N. Trayanova, J. Constantino, T. Ashihara, and G. Plank, Modeling Defibrillation of the Heart: Approaches and Insights, IEEE Reviews in Biomedical Engineering, vol.4, pp.89-102, 2011.
DOI : 10.1109/RBME.2011.2173761

H. Tandri, S. H. Weinberg, K. C. Chang, R. Zhu, N. A. Trayanova et al., Reversible Cardiac Conduction Block and Defibrillation with High-Frequency Electric Field, Science Translational Medicine, vol.3, issue.102
DOI : 10.1126/scitranslmed.3002445

L. J. Rantner, H. J. Arevalo, J. L. Constantino, I. R. Efimov, G. Plank et al., Three-dimensional mechanisms of increased vulnerability to electric shocks in myocardial infarction: Altered virtual electrode polarizations and conduction delay in the peri-infarct zone, The Journal of Physiology, vol.92, issue.Suppl, pp.4537-4551, 2012.
DOI : 10.1113/jphysiol.2012.229088

L. J. Rantner, B. M. Tice, and N. A. Trayanova, Terminating ventricular tachyarrhythmias using far-field low-voltage stimuli: Mechanisms and delivery protocols, Heart Rhythm, vol.10, issue.8
DOI : 10.1016/j.hrthm.2013.04.027

N. A. Trayanova, R. A. Gray, D. W. Bourn, and J. C. Eason, Virtual Electrode-Induced Positive and Negative Graded Responses:, Journal of Cardiovascular Electrophysiology, vol.25, issue.Heart Circ Phys, pp.756-763, 2003.
DOI : 10.1046/j.1540-8167.2003.03042.x

N. Trayanova and G. Plank, Bidomain Model of Defibrillation, Cardiac Bioelectric Therapy, pp.85-109, 2009.
DOI : 10.1007/978-0-387-79403-7_5

J. Wikswo and B. Roth, Virtual Electrode Theory of Pacing, Cardiac Bioelectric Therapy, pp.283-330, 2009.
DOI : 10.1007/978-0-387-79403-7_12

I. Efimov, Y. Cheng, D. V. Wagoner, T. Mazgalev, and P. Tchou, Virtual Electrode??Induced Phase Singularity : A Basic Mechanism of Defibrillation Failure, Circulation Research, vol.82, issue.8, pp.918-943, 1998.
DOI : 10.1161/01.RES.82.8.918

I. R. Efimov, Y. Cheng, Y. Yamanouchi, and P. J. Tchou, Direct Evidence of the Role of Virtual Electrode-Induced Phase Singularity in Success and Failure of Defibrillation, Journal of Cardiovascular Electrophysiology, vol.9, issue.8, 2000.
DOI : 10.1016/0002-8703(59)90126-7

V. Y. Sidorov, M. C. Woods, P. Baudenbacher, and F. Baudenbacher, Examination of stimulation mechanism and strength-interval curve in cardiac tissue, AJP: Heart and Circulatory Physiology, vol.289, issue.6, pp.2602-2615, 2004.
DOI : 10.1152/ajpheart.00968.2004

V. Y. Sidorov, M. C. Woods, and F. Baudenbacher, Cathodal stimulation in the recovery phase of a propagating planar wave in the rabbit heart reveals four stimulation mechanisms, The Journal of Physiology, vol.138, issue.Suppl. E, pp.237-250, 2007.
DOI : 10.1113/jphysiol.2007.137232

C. Anderson, N. Trayanova, and S. , Termination of Spiral Waves with Biphasic Shocks: Role of Virtual Electrode Polarization, Journal of Cardiovascular Electrophysiology, vol.11, issue.12, pp.1386-1396, 2000.
DOI : 10.1046/j.1540-8167.2000.01386.x

P. C. Franzone, L. F. Pavarino, and S. Scacchi, Anode make and break excitation mechanisms and strength-interval curves: bidomain simulations in 3D rotational anisotropy, Proceedings of the 6th international conference on Functional imaging and modeling of the heart, pp.1-10, 2011.

P. C. Franzone, L. Pavarino, and S. Scacchi, Cardiac excitation mechanisms, wavefront dynamics and strength???interval curves predicted by 3D orthotropic bidomain simulations, Mathematical Biosciences, vol.235, issue.1, pp.66-84, 2012.
DOI : 10.1016/j.mbs.2011.10.008

J. Eason and N. Trayanova, Phase singularities and termination of spiral wave reentry, Journal of Cardiovascular Electrophysiology, vol.13, issue.7, pp.556-557, 2002.

N. Trayanova, Defibrillation of the heart: insights into mechanisms from modelling studies, Experimental Physiology, vol.6, issue.Suppl., pp.323-337, 2006.
DOI : 10.1113/expphysiol.2005.030973

P. , L. Guyader, F. Trelles, and P. Savard, Extracellular measurement of anisotropic bidomain myocardial conductivities. I. theoretical analysis, Annals of Biomedical Engineering, vol.29, issue.10, pp.862-877, 2001.

D. E. Roberts, L. T. Hersh, M. Allen, and . Scher, Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog, Circulation Research, vol.44, issue.5, pp.701-712, 1979.
DOI : 10.1161/01.RES.44.5.701

D. E. Roberts and A. M. Scher, Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ, Circulation Research, vol.50, issue.3, pp.342-351, 1982.
DOI : 10.1161/01.RES.50.3.342

N. Sepulveda, B. Roth, and J. Wikswo, Current injection into a two-dimensional anisotropic bidomain, Biophysical Journal, vol.55, issue.5, pp.987-99910, 1989.
DOI : 10.1016/S0006-3495(89)82897-8

R. Clayton, O. Bernus, E. Cherry, H. Dierckx, F. Fenton et al., Models of cardiac tissue electrophysiology: Progress, challenges and open questions, cardiac Physiome project: Mathematical and Modelling Foundations, pp.22-48, 2011.
DOI : 10.1016/j.pbiomolbio.2010.05.008

E. Sobie, R. Susil, and L. Tung, A generalized activating function for predicting virtual electrodes in cardiac tissue, Biophysical Journal, vol.73, issue.3, pp.73-1410, 1997.
DOI : 10.1016/S0006-3495(97)78173-6

K. Skouibine and W. Krassowska, Increasing the Computational Efficiency of a Bidomain Model of Defibrillation Using a Time-Dependent Activating Function, Annals of Biomedical Engineering, vol.28, issue.7, pp.772-780, 2000.
DOI : 10.1114/1.1289917

E. Vigmond, R. W. Santos, A. Prassl, M. Deo, and G. Plank, Solvers for the cardiac bidomain equations, Progress in Biophysics and Molecular Biology, vol.96, issue.1-3, 2008.
DOI : 10.1016/j.pbiomolbio.2007.07.012

M. Potse, B. Dube, J. Richer, A. Vinet, and R. M. Gulrajani, A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.53-2425, 2006.
DOI : 10.1109/TBME.2006.880875

P. C. Franzone, L. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models, Mathematical Biosciences, vol.197, issue.1, 2005.
DOI : 10.1016/j.mbs.2005.04.003

B. J. Roth, Meandering of spiral waves in anisotropic cardiac tissue, Physica D: Nonlinear Phenomena, vol.150, issue.1-2, pp.127-13610, 2001.
DOI : 10.1016/S0167-2789(01)00145-2

Y. Bourgault and C. Pierre, Comparing the bidomain and monodomain models in electro-cardiology through convergence analysis, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00545888

J. Sundnes, B. F. Nielsen, K. A. Mardal, X. Cai, G. T. Lines et al., On the Computational Complexity of the Bidomain and the Monodomain Models of Electrophysiology, Annals of Biomedical Engineering, vol.84, issue.2, pp.1088-1097, 2006.
DOI : 10.1007/s10439-006-9082-z

G. Plank, R. A. Burton, P. Hales, M. Bishop, T. Mansoori et al., Generation of histo-anatomically representative models of the individual heart: tools and application, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.366, issue.5, pp.2257-2292, 1896.
DOI : 10.1172/JCI200417341

F. Fenton and A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.20-47, 1998.
DOI : 10.1063/1.166311

A. Gharaviri, S. Verheule, J. Eckstein, M. Potse, N. H. Kuijpers et al., A computer model of endo-epicardial electrical dissociation and transmural conduction during atrial fibrillation, Europace, vol.14, issue.suppl 5, pp.10-16, 2012.
DOI : 10.1093/europace/eus270

K. H. Ten-tusscher, R. Hren, and A. V. Panfilov, Organization of Ventricular Fibrillation in the Human Heart, Circulation Research, vol.100, issue.12, 2007.
DOI : 10.1161/CIRCRESAHA.107.150730

R. H. Clayton, Vortex filament dynamics in computational models of ventricular fibrillation in the heart, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.18, issue.4, pp.1-12, 2008.
DOI : 10.1063/1.3043805

M. J. Bishop and G. Plank, The role of fine-scale anatomical structure in the dynamics of reentry in computational models of the rabbit ventricles, The Journal of Physiology, vol.113, issue.18, pp.4515-4535, 2012.
DOI : 10.1113/jphysiol.2012.229062

L. Gerardo-giorda, M. Perego, and A. Veneziani, Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology, ESAIM: Mathematical Modelling and Numerical Analysis, vol.45, issue.2, pp.309-334, 2011.
DOI : 10.1051/m2an/2010057

G. W. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres, The Journal of Physiology, vol.268, issue.1, pp.177-210, 1977.
DOI : 10.1113/jphysiol.1977.sp011853

C. Mitchell and D. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of Mathematical Biology, vol.65, issue.5, pp.767-793, 2003.
DOI : 10.1016/S0092-8240(03)00041-7

Y. Bourgault, Y. Coudière, and C. Pierre, Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal.: Real World Appl, pp.458-482, 2009.

Y. Coudière, Y. Bourgault, and M. Rioux, Optimal monodomain approximations of the bidomain equations used in cardiac electrophysiology, Mathematical Models and Methods in Applied Sciences, vol.24, issue.06, pp.10-1142
DOI : 10.1142/S0218202513500784

E. Tolkacheva, D. Schaeffer, D. Gauthier, and C. Mitchell, Analysis of the Fenton???Karma model through an approximation by a one-dimensional map, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.12, issue.4, pp.1034-1042, 2002.
DOI : 10.1063/1.1515170

M. Boulakia, M. Fernàndez, J. Gerbeau, and N. Zemzemi, Towards the Numerical Simulation of Electrocardiograms, Functional Imaging and Modeling of the Heart, pp.240-249, 2007.
DOI : 10.1007/978-3-540-72907-5_25

J. Relan, M. Sermesant, H. Delingette, M. Pop, G. A. Wright et al., Quantitative comparison of two cardiac electrophysiology models using personalisation to optical and MR data, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009.
DOI : 10.1109/ISBI.2009.5193230

URL : https://hal.archives-ouvertes.fr/inria-00616130

J. Relan, M. Sermesant, M. Pop, H. Delingette, M. Sorine et al., Ayache, Parameter estimation of a 3D cardiac electrophysiology model including the restitution curve using optical and MR data, World Congr. on Med. Phys. and Biomed. Eng, 2009.

S. Marchesseau, H. Delingette, M. Sermesant, R. Cabrera-lozoya, C. Tobon-gomez et al., Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes, special Issue on the 2012 Conference on Medical Image Computing and Computer Assisted Intervention, pp.816-829, 2013.
DOI : 10.1016/j.media.2013.04.012

URL : https://hal.archives-ouvertes.fr/hal-00819806

M. Rioux and Y. Bourgault, A predictive method allowing the use of a single ionic model in numerical cardiac electrophysiology, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.4, pp.987-1016, 2013.
DOI : 10.1051/m2an/2012054

M. J. Bishop and G. Plank, Representing Cardiac Bidomain Bath-Loading Effects by an Augmented Monodomain Approach: Application to Complex Ventricular Models, IEEE Transactions on Biomedical Engineering, vol.58, issue.4, pp.1066-1075, 2011.
DOI : 10.1109/TBME.2010.2096425

A. Sambelashvili and I. R. Efimov, Dynamics of virtual electrode-induced scroll-wave reentry in a 3D bidomain model, AJP: Heart and Circulatory Physiology, vol.287, issue.4, pp.1570-1581, 2003.
DOI : 10.1152/ajpheart.01108.2003