S. F. Elena and R. E. Lenski, Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation, Nat Rev Genet, vol.4, pp.457-469, 2003.

M. J. Dunham, H. Badrane, T. Ferea, J. Adams, and P. O. Brown, Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae, Proc Natl Acad Sci U S A, vol.99, pp.16144-16149, 2002.

G. H. Romano, Y. Gurvich, O. Lavi, I. Ulitsky, and R. Shamir, Different sets of QTLs influence fitness variation in yeast, Mol Syst Biol, vol.6, 2010.

G. Liti and E. J. Louis, Advances in quantitative trait analysis in yeast, PLoS Genet, vol.8, p.1002912, 2012.

Y. Yang, M. R. Foulquie-moreno, L. Clement, E. Erdei, and A. Tanghe, QTL Analysis of High Thermotolerance with Superior and Downgraded Parental Yeast Strains Reveals New Minor QTLs and Converges on Novel Causative Alleles Involved in RNA Processing, PLoS Genet, vol.9, p.1003693, 2013.

L. M. Steinmetz, H. Sinha, D. R. Richards, J. I. Spiegelman, and P. J. Oefner, Dissecting the architecture of a quantitative trait locus in yeast, Nature, vol.416, pp.326-330, 2002.

F. Salinas, F. A. Cubillos, D. Soto, V. Garcia, and A. Bergstrom, The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae, PLoS One, vol.7, p.49640, 2012.

I. M. Ehrenreich, N. Torabi, Y. Jia, J. Kent, and S. Martis, Dissection of genetically complex traits with extremely large pools of yeast segregants, Nature, vol.464, pp.1039-1042, 2010.

P. Marullo, M. Aigle, M. Bely, I. Masneuf-pomarede, and P. Durrens, Single QTL mapping and nucleotide-level resolution of a physiologic trait in wine Saccharomyces cerevisiae strains, FEMS Yeast Res, vol.7, pp.941-952, 2007.
URL : https://hal.archives-ouvertes.fr/ensl-00181998

R. B. Brem, G. Yvert, R. Clinton, and L. Kruglyak, Genetic dissection of transcriptional regulation in budding yeast, Science, vol.296, pp.752-755, 2002.

C. Araya, C. Payen, M. Dunham, and S. Fields, Whole-genome sequencing of a laboratory-evolved yeast strain, BMC Genomics, vol.11, p.88, 2010.

Q. Zhang, G. Lambert, D. Liao, H. Kim, and K. Robin, Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments, Science, vol.333, pp.1764-1767, 2011.

S. W. Doniger, H. S. Kim, D. Swain, D. Corcuera, and M. Williams, A Catalog of Neutral and Deleterious Polymorphism in Yeast, PLoS Genet, vol.4, p.1000183, 2008.

T. King, S. Seeto, and T. Ferenci, Genotype-by-Environment Interactions Influencing the Emergence of rpoS Mutations in Escherichia coli Populations, Genetics, vol.172, pp.2071-2079, 2006.

G. Liti and E. J. Louis, Yeast evolution and comparative genomics, Annu Rev Microbiol, vol.59, pp.135-153, 2005.

M. J. Dunham, H. Badrane, T. Ferea, J. Adams, and P. O. Brown, Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae, Proceedings of the National Academy of Sciences, vol.99, pp.16144-16149, 2002.

R. Koszul, S. Caburet, B. Dujon, and G. Fischer, Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments, Embo J, vol.23, pp.234-243, 2004.

J. W. Welch, S. Fogel, G. Cathala, and M. Karin, Industrial yeasts display tandem gene iteration at the CUP1 region, Molecular and Cellular Biology, vol.3, pp.1353-1361, 1983.

S. L. Chang, H. Y. Lai, S. Y. Tung, and J. Y. Leu, Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations, PLoS Genet, vol.9, p.1003232, 2013.

M. Novo, F. Bigey, E. Beyne, V. Galeote, and F. Gavory, Eukaryote-toeukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118, Proc Natl Acad Sci U S A, vol.106, pp.16333-16338, 2009.

V. Galeote, F. Bigey, E. Beyne, M. Novo, and J. L. Legras, Amplification of a Zygosaccharomyces bailii DNA segment in wine yeast genomes by extrachromosomal circular DNA formation, PLoS One, vol.6, p.17872, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01222409

C. Hall, S. Brachat, and F. S. Dietrich, Contribution of Horizontal Gene Transfer to the Evolution of Saccharomyces cerevisiae, Eukaryot Cell, vol.4, pp.1102-1115, 2005.

V. Galeote, M. Novo, M. Salema-oom, C. Brion, and E. Valerio, FSY1, a horizontally transferred gene in the Saccharomyces cerevisiae EC1118 wine yeast strain, encodes a high-affinity fructose/H+ symporter, Microbiology, vol.156, pp.3754-3761, 2010.

F. Ness and M. Aigle, RTM1: a member of a new family of telomeric repeated genes in yeast, Genetics, vol.140, pp.945-956, 1995.

G. Chen, W. D. Bradford, C. W. Seidel, and R. Li, Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy, Nature, vol.482, pp.246-250, 2012.

J. J. Infante, K. M. Dombek, L. Rebordinos, J. M. Cantoral, and E. T. Young, Genome-Wide Amplifications Caused by Chromosomal Rearrangements Play a Major Role in the Adaptive Evolution of Natural Yeast, Genetics, vol.165, pp.1745-1759, 2003.

X. Yu and A. Gabriel, Reciprocal Translocations in Saccharomyces cerevisiae Formed by Nonhomologous End Joining. Genetics, vol.166, pp.741-751, 2004.

V. Pennaneach and R. D. Kolodner, Stabilization of Dicentric Translocations through Secondary Rearrangements Mediated by Multiple Mechanisms in S. cerevisiae, PLoS ONE, vol.4, p.6389, 2009.

S. P. Jackson, Sensing and repairing DNA double-strand breaks, Carcinogenesis, vol.23, pp.687-696, 2002.

S. Agarwal, A. A. Tafel, and R. Kanaar, DNA double-strand break repair and chromosome translocations, DNA Repair (Amst), vol.5, pp.1075-1081, 2006.

G. Fischer, S. A. James, I. N. Roberts, S. G. Oliver, and E. J. Louis, Chromosomal evolution in Saccharomyces, Nature, vol.405, pp.451-454, 2000.

D. Greig, Reproductive isolation in Saccharomyces, Heredity, vol.102, pp.39-44, 2008.

N. Rachidi, P. Barre, and B. Blondin, Multiple Ty-mediated chromosomal translocations lead to karyotype changes in a wine strain of Saccharomyces cerevisiae, Mol Gen Genet, vol.261, pp.841-850, 1999.

K. Umezu, M. Hiraoka, M. Mori, and H. Maki, Structural Analysis of Aberrant Chromosomes That Occur Spontaneously in Diploid Saccharomyces cerevisiae: Retrotransposon Ty1 Plays a Crucial Role in Chromosomal Rearrangements, Genetics, vol.160, pp.97-110, 2002.

C. Bidenne, B. Blondin, S. Dequin, and F. Vezinhet, Analysis of the chromosomal DNA polymorphism of wine strains of Saccharomyces cerevisiae, Curr Genet, vol.22, pp.1-7, 1992.

G. Liti, A. Peruffo, S. A. James, I. N. Roberts, and E. J. Louis, Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in the Saccharomyces sensu stricto complex, Yeast, vol.22, pp.177-192, 2005.

T. Nardi, V. Corich, A. Giacomini, and B. Blondin, A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisiae wine yeast, Microbiology, vol.156, pp.1686-1696, 2010.

V. Tosato, C. Nicolini, and C. V. Bruschi, DNA bridging of yeast chromosomes VIII leads to near-reciprocal translocation and loss of heterozygosity with minor cellular defects, Chromosoma, vol.118, pp.179-191, 2009.

N. Yuasa, Y. Nakagawa, M. Hayakawa, and Y. Iimura, Two alleles of the sulfite resistance genes are differentially regulated in Saccharomyces cerevisiae, Biosci Biotechnol Biochem, vol.69, pp.1584-1588, 2005.

B. Rossi, P. Noel, and C. V. Bruschi, Different aneuploidies arise from the same bridge-induced chromosomal translocation event in Saccharomyces cerevisiae, Genetics, vol.186, pp.775-790, 2010.

J. E. Perez-ortin, A. Querol, S. Puig, and E. Barrio, Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains, Genome Res, vol.12, pp.1533-1539, 2002.

H. Park and A. T. Bakalinsky, SSU1 mediates sulphite efflux in Saccharomyces cerevisiae, Yeast, vol.16, pp.881-888, 2000.

Y. Shibata, A. Malhotra, S. Bekiranov, and A. Dutta, Yeast genome analysis identifies chromosomal translocation, gene conversion events and several sites of Ty element insertion, Nucleic Acids Research, vol.37, pp.6454-6465, 2009.

P. Marullo, G. Yvert, M. Bely, M. Aigle, and D. Dubourdieu, Efficient use of DNA molecular markers to construct industrial yeast strains, FEMS Yeast Res, vol.7, p.1295, 2007.
URL : https://hal.archives-ouvertes.fr/ensl-00186849

H. Li, B. Handsaker, A. Wysoker, T. Fennell, and J. Ruan, The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

P. Danecek, A. Auton, G. Abecasis, C. A. Albers, and E. Banks, The variant call format and VCFtools, Bioinformatics, vol.27, pp.2156-2158, 2011.

B. Chevreux, T. Pfisterer, B. Drescher, A. J. Driesel, and W. E. Müller, Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs, Genome research, vol.14, pp.1147-1159, 2004.

W. Albertin, D. Silva, T. Rigoulet, M. Salins, B. Masneuf-pomarède et al., The mitochondrial DNA impacts respiration but not fermentation in inter specific Saccharomyces hybrids

R. D. Gietz and R. H. Schiestl, Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier, Yeast, vol.7, pp.253-263, 1991.

M. A. Teste, M. Duquenne, J. M. Francois, and J. L. Parrou, Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae, BMC Mol Biol, vol.10, p.99, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01883063

P. Marullo, M. Bely, I. Masneuf-pomarede, M. Pons, and M. Aigle, Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model, FEMS Yeast Res, vol.6, pp.268-279, 2006.

J. B. Pate, J. P. Lodge, and A. F. Wartburg, Effect of Pararosaniline in the Trace Determination of Sulfur Dioxide, Analytical Chemistry, vol.34, pp.1660-1662, 1962.

R. Development-core and . Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, 2010.

E. K. Engle and J. C. Fay, Divergence of the yeast transcription factor FZF1 affects sulfite resistance, PLoS Genet, vol.8, p.1002763, 2012.

C. Tachibana, J. Y. Yoo, J. B. Tagne, N. Kacherovsky, and T. I. Lee, Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8, Mol Cell Biol, vol.25, pp.2138-2146, 2005.

P. C. Ng and S. Henikoff, Predicting deleterious amino acid substitutions, Genome Res, vol.11, pp.863-874, 2001.

N. Goto-yamamoto, K. Kitano, K. Shiki, Y. Yoshida, and T. Suzuki, SSU1-R, a sulfite resistance gene of wine yeast, is an allele of SSU1 with a different upstream sequence, Journal of Fermentation and Bioengineering, vol.86, pp.427-433, 1998.

N. Yuasa, Y. Nakagawa, M. Hayakawa, and Y. Iimura, Distribution of the sulfite resistance gene SSU1-R and the variation in its promoter region in wine yeasts, J Biosci Bioeng, vol.98, pp.394-397, 2004.

P. Ribéreau-gayon, D. Dubourdieu, B. Donèche, and A. Lonvaud, Alcoholic fermentation and metabolic pathways. Handbook of Enology Vol1, 2000.

K. Henick, . Edinger, . Daniel, and . Monk, Selective effects of sulfur dioxide and yeast starter culture addition on indigenous yeast populations and sensory characteristics of wine, Journal Of Applied Microbiology, vol.84, pp.865-876, 1998.

C. M. Egli, W. D. Edinger, C. M. Mitrakul, and T. Henick-kling, Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines, Journal Of Applied Microbiology, vol.85, pp.779-789, 1998.

E. A. Winzeler, D. R. Richards, A. R. Conway, A. L. Goldstein, and S. Kalman, Direct allelic variation scanning of the yeast genome, Science, vol.281, pp.1194-1197, 1998.

D. Gresham, D. M. Ruderfer, S. C. Pratt, J. Schacherer, and M. J. Dunham, Genome-wide detection of polymorphisms at nucleotide resolution with a single DNA microarray, Science, vol.311, pp.1932-1936, 2006.

A. M. Deutschbauer and R. W. Davis, Quantitative trait loci mapped to singlenucleotide resolution in yeast, Nat Genet, vol.37, pp.1333-1340, 2005.

C. Ambroset, M. Petit, C. Brion, I. Sanchez, and P. Delobel, Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach, G3 (Bethesda), vol.1, pp.263-281, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01487358

F. A. Cubillos, E. Billi, E. Zorgo, L. Parts, and P. Fargier, Assessing the complex architecture of polygenic traits in diverged yeast populations, Mol Ecol, vol.20, pp.1401-1413, 2011.

J. S. Bloom, I. M. Ehrenreich, W. T. Loo, T. Lite, and L. Kruglyak, Finding the sources of missing heritability in a yeast cross, Nature, vol.494, pp.234-237, 2013.

I. M. Ehrenreich, J. Bloom, N. Torabi, X. Wang, and Y. Jia, Genetic Architecture of Highly Complex Chemical Resistance Traits across Four Yeast Strains, Plos Genetics, vol.8, 2012.

T. Katou, M. Namise, H. Kitagaki, T. Akao, and H. Shimoi, QTL mapping of sake brewing characteristics of yeast, J Biosci Bioeng, vol.107, pp.383-393, 2009.

B. Divol, M. Du-toit, and E. Duckitt, Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts, Appl Microbiol Biotechnol, vol.95, pp.601-613, 2012.

M. Stratford, P. Morgan, and A. Rose, Sulphur dioxide resistance in Saccharomyces cerevisiae and Saccharomycodes ludwigii, Journal of general microbiology, vol.133, pp.2173-2179, 1987.

H. Hinze and H. Holzer, Analysis of the energy metabolism after incubation of Saccharomyces cerevisiae with sulfite or nitrite, Archives of microbiology, vol.145, pp.27-31, 1986.

H. Park and Y. S. Hwang, Genome-wide transcriptional responses to sulfite in Saccharomyces cerevisiae, J Microbiol, vol.46, pp.542-548, 2008.

R. J. Thornton, Selective hybridisation of pure culture wine yeasts, European journal of applied microbiology and biotechnology, vol.14, pp.159-164, 1982.

E. Casalone, C. M. Colella, S. Daly, E. Gallori, and L. Moriani, Mechanism of resistance to sulphite in Saccharomyces cerevisiae, Curr Genet, vol.22, pp.435-440, 1992.

D. Thomas and Y. Surdin-kerjan, Metabolism of sulfur amino acids in Saccharomyces cerevisiae, Microbiol Mol Biol Rev, vol.61, pp.503-532, 1997.

X. Xu, J. D. Wightman, B. L. Geller, A. D. Bakalinsky, and A. T. , Isolation and characterization of sulfite mutants of Saccharomyces cerevisiae, Current Genetics, vol.25, pp.488-496, 1994.

G. Badis, E. T. Chan, H. Van-bakel, L. Pena-castillo, and D. Tillo, A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters, Molecular Cell, vol.32, pp.878-887, 2008.

M. Favier, E. Bilhère, A. Lonvaud-funel, V. Moine, and P. M. Lucas, Identification of pOENI-1 and Related Plasmids in Oenococcus oeni Strains Performing the Malolactic Fermentation in Wine, PLoS ONE, vol.7, p.49082, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02641884

J. A. Fraser, J. C. Huang, R. Pukkila-worley, J. A. Alspaugh, and T. G. Mitchell, Chromosomal translocation and segmental duplication in Cryptococcus neoformans, Eukaryotic cell, vol.4, pp.401-406, 2005.

I. Chuma, C. Isobe, Y. Hotta, K. Ibaragi, and N. Futamata, Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species, PLoS Pathog, vol.7, p.1002147, 2011.

R. Koszul, B. Dujon, and G. Fischer, Stability of Large Segmental Duplications in the Yeast Genome, Genetics, vol.172, pp.2211-2222, 2006.

J. Adams, S. Puskas-rozsa, J. Simlar, and C. Wilke, Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae, Current Genetics, vol.22, pp.13-19, 1992.

R. Dhar, R. Sagesser, C. Weikert, J. Yuan, and A. Wagner, Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution, J Evol Biol, vol.24, pp.1135-1153, 2011.