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Abstract—Modern computing platforms are increasingly com-
plex, with multiple cores, shared caches, and NUMA archi-
tectures. Parallel applications developers have to take locality
into account before they can expect good efficiency on these
platforms. Thus there is a strong need for a portable tool
gathering and exposing this information. The Hardware Locality
project (hwloc) offers a tree representation of the hardware based
on the inclusion and localities of the CPU and memory resources.
It is already widely used for affinity-based task placement in high
performance computing.

In this article we present how hwloc is extended to describe
more than computing and memory resources. Indeed, I/O device
locality is becoming another important aspect of locality since
high performance GPUs, network or InfiniBand interfaces pos-
sess privileged access to some of the cores and memory banks.
hwloc integrates this knowledge into its topology representation
and offers an interoperability API to extend existing libraries
such as CUDA with locality information. We also describe how
hwloc now helps process managers and batch schedulers to
deal with the topology of multiple cluster nodes, together with
compression for better scalability up to thousands of nodes.

Keywords—topology; locality; affinities; I/O devices; clusters;
hwloc

I. INTRODUCTION

High performance computing relies on powerful computing

nodes made of tens of cores and accelerators such as GPUs

or Xeon Phi. The architecture of these servers is increasingly

complex because these resources are interconnected by mul-

tiple levels of hierarchical shared caches and a NUMA mem-

ory interconnect. Execution performance now significantly

depends on locality, i.e. where a task runs with respect to its

data allocation in memory, or with respect to the other tasks

it communicates with.

Performance optimization of parallel applications require

a thorough knowledge of the hardware, and many research

projects aim to model the platform to tackle this challenge. Be-

sides analytical performance models, one solution consists in

static modeling of the hardware resource organization. Indeed,

parallel developers need such information to properly use the

platform. hwloc (Hardware Locality) is the de facto standard

software for representing CPU and memory resources, and for

binding software tasks in a portable and abstracted manner [1].

However, the locality importance has grown and it now

applies to high-performance I/O devices such as accelerators

or network interfaces. Moreover, several batch schedulers or

process managers try to manage clusters of such heterogeneous

nodes in a global manner, making locality an important aspect,

outside of nodes as well.

We present how hwloc has evolved into a central place for

gathering locality information about all hardware subsystems

in HPC servers. It achieves this goal by combining topology

information from many sources, including operating systems,

domain-specific libraries and platform-specific instructions. It

interoperates with these sources by extending their interfaces

with locality information about the devices they manage.

hwloc also offers ways to manipulate multiple nodes topolo-

gies with the ability to avoid duplication in case of nearly-

identical cluster nodes.

The remainder of this paper is organized as follows: Sec-

tion II introduces the challenges and use cases for providing

topology information. Section III then summarizes the hwloc

model and describes how it manages all sources of informa-

tion. I/O device locality within heterogeneous nodes is then

presented in Section IV while the management of multiple

nodes topologies is described in Section V.

II. CONTEXT AND STATE OF THE ART

A. Why Locality matters and Where

Locality has been cited as a critical aspect of performance of

parallel applications for a long time, from distributed comput-

ing [2] to single servers [3]. The complexity of modern com-

puting platforms is increasing, even inside commodity nodes.

Figure 1 shows the hierarchical organization of resources

within a widespread type of servers where some physical

devices have affinities for some cores and memory banks.

Developers and users have to take the hardware topology into

account when trying to optimize their codes.

We identify two major types of affinity. First, tasks have

affinities for hardware resources they use. This includes mem-

ory banks, caches and TLBs that contain some of their data

as well as I/O devices such as accelerators and network

interfaces. Moving a task from one core to another (or worse,

from one NUMA node to another) usually causes the execution

to slow down because of cache affinities. Thus, it is well-

known that computing tasks should be bound to a single

core to avoid such migration. Migration can also cause the

performance to vary depending on the cores’ locality with

regard to the I/O devices used by the task [4].
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Figure 1. Topology of a dual-Xeon E5 host with GPUs (cuda0, cuda1),
network (eth1), InfiniBand (mlx4 0) and disk (sda) connected to different
sockets, simplified and reported by hwloc’s lstopo tool.

The second kind of affinity is between tasks. Indeed, parallel

applications often involve communication, synchronization

and/or sharing between some of the processes or threads. It

usually means that related tasks should be placed on neighbor

cores to optimize the communication/synchronization perfor-

mance between them [5]. However, the affinity can also be

reversed when single tasks have strong needs. For instance,

memory-intensive applications may want to avoid sharing

memory links or caches with others [6].

Moreover, some energy-based affinities may also be in-

volved. Technologies such as Intel TurboBoost can improve

sequential performance on partially-idle multicore processors,

while some processors can be shutdown completely when

entirely idle.

Applications can have several of these types of affinities

simultaneously, even with conflicting needs. We envision two

ways to deal with these needs. First, tasks can be placed

on the hardware resources according to their affinities. For

instance, MPI process placement based on the communication

scheme and on the platform topology is a very active area of

research [7], [8], [9]. Then, the actual communication between

tasks can be adapted to the existing placement. For instance,

the existence and the size of a shared cache between processes

can be a reason to switch from one communication strategy

to another [10], [11]. The locality of I/O devices can also be

used to better tune collective operations [12], [13].

B. Many Sources of Hardware Information

Tackling locality issues within parallel applications actu-

ally involves three steps: gathering the hardware topology,

expressing the software affinities, and matching one with

another. We focus on the former in this article: how to gather,

abstract and expose useful hardware topology information?

The importance of locality led many developers to retrieve

topology information within their applications or libraries.

Unfortunately, this work is difficult because of the amount

and variety of the sources of locality information, ranging

from operating system, to direct hardware query and high-

level tools.

Linux is widely used in HPC. Unfortunately, its ability to

report topology information was designed over more than ten

years and therefore suffers from a partial and non-uniform

interface. Many hardware details are available from the sysfs

virtual file system (/sys) but it misses processor details (only

available in /proc/cpuinfo) and I/O information such as net-

work connectivity. Moreover, some of these files are in human-

readable format, while some other pieces of information are

split into many different machine-readable files. Extracting

locality information from an application is therefore a lot of

work.

Some processors have dedicated instructions for retriev-

ing topology information such as cpuid on x86. However,

applications relying on this feature need to be updated for

every new micro-architecture because special values with new

meanings are often added and have to be supported. Tools

such as the Intel compiler and LIKWID1 use this idea and

end up failing to discover the right topology on some custom

platforms. The operating system usually takes care of these

cases, so these processor-specific instructions should not be

needed in topology-aware applications, as long as the OS is

recent enough.

Convenient topology discovery should be available in

higher-level libraries that hide the difficulty of parsing low-

level system files or architecture-specific registers. On Linux,

numactl2 possesses knowledge of NUMA, CPU and I/O local-

ity but lacks caches. Moreover, its programming interface is

unstable, and it was designed for binding tasks only: it cannot

be used for querying details about hardware characteristics.

As shown on Figure 2, many libraries exist for querying

the topology of specific subsystems, for instance pciutils for

PCI3, libibverbs for InfiniBand, CUDA for NVIDIA GPUs,

etc. Unfortunately, there is almost no interoperability between

these libraries and other topology-related tools. Therefore, it

is for instance necessary to query sysfs, pciutils and CUDA

1http://code.google.com/p/likwid/
2http://oss.sgi.com/projects/libnuma/
3http://mj.ucw.cz/sw/pciutils/
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Figure 2. Overview of existing sources of locality information on Linux.

when looking for the locality of a NVIDIA GPU with regard

to host CPUs.

Some higher level tools such as lscpu or lshw4 merge the

information from several sources but they lack a programming

interface. In brief, all these sources of information still have

to be used concurrently for a developer to gather locality

information about all hardware resources. Some non-Linux

operating systems may have better interfaces but they lack

part of the information. For instance, Solaris does not report

cache information. There is therefore a need for a portable,

system-wide topology discovery tool.

C. Execution and Memory Binding

Besides consulting topology information, the other impor-

tant technical requirement for tackling locality is binding.

Applications need ways to specify that a task or memory buffer

should be allocated to one (or some) hardware resources. Many

command-line binding tools exist, including numactl, taskset

and schedtool on Linux. But most of them may bind tasks

only. Moreover, they only operate on sets of logical processors

without any knowledge of processor sockets, caches, etc.

Manipulating sets of logical processors unfortunately raises

the issue of resource numbering. The BIOS and operating

system are indeed free to renumber hardware devices, espe-

cially processor cores, based on their expectations of what

the best numbering is. Memory bandwidth needs usually

lead to numbering by NUMA node first, while sequential

performance would likely number by hyperthread first. It leads

to cases where a standard dual-socket platform can have up

to 8 different numbering schemes depending on the vendor or

BIOS version (see examples on Figure 3). Applications cannot

be portable anymore if they rely on physical resource numbers.

A higher-level approach, based on the hierarchical orga-

nization, is required to keep affinity information: two cores

sharing a L2 cache are considered neighbors even if their

OS indexes are 0 and 4 respectively. Discovery and binding

interfaces must therefore be integrated so that the same objects

are manipulated for querying information about the platform

hierarchy and resource characteristics, and for binding on these

resources, without exposing numbering issues. We now present

4http://ezix.org/project/wiki/HardwareLiSter
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Figure 3. Numbering of the processing units (PU) on dual-socket dual-
core hyperthreaded platforms. Two inter-dependent tasks running on logical
processors 0 and 1 are actually not close to each other on these platforms.
The binding cannot be portable unless it is specified as positions within the
hierarchy of resources instead of as PU numbers.

the Hardware Locality project that was notably designed to

solve this particular problem.

III. HWLOC’S VIEW OF THE HARDWARE

The Hardware Locality project was announced in 2009 as

the replacement and merger of former Open MPI PLPA5 and

Inria libtopology6 projects. It quickly raised attention of HPC

runtime developers as an easy way to discover the topology of

servers and to bind tasks. hwloc is now used by most MPI im-

plementations, many batch schedulers and parallel libraries7.

We summarize in this section the early design choices that

led to hwloc success before explaining its evolution into the

central place for information and interoperability about the

topology of multiple hardware subsystems.

5http://www.open-mpi.org/projects/plpa/
6http://runtime.bordeaux.inria.fr/hwloc/
7A non-exhaustive list of hwloc users is available on the project webpage

http://www.open-mpi.org/projects/hwloc/.



A. Organizing the Information

hwloc resource organization is based on the natural inclusive

order of computing resources: every machine contains one

or several sockets, that contain one or several cores. hwloc

builds a Tree of Objects describing these computing resources

organized just like they are physically packaged. hwloc cores

can actually contain multiple Processing Unit objects (PU),

defined as the smallest resource that can execute a thread or

a process. PUs correspond to logical processors or hardware

threads as found in technologies such as simultaneous multi-

threading or Intel hyperthreading.

Each hwloc object is characterized by a type, some hardware

characteristics such as a socket number, and some optional pa-

rameters such as local cache or memory sizes. The inclusion-

ordering is extended to memory objects by considering that

cores sharing a cache or near a NUMA memory node are

included in it. Thus, the tree is made of a mix of levels made of

computing and memory resources, ordered by locality without

depending on actual physical numbering.

hwloc does not enforce the vertical ordering between these

levels in the tree because some AMD platforms have two

NUMA nodes per socket (see Figure 4) while some Itanium

machines have multiple sockets per NUMA node. hwloc just

moves larger objects above smaller ones depending on the ar-

chitecture inclusion characteristics. Sections IV and V explain

how hwloc was recently extended to more than computing and

memory resources inside nodes.
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Figure 4. AMD platform containing a single Opteron 6272 socket. hwloc’s
inclusion ordering is machine, socket, NUMA node, L3, L2, L1i, L1d, core,
PU.

The hwloc programming interface allows walking the tree

edges to find ancestors or children objects of a given type (e.g.

when looking for the NUMA node close to a given core), iter-

ate over objects of a same type (e.g. when binding processes

on cores), etc. hwloc offers a convenient way to apply mapping

or partitioning algorithms by matching applications affinity

graphs onto the hwloc tree of hardware resources [9]. More use

cases and hwloc v1.0 early design details are presented in [1].

In the rest of the paper, we focus on major improvements in

later releases.

One critique against the model is its lack of topology

information within single levels of the tree. For instance, Xeon

E5 and Xeon Phi processors assemble cores on a ring, and

the NUMA memory interconnect is not always a complete

graph. Both are ignored when objects are represented as an

array of children. To workaround this constraint, hwloc now

annotates the tree with distance matrices and creates additional

hierarchical Groups of object close to each-other. Large SGI

Altix UV platforms are therefore represented with multiple

levels of Groups between the machine and NUMA nodes so

that the physical organization as racks and blades is exposed.

B. Orchestrating multiple Sources of Information

1) Combining multiple Sources: As explained in Sec-

tion II-B, multiple sources have to be used to gather all

topology information about the machine. On Linux, virtual

files under both /sys and /proc have to be used. x86-specific

instruction may also bring more precise information about

the CPU type, especially for non-Linux operating systems.

I/O information involves several specific libraries as well as

other virtual files under /sys. The hwloc library is therefore

organized as several backend components.

hwloc library API

command-line

tools

core

combined components global
componentsI/OplatformOS

XMLLinux Win x86 BG/Q PCI CUDA

Figure 5. hwloc’s component-based organization.

Discovery usually uses several components to match the

aforementioned combination of sources as show on Figure 58.

Information is first gathered from operating system compo-

nents (most Unix systems, Windows and Mac OS) that use OS

interfaces. It is then extended by platform-specific components

(BlueGene/Q, x86, Xen). I/O discovery is finally performed

using specific libraries such as pciutils and CUDA. Each

component can specify conflicts with others, and priorities

can be changed to avoid a component that would return

wrong information on a given platform. Moreover, some inter-

component callbacks can be specified so that PCI discovery

immediately checks whether a new PCI device corresponds to

one of the CUDA devices.

8The XML import backend cannot be combined, it is a global component
that manages all objects, as explained in Section V-A).



2) Interoperating with external Libraries: hwloc compo-

nents can be built either statically inside the main hwloc library

or as separate plugins. This is necessary for a convenient

distribution of binary packages to avoid strong dependencies

on external libraries. Indeed, binary packages should support

as many cases as possible, which means hwloc should be

built using all aforementioned I/O libraries such as pciutils

and CUDA, but such dependencies are not acceptable for

administrators that do not have GPUs on their platform.

Building as plugins is an easy way to make these dependencies

optional: all plugins are installed by binary packages but hwloc

only loads plugins whose dependency libraries are available

on the system. Obviously, it is still possible to build a custom

hwloc library from source and embed all components that are

useful to a given platform.

hwloc uses external libraries to gather topology information.

However, it was not designed to replace these libraries that

offer a lot more of features unrelated to topology. hwloc

was rather designed as a central place of topology details

that interoperates with existing libraries and extend them

with locality information. It therefore offers several interoper-

ability headers that let developers translate between external

library objects and hwloc data structures. For instance, an

application using CUDA or InfiniBand verbs can retrieve the

locality of CUdevice or struct ibv_device. Appli-

cations can therefore keep using existing specific libraries

for non-topology-related information and switch to hwloc for

topology-related queries.

IV. MANAGING HETEROGENEOUS NODES

We explained in the previous section how the hwloc library

combines multiple sources of topology information from all

subsystems in the machine. We now detail how it actually

manages heterogeneous servers combining CPUs, accelerators

such as GPUs or Xeon Phi, and network or InfiniBand

interfaces.

A. I/O Discovery

I/O controllers are often placed near one of the processor

socket within servers. They are even integrated inside sockets

on recent Intel processors. Hence, devices connected to these

controllers have a privileged access to the local memory

and cores. These I/O affinities actually matter to latency or

throughput sensitive applications that use high performance

GPUs or network interfaces. Thus, it is important to offer

I/O locality information to applications so as to optimize their

placement and use of I/O devices [12], [13].

We added the ability to expose I/O device affinity in hwloc.

The inclusion-based tree has been extended to attach new I/O

objects under hwloc computing and memory resources they

are close to (usually a NUMA node). Since high performance

I/O is only significant for PCI devices, PCI is the only I/O

hierarchy that is currently discovered by hwloc, using either an

external PCI library such as pciutils or Linux sysfs files. PCI

bridges are also discovered (see Figure 6) in case applications

need to know which devices share PCI links and the speed of

these links. But the tree may also be simplified to only retain

the actual locality of PCI devices.

B. Identifying Objects from Applications

Machine (32GB)

NUMANode P#0 (32GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

PU P#18

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#4

PU P#20

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#6

PU P#22

PCI 14e4:165f

eth0

0,5

PCI 14e4:165f

eth1

0,5

0,5

PCI 1000:0073

sda

4,04,0

PCI 10de:1094

cuda0

8,08,0

Figure 6. I/O device hierarchy connected to a NUMA node. Grey boxes
inside dark green boxes on the right are OS device objects inside PCI devices.
Small squares represent bridges, and decimal values are PCI link speeds in
GB/s.

The main issue with I/O discovery is that applications do

not manipulate PCI devices, they operate on software handles

instead, such as network socket file descriptor, InfiniBand

ibv_device, CUDA CUdevice, etc. When multiple simi-

lar devices are available in the system, finding which hardware

device corresponds to the application software handle can be

difficult.

hwloc solves this issue by inserting OS device objects

describing these software handles inside PCI device objects,

and adding human readable types and names. For instance, a

cuda0 device is inserted so that the locality of CUDA device

#0 can be retrieved by walking up the tree across the PCI

hierarchy up to NUMA node #0 on Figure 6.

One immediate advantage of this feature is for binding

microbenchmarks. Instead of manually binding a network

ping-pong to a core near the InfiniBand interface mlx4_0,

binding can be performed automatically near a specific OS

device with the hwloc-bind tool:

$ hwloc-bind os=mlx4_0 pingpong_benchmark

$ hwloc-bind os=cuda1 cuda_benchmark

$ hwloc-bind os=mic0 xeon_phi_benchmark

C. Identifying Objects from outside the Host

We described in the previous section how to identify I/O

devices from host applications. We now look at identifying

them from other points of view. The first use case is for

matching Xeon Phi boards as viewed from the host and

from inside the board. Indeed, one way to use Xeon Phi is



to mix MPI ranks on the host CPUs and on the Phi. MPI

communication have to be implemented depending on whether

the Phi and the CPU are located inside the same server or

not. One requirement from MPI implementers is therefore

to identify which MPI ranks are inside the same server. We

solved this issue by extracting the Phi serial number and

making it available in the hwloc topologies of the host (in

the Phi OS device) and of the Phi itself (in the root object).

This is already in use in Open MPI 1.7.

Another case where devices have to be identified from

outside the host is network and InfiniBand interfaces. MAC/IP

addresses and InfiniBand GUID/LIDs respectively are the only

way to refer to a specific remote host, especially when multiple

interfaces or ports exist. We therefore added to hwloc I/O ob-

jects several additional attributes enabling such identification.

This feature is already used by the netloc project as discussed

in Section V-C.

Examples of InfiniBand and Xeon Phi I/O-specific attributes

added to hwloc OS devices are presented on Figure 7.

Co-Processor L#5 (CoProcType=MIC MICFamily=x100

MICSerialNumber=ADKC32800176 MICActiveCores=61

MICMemorySize=16252928 ...) "mic0"

OpenFabrics L#8 (NodeGUID=f452:1403:007a:7260

Port1GID0=fe80:0000:0000:0000:f452:1403:007a:7261

Port1State=4 Port1LID=0x1 Port1LMC=0) "mlx4_0"

Figure 7. Textual dump of some attributes gathered by hwloc for OS devices
describing a Xeon Phi (mic0) and a InfiniBand HCA (mlx4 0).

D. Being Generic enough

hwloc represents CPU and memory objects using an ex-

haustive set of widespread resource types (PU, core, cache,

socket, NUMA node, machine) as well as additional generic

objects (such as Groups for describing intermediate affinity

neighborhoods in the tree). I/O objects raised the need to

provide even more convenient types. Unfortunately, there are

many different types of I/O devices and hwloc cannot list all of

them explicitly. Moreover, many of these objects have specific

attributes such as the memory size, the cache type, the network

address, etc. Therefore, there is a need for a generic way

to annotate hwloc objects with custom attributes instead of

adding many hardwired type-specific structures of attributes.

hwloc usually gathers about one hundred object attributes

for an entire server. They are attached to the relevant objects

within the tree or to the root object when the attribute

applies to the entire topology. These generic attributes are

stored as a pair of key and value strings, such as Ad-

dress=00:11:22:33:44:55. This presents the drawback of re-

quiring string manipulations for applications. As a conse-

quence, widely-used attributes (such as cache sizes) are stored

using explicit fields within the object structure instead of

generic key/value string pairs.

Each object needs a way to store these key/value pairs.

The number may vary but it always remains small, usually

Machine (32GB)

NUMANode P#0 (32GB)

Socket P#0

L3 (20MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#16

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#17

PCI 10de:1094

cuda0

5375 MB

L2 (768 kB)

14 MP x (32 cores + 48 kB)

8,0

PCI 8086:225c

mic1

61 cores

15 GB

Figure 8. Object attributes include cache types (L1i, L3, etc), memory sizes,
object numbers, PCI device and vendor numbers, PCI link speed, Xeon Phi
memory and cores, CUDA memory and multiprocessors, as well as CPU
vendor and model.

lower than 10. So there is no need to optimize lookup with

advanced data structures such as hash tables. hwloc just uses

an array of key/value pairs in each object. This mechanism

is already widely used in hwloc since many users requested

new attributes to be added. For instance, Intel and Oracle-

specific drivers consult hwloc CPU attributes to dynamically

optimize the Open MPI implementations on the corresponding

platforms.

V. MANAGING CLUSTERS OF NODES

We now look at managing with hwloc the topologies of

multiple nodes, such as a cluster. This is used for batch

schedulers such as Slurm or Torque and process launchers

found in most MPI implementations [14]. They have to know

how many cores each node features before deciding how many

processes should run. Moreover knowing topology details let

them allocate resources better. The topology of multiple nodes

can then be combined to build a global cluster-wide topology,

where placement algorithms can perform both inter-node and

intra-node management simultaneously [8], [9].

A. Remote Node Topology

Managing the topology of multiple nodes requires a way

to manipulate remote node topologies. Since most topology

information pieces are read from virtual files on Linux, hwloc

gained the ability to change the filesystem root path in order

to use copies of the /sys and /proc files from another node.

This feature is convenient for debugging the Linux discovery

code without immediate access to a remote node but hwloc

offers a more convenient solution: an API to import/export

entire topologies to XML, either as a file, or as a memory

buffer that can be transferred on the network.



This is useful for developing topology-aware algorithms and

testing on a variety of different platform topologies. But it

is also already widely used by MPI process launchers: each

compute node sends a XML copy of its local topology to

the frontend node which implements the process placement

algorithms cluster-wide, before actually starting processes on

the compute nodes.

XML also has the advantage of being very easy to load,

much easier than rereading topology information from the

different sources as explained in Section II-B. Discovery the

topology natively on Linux indeed reads information from

several hundreds of files under /sys and /proc. A naive MPI

implementation running one process per core would load the

topology once per core, causing all these files to be accesses

by all cores simultaneously. Table I shows that the native

Linux discovery does not scale well with the number of cores

working in parallel (contention in the Linux kernel filesystem

locking code) while XML import scales well. It also shows

that very large machines may benefit from always loading

from XML (up to 70x faster) even when a single discovery is

performed simultaneously.

TABLE I
HWLOC TOPOLOGY DISCOVERY TIME DEPENDING ON THE SOURCE,

EITHER NATIVE LINUX DISCOVERY, OR XML IMPORT. ON EACH HOST, WE

MEASURE THE TIME FOR A SINGLE DISCOVERY AND FOR ALL CORES

DISCOVERING SIMULTANEOUSLY.

Host 16 cores 16 cores 160 cores
without I/O with 3 GPUs SGI Altix UV

# Processes 1 16 1 16 1 160

Linux 26 ms 1 s 210 ms 6 s 390 ms 107 s

XML 3 ms 7 ms 3 ms 7 ms 12 ms 22 ms

B. Cluster Nodes are (almost) Identical

Once compute node topology has been retrieved on a master

node, one may wonder if storing all of them locally scales to

a high number of nodes. Moreover, cluster nodes are usually

similar: clusters are made of a single (or few) types of nodes.

Why storing the topologies of all nodes if most of them

are identical? We identified three actual possible differences

between cluster node topologies:

• different kinds of nodes (e.g. compute node vs fat node):

topologies are very different;

• modified nodes (BIOS upgrade, software update, or

hardware replacement): topologies can be different;

• similar nodes with different identification numbers such

as MAC address, InfiniBand GUID, etc.

In the similar case, only for key/value pairs are modified. In

other cases, the tree structure can be different. Therefore, we

added to hwloc the ability to compute the difference between

2 similar nodes by recording which key/value pairs have been

modified. This loss-less compression consist in identifying a

few reference nodes whose topologies will be entirely stored

(uncompressed). All other nodes are then compressed by only

TABLE II
MEMORY OCCUPANCY OF HWLOC TOPOLOGIES FOR 2 CLUSTERS WHEN

STORED AS FULL TOPOLOGIES (UNCOMPRESSED), OR AS A FEW

REFERENCE FULL TOPOLOGIES AND MANY DIFFERENCES AGAINST ONE

OF THESE REFERENCES.

Total Full topologies Differences

Plafrim = 21+65+16+9 compute nodes + 5 fat + 6 ssh
Uncompressed 42 MB 122 × 345 kB N/A
Compressed 11 MB 18 × 622 kB 104 × 2.03 kB

Avakas = 264 compute + 2 phi + 4 fat + 4 visio + 2 ssh
Uncompressed 110 MB 276 × 402 kB N/A
Compressed 6.9 MB 12 × 539 kB 264 × 1.63 kB

storing the difference between their topology and one of the

references. This feature is already used in the netloc project.

Table II presents the memory occupancy improvement based

on the compression of the topologies of two clusters of the

University of Bordeaux9. Each cluster is made of different

kinds of nodes (6 for Plafrim and 5 for Avakas), but we

observe more reference topologies (respectively 18 and 12)

because of the modified case above. However, many topologies

can indeed be reduced from several hundreds of kilobytes

down to 1 or 2 kB in memory. Full topologies seem bigger

in the compressed case because the share of fat nodes among

reference topologies is higher.

Each difference is actually made of about 10 key/value

pair changes. We could even improve compression further by

ignoring keys that are not needed by the target application (for

instance the platform serial number, or the MAC addresses if

only InfiniBand is used).

C. Multiple Node Topology

Finally, we look at how to manage a full, cluster-wide

topology. hwloc offers an API to assemble the topologies of

multiple nodes into a global single one. However, the resulting

topology must respect hwloc’s tree model while networks

interconnecting nodes can be random graphs. We explained in

Section III-A that distance matrices can be used to annotate

some levels of the tree but this idea is only satisfying for

simple topologies such as NUMA interconnects or socket

rings.

Moreover, cluster nodes are interconnected by NICs or

InfiniBand HCAs at the bottom of the tree, not by the hwloc

tree roots (the entire machine object). Therefore, assembling

multiple nodes into a global hwloc topology does not seem

convenient. That is why there is an ongoing work to develop

a hwloc-companion called netloc10 to combine hwloc node

topologies with network graphs without enforcing a tree

model [15].

9The hwloc-compress-dir utility was used.
10Available under the BSD license at http://www.open-mpi.org/projects/

netloc/.



VI. CONCLUSION AND FUTURE WORKS

The increasing complexity of computing platforms raises

the need for developers to understand the hardware organiza-

tion and adapt their application layout. As part of the overall

optimization process, there is a strong need for a tool modeling

the platform, and hwloc is the most popular software for

exposing a static view of the topology of CPUs and memory.

We presented in this article how we have extended hwloc to

more than these computing resources by also incorporating the

topology of I/O devices and offering ways to manage multiple

nodes. hwloc now integrates locality information from many

sources and offers APIs to interoperate with these libraries

and operating systems without replacing them. I/O locality

information has been added to the hwloc tree representing

the hardware as well as many attributes to help applications

identify the resources they use, place tasks near them or adapt

to their locality. An API to manipulate the topologies of remote

hosts with compression for better scalability was also recently

added.

All features listed in this paper are available in hwloc v1.9

(released in Spring 2014)11. On-going work is now focusing on

improving topology detection on emerging ARM architectures

for high-performance computing as well as automatic manage-

ment of conflicts between redundant sources of information.
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