Auto-Associative models and generalized Principal Component Analysis

Stéphane Girard 1, 2 Serge Iovleff 3, 4
4 MODAL - MOdel for Data Analysis and Learning
LPP - Laboratoire Paul Painlevé - UMR 8524, Inria Lille - Nord Europe, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille, Université de Lille 1, IUT’A
Abstract : In this communication, we propose auto-associative (AA) models to generalize Principal component analysis (PCA). AA models have been introduced in data analysis from a geometrical point of view. They are based on the approximation of the observations scatter-plot by a differentiable manifold. They are interpreted as Projection pursuit models adapted to the auto-associative case. Their theoretical properties are established and are shown to extend the PCA ones. An iterative algorithm of construction is proposed and its principle is illustrated both on simulated and real data from image analysis.
Type de document :
Document associé à des manifestations scientifiques
Workshop on principal manifolds for data cartography and dimension reduction, Aug 2006, Leicester, United Kingdom
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00985337
Contributeur : Stephane Girard <>
Soumis le : mardi 29 avril 2014 - 15:16:10
Dernière modification le : mardi 3 juillet 2018 - 11:25:17
Document(s) archivé(s) le : mardi 29 juillet 2014 - 12:45:10

Fichier

slides_2006.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00985337, version 1

Collections

Citation

Stéphane Girard, Serge Iovleff. Auto-Associative models and generalized Principal Component Analysis. Workshop on principal manifolds for data cartography and dimension reduction, Aug 2006, Leicester, United Kingdom. 〈hal-00985337〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

59