-DIC with noisy feedback, is larger
than the Nash region of the LD-S-DIC without feedback only
in certain cases. That is, the benefits of feedback appear only
if certain conditions are met. When interference is stronger
than the desired signals, a larger NR is observed only if the
signal to noise ratios (SNRs) of the feedback links are higher
than the SNRs of the direct links. Conversely, when desired
signals are stronger than interference, a larger NR is observed
only if the SNRs of the feedback links are higher than both
the signal to interference ratios (SIRs) and the interference
to noise ratios (INRs) of the direct links. Interestingly, the
NE region of the LD-DIC without feedback [4] and the NE
region of the LD-DIC with perfect output feedback [5], [6]
are obtained as corollaries of the main theorem presented in
this paper.

II. LINEAR DETERMINISTIC IC WITH NOISY FEEDBACK

Consider the two-user Gaussian DIC with noisy feedback
shown in Fig. 1. Transmitter i, with i ∈ {1, 2}, communicates
with receiver i during T consecutive blocks subject to the
interference produced by transmitter j ∈ {1, 2} \ {i}. The
linear deterministic approximation [7] of this decentralized
channel, known as the two-user LD-DIC with noisy feedback,
can be described by six parameters: −→n 11, −→n 22, n12, n21,
←−n 11 and ←−n 22. The parameter −→n ii > 0 captures the signal
strength from transmitter i to receiver i; nij > 0 captures
the interference strength from transmitter j to receiver i; and
←−n ii captures the feedback signal strength from receiver i
to transmitter i. Let q = max

(i,j)∈{1,2}2
max (nij ,

←−n ii,
−→n ii) be

strictly positive and finite. Then, the input-output relation of
the two user LD-DIC is

−→y
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Fig. 1. Two-user decentralized Gaussian interference channel with (delayed)
noisy feedback.

where x
(t)
i = (x

(t)
i,1, . . . , x

(t)
i,q)

T is the channel input vector

generated by transmitter i and y
(t)
i = (y

(t)
i,1 , . . . , y

(t)
i,q )

T is
the channel output received by receiver i during block t ∈
{1, . . . , T}. The matrix S is a q× q lower shift matrix and all
additions and multiplications are over a binary field.

A noisy feedback link from receiver i to transmitter i allows
at the end of each block t the observation of a degraded version

of the output −→y
(t−d)
i at transmitter i, within a finite delay of

d blocks. Thus, the feedback signal available at transmitter i
at block t is

←−y
(t)
i =Sq−←−n ii−→y

(t−d)
i . (3)

Let Mi be the number of information bits b
(t)
i,1, . . . , b

(t)
i,Mi

sent
by transmitter i at every block t. Hence, the encoder of trans-
mitter i, during block t > d, can be modeled as a deterministic

mapping f
(t)
i : {1, . . . , 2Mi} × {0, 1}(t−d)·q → {0, 1}q such

that x
(t)
i = f

(t)
i

(

k,←−y
(1)
i , . . . ,←−y

(t−d)
i

)

, where k is the index

of the message to be transmitted and ←−y
(1)
i , . . . ,←−y

(t−d)
i are

all previous channel outputs available at transmitter i at block
t. Note that for blocks for which t 6 d, the encoder is

a mapping f
(t)
i : {1, . . . , 2Mi} → {0, 1}q for which the

symbols x
(t)
i = f

(t)
i

(

k
)

do not depend on the previous

degraded channel outputs ←−y
(1)
i , . . . ,←−y

(t−d)
i . At the end of

the complete transmission, after block T , receiver i uses the

channel outputs −→y
(1)
i , . . . ,−→y

(T )
i to generate estimates b̂

(t)
i,ℓ of

the transmitted bits b
(t)
i,ℓ , ∀(ℓ, t) ∈ {1, . . . ,Mi} × {1, . . . , T}.

The average bit error probability of transmitter i during a

transmission of T blocks, denoted by p
(T )
i , is calculated as

follows:

p
(T )
i =

1

T ·Mi

T
∑

t=1

Mi
∑

ℓ=1

1{
b̂
(t)

i,ℓ
6=b

(t)

i,ℓ

}. (4)

The rate pair (R1, R2) ∈ R
2
+ is achievable, if there exists at

least one pair of codebooks with the corresponding encoding
functions f1 and f2 such that the average bit error probability
(4) can be made arbitrarily small by letting the number of
channel uses T grow to infinity.

The aim of transmitter i is to autonomously choose its
transmit configuration si in order to maximize its achievable
rate Ri. More specifically, the transmit configuration si can be
described in terms of the number of information bits per block
Mi, the codebook, the encoding functions fi, etc. Note that

the rate achieved by receiver i depends on both configurations
s1 and s2 due to the mutual interference naturally arising
in wireless channels. This reveals the competitive interaction
between both links in the LD-DIC and justifies the use of tools
from game theory in its analysis.

A. Symmetric Linear Deterministic Approximation

A particular case of the LD-DIC model is the symmetric
case in which −→n = −→n 11 = −→n 22, m = n12 = n21 and ←−n =
←−n 11 = ←−n 22. The capacity region of the two-user symmetric
LD-DIC with noisy feedback is denoted by C(−→n ,←−n ,m) and it
is fully characterized by Theorem 1 in [8].

Lemma 1 (Theorem 1 in [8]): The capacity region

C(−→n ,←−n ,m) of the two-user LD-DIC with noisy feedback

corresponds to the set of non-negative rate pairs (R1, R2)
that satisfy
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(
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B. Game Formulation

The competitive interaction through mutual interference
between the transmitters in the two-user DIC can be modeled
by the following game in normal-form:

G =
(

K, {Ak}k∈K , {uk}k∈K
)

. (11)

The set K = {1, 2} is the set of players, that is, the set of
transmitter-receiver pairs. The sets A1 and A2 are the sets of
actions of players 1 and 2, respectively. An action of player i,
which is denoted by si ∈ Ai, is basically its transmit/receive
configuration as described above. The utility function of player
i is ui : A1×A2 → R+ and it is defined as the achieved rate
of transmitter i, that is,

ui(s1, s2) =

ß

Ri(s1, s2), if ∀t ∈ {1, . . . , T}, p
(T )
i < ǫ

0, otherwise
,

(12)

where ǫ > 0 is an arbitrarily small number and Ri(s1, s2)
denotes a transmission rate achievable with the configurations
s1 and s2. Often, the rate Ri(s1, s2) is written as Ri for
the sake of simplicity. However, every non-negative rate is
associated with a particular pair of transmit configurations s1



and s2. It is worth noting that there might exist several transmit
configurations that achieve the same rate pair (R1, R2).

Some action profiles s = (s1, s2) ∈ A1×A2 are particularly
important in the analysis of this game. These actions profiles
are referred to as η-Nash equilibria (η-NE) and obey the
following definition:

Definition 1 (η-Nash Equilibrium): In the game G =
(

K, {Ak}k∈K , {uk}k∈K
)

, an action profile (s∗1, s
∗
2) is an η-

Nash equilibrium if ∀i ∈ K and ∀si ∈ Ai,

ui(si, s
∗
j ) 6 ui(s

∗
i , s
∗
j ) + η. (13)

From Def. 1, it becomes clear that if (s∗1, s
∗
2) is an η-Nash

equilibrium, then none of the transmitters can increase its own
transmission rate more than η bits per block by changing its
own transmit configuration and keeping the average bit error
probability arbitrarily close to zero. Thus, at a given η-NE,
every transmitter achieves a utility (transmission rate) that is
η-close to its maximum achievable rate given the transmit
configuration of the other transmitter. Note that if η = 0, then
the classical definition of NE is obtained [9]. The relevance of
the notion of equilibrium is that at any NE, every transmitter
configuration is optimal with respect to the configuration of
the other transmitters. The following investigates the set of
rate pairs that can be achieved at an NE. This set of rate pairs
is known as the Nash region.

Definition 2 (Nash Region): An achievable rate pair

(R1, R2) is said to be in the Nash region of the game

G =
(

K, {Ak}k∈K , {uk}k∈K
)

if there exists an action profile

(s∗1, s
∗
2) that is an η-Nash equilibrium for an arbitrarily small

η and the following holds:

u1(s
∗
1, s
∗
2) = R1 and u2(s

∗
1, s
∗
2) = R2. (14)

The following section studies the NE region of the game G
in (11).

III. MAIN RESULT

This section presents a complete characterization of the NE
region (Def. 2) of the symmetric LD-DIC with noisy feedback
with parameters −→n , ←−n and m. Let N(−→n ,←−n ,m) denote such an
NE region and consider the following region:

B(−→n ,←−n ,m)=
{

(R1, R2) : L 6 Ri 6 U, ∀i ∈ {1, 2}
}

, (15)

where L and U are defined as follows:

L=(−→n −m)+ and (16)

U =

ß

U (a) if m >
−→n

U (b) if m 6
−→n

, (17)

with

U (a)=min (max (−→n ,←−n ) ,m) , and

U (b)=max
(−→n ,m

)

−min
(

(−→n −m)+,m
)

+
(

min
(

(−→n −m)+,m
)

− (max(−→n ,m)−←−n )
)+

.

The following theorem fully characterizes the Nash region
N(−→n ,←−n ,m) in terms of the region B(−→n ,←−n ,m) in (15) and the
capacity region C(−→n ,←−n ,m) described by Lemma 1.
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Fig. 2. Illustration of C(7,0,4) (green line) and N(7,0,4) (black line) in the
left-top figure; C(7,5,4) (blue line) and N(7,5,4) (cyan line) in the right-top
figure; C(7,6,4) (blue line) and N(7,6,4) (cyan line) in the left-bottom figure;
and C(7,0,4) (red line) and N(7,7,4) (magenta line) in the right-bottom figure.

Theorem 1: The Nash region of the two-user symmetric

LD-DIC with noisy feedback, with parameters −→n , m and ←−n ,

is

N(−→n ,←−n ,m) = B(−→n ,←−n ,m) ∩ C(−→n ,←−n ,m). (18)

The rest of this section presents examples and connections
with existing results that provide some insight into the line
followed by the proof of Theorem 1.

A. Examples of Nash Regions

Consider the case of weak interference ( 12 6 α = m
−→n

6 1),

for instance, −→n = 7 and m = 4, with different levels of
noise in the feedback channel, i.e., ←−n ∈ {0, 1, . . .}. In Fig. 2,
the capacity region C(7,←−n ,4) and the Nash region N(7,←−n ,4) are

plotted for each value of ←−n .

The left-top plot in Fig. 2 shows the regions C(7,←−n ,4) (green

line) and N(7,←−n ,4) (black line), with←−n ∈ {0, 1, . . . , 4}. These
regions correspond exactly to the capacity region and the NE
region of the symmetric LD-DIC without feedback described
in Theorem 1 in [10] and in Theorem 1 in [4], respectively.
The following corollary formalizes this observation.

Corollary 1 (No Feedback): The Nash region of the sym-

metric LD-DIC without feedback (←−n = 0), with parameters
−→n and m, is N(−→n ,0,m).

A more interesting observation from Fig. 2 is that the ca-
pacity region and the Nash region remain the same for all
←−n ∈ {0, 1, . . . , 4}. Conversely, the right-top and left-bottom
plots in Fig. 2 show capacity regions and NE regions that
are larger than C(−→n ,0,m) and N(−→n ,0,m), respectively. Hence,

from Theorem 1, two important conclusions can be drawn: (a)
when the desired signals are stronger than the interference, i.e.,
−→n > m, for obtaining larger NE regions than the one obtained
without feedback N(−→n ,0,m), i.e., to observe

(

min
(

(−→n −m)+,m
)

− (max(−→n ,m)−←−n )
)+

> 0 (19)



in (17), the following condition is necessary:

←−n > max
(

(−→n −m)+,m
)

. (20)

This implies that for observing a noticeable effect on the Nash
region due to the use of feedback, the SNRs←−n of the feedback
links Rxi → Txi must be superior to the SIRs (−→n −m)+ and
the INRs m of the direct links Txi → Rxi. (b) When the
interference is stronger than the desired signals, i.e., m >
−→n , for observing a larger NE region than the one without
feedback, the following condition is necessary:

←−n > −→n , (21)

in (17). That is, the feedback links must exhibit a higher SNRs
←−n than the SNRs −→n of the direct links. Therefore, the sole
existence of feedback links Rxi → Txi is not a sufficient
condition for enlarging the Nash region of the LD-S-DIC
and some conditions need to be met. The following corollary
formalizes this observation.

Corollary 2 (Noisy Feedback): Necessary conditions for

observing N(−→n ,0,m) ⊂ N(−→n ,←−n ,m) with strict inclusion are

•
←−n > max

(

(−→n −m)+,m) if m < −→n ; and

•
←−n > −→n if m >

−→n .

The right-bottom plot in Fig. 2 shows the capacity C(7,←−n ,4)

(red line) and NE N(7,←−n ,4) (magenta line) regions, with
←−n ∈ {7, 8, . . .}. These plots correspond exactly to the capacity
region of the LD-S-IC with perfect output feedback and the
NE region of the LD-S-DIC with perfect output feedback
described in [1] and [5], [6], respectively. More formally,
note that in (17), the following inequality always holds for
all (−→n ,←−n ,m) ∈ N

3:

U 6 max
(−→n ,m

)

, (22)

and strict equality only holds when the following condition is
met:

←−n > max (−→n ,m) . (23)

This observation implies that, when the signal is stronger than
the interference, i.e., −→n > m, any improvement of the SNRs
←−n of the feedback links beyond the SNRs −→n of the direct
links does not enlarge the NE region. Similarly, when the
interference is stronger than the desired signal, i.e., m >

−→n ,
improving the SNRs←−n of the feedback links beyond the INRs
m does not enlarge the NE region. The following corollary
formalizes this observation.

Corollary 3 (Perfect-Output Feedback): The Nash region

of the LD-S-DIC with perfect output feedback (←−n >

max(−→n ,m)) is N(−→n ,max(−→n ,m)),m).
From Cor. 3 and Cor. 2, the following inclusion holds:

N(−→n ,0,m) ⊆ N(−→n ,←−n ,m) ⊆ N(−→n ,max(−→n ,m),m). (24)

In particular, from Cor. 2 and Cor. 3, it follows that strict
inclusions hold in (24) when max

(

(−→n − m)+,m
)

< ←−n <

max
(−→n ,m

)

.

B. Examples of Achievability

Consider the case in which −→n = 7, m = 4, and ←−n = 6
(see the left-bottom plot in Fig. 2). In this case, the Nash
region N(−→n ,←−n ,m) is the convex hull of the rate pairs (3, 3),
(6, 3), (6, 4), (4, 6) and (3, 6). The following shows the coding
schemes that achieve an NE at each of these rate pairs.
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Fig. 3. Achievability scheme of the equilibrium rate pair (3, 3) of the NE
region N(7,6,4). Only the levels inside the purple dashed box are fed back

to the corresponding transmitter. Note that ã1, ã2, . . . (resp. b̃1, b̃2, . . .) are
known at receiver 1 (resp. 2) and do not produce any interference at receiver
1 (resp. 2).

1) Achievability of the NE rate pair (3, 3): The rate pair
(3, 3) is achievable when both receivers treat their mutual
interference as noise (see Fig. 3). That is, transmitter i sends
its own information bits by using the top (−→n − m)+ levels

of the codeword X
(t)
i during the block t, which are received

interference-free at receiver i. Note that transmitter 1 (resp.
transmitter 2) also sends randomly generated symbols, denoted

by ã1, ã2, . . . (resp. b̃1, b̃2, . . .) in Fig. 3. These symbols are
assumed to be known at both transmitter 1 and receiver 1
(resp. transmitter 2 and receiver 2) and thus, they do not
carry any information for link 1 (resp. link 2), however, they
produce interference at receiver 2 (resp. receiver 1). In this
example, the sole objective of transmitting randomly generated
bits is to prevent the other transmitter from sending new
information bits and thus, increasing its transmission rate. As
shown in Fig. 3, any attempt of transmitter i to increase its
individual rate by transmitting information bits in the other
max(−→n ,m) − (−→n − m)+ = m bits bounds the probability
of error (4) away from zero. This is due to the interference
produced by transmitter j that affects these levels at receiver
i.

Finally, note that if the transmitter-receiver pair i uses its
feedback channel, it does not bring any side information
to transmitter i to improve the coding scheme. Thus, given
that no player can increase its individual rate given the
transmit/receive configuration of the other transmitter-receiver
pair, the rate pair (3, 3) is achieved at an NE. However, note
that the NE pair (3, 3) is the worst NE in terms of sum-rate,
which implies that treating interference as noise is the worst
choice from both individual and global points of view.

2) Achievability of the NE rate pair (6, 3) and (3, 6): The
rate pair (6, 3) is achieved thanks to feedback when transmitter
2 uses ℓ = 3 out of its min ((−→n −m)+,m) top levels of

the codeword X
(t)
2 to transmit bits that have been previously

transmitted by transmitter 1 and have produced interference
at receiver 2 (see Fig. 4). When re-transmitted by transmitter
2, these bits are used by receiver 2 to cancel the interference
they have previously produced when they were transmitted
by transmitter 1; and at receiver 1, they do not produce any



Fig. 4. Achievability scheme of the equilibrium rate pair (6, 3) of the NE
region N(7,6,4). Only the levels inside the purple dashed box are fed back
to the corresponding transmitter.

Fig. 5. Achievability scheme of the equilibrium rate pair (6, 4) of the NE
region N(7,6,4). Only the levels inside the purple dashed box are fed back
to the corresponding transmitter.

interference since they have been previously received without
any interference. Thus, in this example, transmitter 1 can
transmit ℓ additional bits with respect to those it would be
able to transmit if transmitter 2 does not use feedback to cancel
interference.

In general, when transmitter i uses ℓ of the top

min ((−→n −m)+,m) levels of its codeword X
(t)
i to re-

transmit bits that have been previously transmitted by trans-
mitter j, it grants ℓ additional bits per block to transmit-
ter j with respect to the case in which those ℓ bits are
used to send information bits corresponding to transmitter i.
According to this reasoning, the following inequality holds:
ℓ 6 min ((−→n −m)+,m).

3) Achievability of the NE rate pair (6, 4) and (4, 6):
The rate pair (6, 4) is achieved when both transmitter 1 and
transmitter 2 use feedback to clean interference received in
previous blocks (see Fig. 5). In this case, transmitter 1 uses
ℓ1 = 1 levels out of the min ((−→n −m)+,m) top levels of its

codewords X
(t)
1 to re-transmit ℓ1 bits previously transmitted

by transmitter 2 in order to cancel its interference. This
allows transmitter 2 to transmit an extra bit during each
block with respect to the case in which transmitter 1 does

not use feedback. This justifies that R2 = 4. Transmitter
2 uses ℓ2 = 3 levels out of the min ((−→n −m)+,m) top

levels of its codewords X
(t)
2 to re-transmit ℓ2 bits previously

transmitted by transmitter 2 in order to cancel its interference.
This justifies that R1 = 6. Finally, note that any attempt of
player i to send new information bits at every block would
bound its probability of error away from zero. Thus, none
of the players can improve its transmission rate by changing
its actual transmit-receive configuration. Hence, the rate pairs
(6, 4) and (4, 6) are achievable at an NE.

IV. CONCLUSION

This paper has presented a full characterization of the Nash
region of the LD-DIC with noisy feedback. Previous results
such as the Nash region of the LD-DIC without feedback
and with perfect output feedback are obtained as particular
cases of the results presented here. In particular, it has been
shown that the existence of a feedback channel Rxi → Txi
in the decentralized interference channel is not a sufficient
condition for enlarging its Nash region. Indeed, the feedback
channels must satisfy some particular conditions for effectively
enlarging the Nash region with respect to the case of the LD-S-
DIC without feedback. When the desired signals are stronger
than the interference, a larger Nash region is observed only if
the SNRs of the feedback links are superior to the SIRs and
the INRs of the direct links. Conversely, when the interference
is stronger than the desired signals, a larger Nash region is
observed if the SNRs of the feedback links are superior to
the SNRs of the direct links. That is, the Nash region of an
LD-S-DIC with very noisy feedback links is identical to the
Nash region of an LD-S-DIC without feedback.
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