A perceptual-to-conceptual gradient of word coding along the ventral path

Valentina Borghesani 1, 2, 3 Fabian Pedregosa 4, 5 Evelyn Eger 1, 2 Marco Buiatti 1, 2 Manuela Piazza 1, 2, 6
4 PARIETAL - Modelling brain structure, function and variability based on high-field MRI data
NEUROSPIN - Service NEUROSPIN, Inria Saclay - Ile de France
5 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
Abstract : The application of multivariate approaches to neuroimaging data analysis is providing cognitive neuroscientists with a new perspective on the neural substrate of conceptual knowledge. In this paper we show how the combined use of decoding models and of representational similarity analysis (RSA) can enhance our ability to investigate the inter-categorical distinctions as well as the intra-categorical similarities of neural semantic representations. By means of a linear decoding model, we have been able to predict the category of the words subjects were seeing while undergoing a functional magnetic resonance images (fMRI) acquisition. Moreover, RSA in anatomically defined region of interest (ROIs) revealed a significant correlation with length of words and real item size in primary and secondary visual areas (V1 and V2), while a semantic distance effect was significant in inferotemporal areas (BA37 and BA20). Together, these findings illustrate the possibility to decode the distinctive neural patterns of semantic categories and to investigate the peculiar aspects of the neural representations of each single category. We have in fact been able to show a significant correlation between cognitive and neural semantic distance and to describe the gradient of information coding that characterizes the ventral path: from purely perceptual to purely conceptual. These results would not have been possible without a double exploration of the same dataset by means of decoding models and RSA
Type de document :
Communication dans un congrès
Pattern Recognition in Neuroimaging, Jun 2014, Tubingen, Germany. IEEE, 2014
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00986606
Contributeur : Fabian Pedregosa <>
Soumis le : vendredi 9 mai 2014 - 12:26:38
Dernière modification le : lundi 4 juin 2018 - 15:42:02
Document(s) archivé(s) le : samedi 9 août 2014 - 10:37:18

Fichier

PRNI2014_1_.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00986606, version 1

Collections

Citation

Valentina Borghesani, Fabian Pedregosa, Evelyn Eger, Marco Buiatti, Manuela Piazza. A perceptual-to-conceptual gradient of word coding along the ventral path. Pattern Recognition in Neuroimaging, Jun 2014, Tubingen, Germany. IEEE, 2014. 〈hal-00986606〉

Partager

Métriques

Consultations de la notice

970

Téléchargements de fichiers

609