
Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver

Salli Moustafa1, Ivan Dutka-Malen1, Laurent Plagne1, Angélique Ponçot1, and Pierre Ramet2

1EDF R&D 1, Av du Général de Gaulle F92141 CLAMART CEDEX France
2INRIA-University of Bordeaux, France

This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two
nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a
multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such
as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in
an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors
and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node.
For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular
directions (S16), 46 ⇥ 106 spatial cells and 1 ⇥ 1012 DoFs within 11 hours on a single 32-core SMP node. This
represents a sustained performance of 235 GFlops and 40.74% of the SMP node peak perfomance for the DOMINO
sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a
future many-nodes nuclear simulation tool.

KEYWORDS: Deterministic transport, SN, multicore processor, wavefront, TBB, SIMD

I. INTRODUCTION

Industrial Context

As part of its activity, EDF R&D is developing a new nuclear
core simulation code named COCAGNE. This code relies on
DIABOLO, a Simplified PN (SPN) method to compute the
neutron flux inside the core for eigenvalue calculations.(1) In
order to assess the accuracy of SPN results, a 3D Cartesian
model of PWR nuclear cores has been designed and a refer-
ence neutron flux inside this core has been computed with the
MCNP5 Monte Carlo transport code.(2) This kind of 3D whole
core probabilistic evaluation of the flux is computationally very
demanding. An efficient deterministic approach is therefore
required to reduce the computation effort dedicated to refer-
ence simulations. In this paper we introduce DOMINO, a new
shared memory parallel 3D Cartesian SN solver specialized for
PWR core reactivity computations which is fully integrated in
the COCAGNE system.

A First Step Toward Efficient Use of the HPC Clusters

Our aim is to build a massively parallel deterministic neutron
transport solver such as Denovo(3) which is under active devel-
opment at ORNL1, allowing simulations on large distributed
memory supercomputers. To achieve this goal, we first focus on
designing an efficient implementation for one supercomputing
node. Modern supercomputers are generally built upon hierar-
chical architectures that can be characterized by their number
nnodes of computing nodes, the number nsockets of processors in
each node, the number ncores of cores in each processor, and

1Oak Ridge National Laboratory

finally the number nsimd of Single Instruction on Multiple Data
(SIMD) units in each core. Although we plan to use these four
levels of parallelism in the future, the DOMINO implemen-
tation is, at the present time, limited to the inner three levels
(multi-socket computer nodes) which can be addressed with
shared memory parallel programming paradigms. Obviously,
an efficient implementation for supercomputing nodes is re-
quired to attain an efficient use of many-node HPC facilities.
This hierarchical path for building massively parallel solvers on
modern supercomputers is well illustrated in ref(4) where the
authors give algorithmic and implementation strategies for op-
timizing the Sweep3D(5) kernel on the IBM Cell BE processor.

Proper Tools For Multi-Core Processors Programming

DOMINO is written in C++, a multi-paradigm programming
language that enables the use powerful and generic parallel
programming tools such as Intel TBB(6) and Eigen.(7) These
two libraries allow us to combine multi-thread parallelism with
vector operations in an efficient and yet portable way. As a
result, DOMINO can exploit the full power of modern multi-
core processors and is able to tackle very large simulations, that
usually require large HPC clusters, using a single computing
node. For example, DOMINO solves a 3D full core PWR keff

problem involving 26 energy groups, 288 angular directions
(S 16), 46 ⇥ 106 spatial cells and 1 ⇥ 1012 DoFs within 11 hours
on a single 32-core SMP node. This represents a sustained
performance of 235 GFlops and 40.74% of the SMP node peak
performance for the DOMINO sweep implementation. The
very high Flops/Watt ratio of DOMINO makes it a very inter-
esting building block for a future distributed memory nuclear
simulation tool.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Paper Outline

In this paper, we describe the design of DOMINO and assess
its performance. Section II briefly introduces the discrete or-
dinates numerical scheme and algorithms used in DOMINO.
Section III describes the two nested levels of parallelism (mul-
ticore+SIMD) of DOMINO. Then section IV analyses the par-
allel scalability of the sweep kernel that represents the com-
putationally most demanding part of code. In section V we
present 3D full core PWR keff computations carried out with
DOMINO. Both keff and flux accuracies are assessed by com-
parison with Monte-Carlo MCNP computations. Then we com-
pare the performances of DOMINO with those of PENTRAN(8)

and Denovo,(9) two massively parallel deterministic transport
solvers. Section VI concludes the paper by describing our ongo-
ing work devoted to extending DOMINO to distributed memory
machines.

II. THE DOMINO COCAGNE SN SOLVER

COCAGNE is the name of the new nuclear core simulation sys-
tem developed at EDF R&D. The COCAGNE system mostly
relies on DIABOLO, an approximate solver based on the Sim-
plified PN equations (SPN)(1, 10) for its industrial simulations.
Recently, an additional reference solver named DOMINO and
based on a discrete ordinates method has been introduced into
the COCAGNE system. These two solvers share a common
interface and a similar design within the COCAGNE system.
In particular, both DOMINO and DIABOLO are built upon
Legolas++, a C++ library dedicated to solving multilevel
blocked linear algebra systems.(11) This design similarity fa-
cilitates the interoperability between the two solvers. This
section starts with a description of the numerical schemes used
in DOMINO and then gives an overview of its algorithmic
structure.

1. DOMINO Numerical Schemes

DOMINO (Discrete Ordinates Method In NeutrOnics) imple-
ments the Discrete Ordinates Method for the stationary neutron
transport equation (1) in multi-dimensional Cartesian geome-
tries. This equation depends on energy (E), the angular direc-
tions (~Ω) and the spatial position (~r) of the particles, defining
respectively the velocity, propagation direction and the spatial
localization of particles.

~Ω ·
−!
r (~r, E, ~Ω) + Σt(~r, E) (~r, E, ~Ω) =Z 1

0
dE0
Z

S 2

d~Ω0Σs(~r, E
0 ! E, ~Ω0 · ~Ω) (~r, E0, ~Ω0)

+
1
k

χ(E)
4⇡

Z 1
0

dE0
Z

S 2

d~Ω0⌫Σ f (~r, E
0) (~r, E0, ~Ω0). (1)

This is an eigenvalue problem with k representing the multi-
plication of neutrons in successive fission generations; it can
be rewritten as:

H (~r, E, ~Ω) =
1
k

F (~r, E, ~Ω), (2)

where H and F represent transport and fission operators.
The problem (2) is solved using an inverse power algorithm,

which leads to the computation of the neutron flux  and k, by
iterating on the fission term:

H n+1 =
1
kn

F n, kn+1 = kn< F n+1, F n+1 >

< F n+1, F n >
.

Each power iteration solves a multi-group problem by using
the Gauss-Seidel algorithm, which is the same as solving G

one-group space-angle problems:

Hgg g(~r, ~Ω) = −
X
g0,g

Hgg0 g0 (~r, ~Ω) + S g(~r), (3)

where S g(~r) represents the fission sources for the group g. We
refer to these one-group problems as monogroup equations.
In the S N method, each of these equations is discretized on a
finite number of angular directions defined by the quadrature
formula used. DOMINO supports both Level Symmetric and
Gauss-Legendre quadrature formulas, which lead respectively
to N(N + 2) and m ⇥ n angular directions; N stands for the
Level Symmetric quadrature formula order, m and n represent
respectively the number of azimutal and polar directions used
in the Gauss-Legendre quadrature formula. For both quadrature
formulas, each angular direction is associated to a weight wi for
integral calculation on the unit sphere S 2. Hence, we have the
following transport equations coupled by the scattering term:

L n+1 = B − Rφn, φn+1(~r) =
ndirX
j=1

w j 
n+1(~r, ~Ω j),

where L is the spatial stream matrix, composed of the diagonal
of H, R = H − L is the spatial scattering matrix, and B = S

the source term; ndir is the total number of angular directions
depending on the quadrature formula used.

The general structure of the DOMINO solver is summarized
by Algorithm 1. The first level of iterations solves the eigen-
value problem by an inverse power algorithm with a Chebychev
acceleration. Then a Gauss-Seidel algorithm is used to solve
the multigroup problem coming from the discretization of the
energetic variable. Inside each multigroup iteration, scattering
iterations with a Diffusion Synthetic Acceleration,(12) solve the
spatial problem by the well-known sweep algorithm.

The space discretization corresponds to the Diamond Dif-
ferencing scheme (DD).(13) Up to now, only the order 0 has
been implemented. In three dimension, the DD0 element has 1
moment and 3 mesh-edge incoming fluxes per cell as indicated
in Figure 1.

Figure 1: Degrees of freedom for the DD0 element



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Algorithm 1: General Structure of DOMINO Solver
B Initialization of external iterations

φ = 1 ;
k = 1 ;

C =
X

g

⌫Σ f ,g.φg ; B Fission source computation

B External iterations: inverse power algorithm

while Non convergence do

vS = [χg] C

B Multigroup iterations: Gauss-Seidel

while Non convergence do

for g 2 ~1,Ng� do

B External sources

Qext = vS [g] +
X
g0,g

Σ
g0!g
s .φg0 ;

B Scattering iterations

while Non convergence do

Q = Qext + Σ
g!g
s φg ;

0 ~Ωk.~r k + Σ k = Q 8~Ωk 2 S N ;

0 φg =
X
Ωk

!k k;

C =
X

g

⌫Σ f ,g.φg ; B Fission sources update

k = <C,C>
<Cold,Cold>

after processing

incoming face: 

read data

outgoing face:

update data

Figure 2: Data dependencies over one spatial cell in 2D

2. The Sweep Algorithm

Before going into details of the parallel implementation, Al-
gorithm 2 describes the sweep operation which represents the
most time-consuming operation inside the solver.

The aim of this algorithm is to solve the space-angle problem,
by inverting the streaming operator of the monogroup transport
equation: lines 0-0 of Algorithm 1. The volumic flux computa-
tion inside the cell c (line 0) needs to know incoming data for
this cell: incoming angular fluxes,  L,  B,  F , the total cross
section Σt and the source term S . Outgoing angular flux are
then updated on lines 0, 0 and 0. At this point, we can observe
that once a cell has been swept for a given octant, incoming

Algorithm 2: The Sweep Operation

forall the o 2 Octants do

forall the c 2 Cells do
B c = (i, j, k)

0 forall the d 2 Directions[o] do
B d = (⌫, ⌘, ⇠)

0 ✏x =
2⌫
∆x

; ✏y =
2⌘
∆y

; ✏z =
2⇠
∆z

;

0  [o][c][d] = ✏x L+✏y B+✏z F+S

✏x+✏y+✏z+Σt
;

0  R[o][c][d] = 2 [o][c][d] −  L[o][c][d];
0  T [o][c][d] = 2 [o][c][d] −  B[o][c][d];
0  BF[o][c][d] = 2 [o][c][d] −  F[o][c][d];
0 φ[k][ j][i] = φ[k][ j][i] +  [o][c][d] ⇤ ![d];

angular flux are not longer used. This property allows an op-
timization on the memory footprint of the solver: incoming
and outgoing angular fluxes are stored on the same memory
location, which dramatically increases the arithmetic intensity
of the code. This feature is the key factor that allows obtain-
ing a code that uses the full potential of modern multi-core
architectures (see section 3). Finally we add the contribution of
the volumic flux to the scalar flux on line 0, using the weight
associated to the direction d, ![d].

Let us count the total number of arithmetic operations per
angular direction and per spatial cell in this sweep algorithm.
We have 20 add/mult operations (the quantities 2

∆u
, u = x, y, z

can be computed once per spatial cell) each corresponding to 1
(flop) and 1 floating point division (line 0). The question how
many flops to count for one division operation is a tricky one
as the answer depends on the target architecture. In Ref,(14)

authors show that the Sandy Bridge microarchitecture gives no
performance gain for the division compared to the Nehalem
microarchitecture, that is to say it costs exactly the same time to
perform 8 packed single precision floating point divisions using
AVX as 4 packed single precision floating point divisions using
SSE. For our studies, we choose to count 5 flops per floating
point division; this leads to a total of 25 flops for the sweep
operation, determining the arithmetic intensity.

3. The Critical Arithmetic Intensity Issue

During the last decade, successive supercomputer node gener-
ations brought a regular and impressive improvement of their
peak performance. Since their operating frequency remained al-
most unchanged, the multi-socket processors peak performance
resulted mainly from their parallelism. In the context of trans-
port simulations, the parallel computing power of a processor
is proportional to the number nFPU of its parallel floating points
units (FPU): nFPU = nsockets ⇥ ncores ⇥ nsimd.

Surprisingly enough, the computer bandwidth that measures
the maximal data flow between the computer RAM and the
FPUs did not increase as fast as the peak performance. The
consequence of the broadening gap between the node band-
width and its peak performance is to put a dramatic emphasis
on the arithmetic intensity of the algorithms. If the arithmetic



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

intensity i of a given algorithm, defined by:

i =
Number of floating points operations

Number of RAM access (Read+Write)
,

is lower than a critical value ic, then its performance does not
depend on the computational power of a target processor but
mainly on the system memory bandwidth: the algorithm is then
said to be memory bound. The critical arithmetic intensity of
processors increases with each generation causing an ever larger
fraction of algorithms to be memory bound. As a consequence
of this processor evolution, the whole design of DOMINO is
aimed at maximizing the arithmetic intensity in order to exploit
the full parallel power of multicore processors.

III. TWO LEVELS OF PARALLELISM INSIDE

THE DOMINO SOLVER

A shared memory supercomputing node can be seen as a mul-
ticore processor. To achieve a full utilization of its computing
resources, we need to use both the multicore parallelism and
the vector level parallelism also known as the Single Instruc-
tion Multiple Data model (SIMD). This latter level is a real
bottleneck for performance issues, and its implementation con-
straints, involving hardware specifications of the chip, give
guidelines to the algorithmic design of an application.

1. The Multicore Parallelism

The sweep operation is the most computationally intensive por-
tion of DOMINO. For each incoming direction of the angular
quadrature, the angular and volumic flux Degrees of Freedom
(DoFs) of each spatial mesh cell must be updated. For simplic-
ity’s sake, we base the following sweep parallel description on
a 2D example with a DD0 spatial discretization scheme. Let
{ci j} be the nx ⇥ ny cells of a 2D Cartesian spatial mesh. Let
us consider Ωd an angular direction coming from the bottom
left corner. Let {d x

i j
, d 

y

i j
, φi j} be the corresponding incoming

angular and volumic flux DoFs. In the sweep operation one
has to process each cell ci j by updating the volumic φi j and
the angular outgoing d x

i+1 j
and d 

y

i j+1 DoFs that depend on

the three d x
i j

,d y

i j
and φi j input values. This implies an order-

ing constraint for the sweep operation: a cell ci j can only be
processed if the following two conditions are fulfilled:

ci−1, j has been already processed or i = 0,

ci, j−1 has been already processed or j = 0.

Obviously c00 is the first cell that can be processed but the
second can be either c10 or c01. . . or both can be processed in
parallel. We rely on the Intel TBB primitive parallel_do(15)

that enables a dynamic scheduling of the parallel tasks to imple-
ment the sweep. This parallel function allows a pool of threads
to execute the tasks from a task list which is dynamically up-
dated. In the beginning, the task list contains the cell c00. One
of the running threads processes this cell and updates the task
list to {c10, c01} and so on. In order to reduce the overhead due
to the thread scheduling, the cells are not processed individually
but they are packed into groups of cells, called macrocells in the

DOMINO implementation. The choice of the macrocell size
depends of the available cache memory. In order to benefit from
data reuse, data must be kept as long as possible in cache. If the
macrocell size is too small, overheads due to thread scheduling
deteriorate performances; the same consequence occurs when it
is too big because of cache misses. For our studies, we perform
an heuristic for the target architecture and determine the best
size by trying several sizes. Figure 3 illustrates this parallel
sweep strategy.

Figure 3: Wave front algorithm applied to sweep across the mesh

macrocells. The incoming fluxes come from the bottom left cor-

ner. The processed macrocells are pink colored while the white

macrocells are still waiting. Only blue dashed border macrocells

are ready for processing and their respective indexes are stored

in a task list from which a pool of threads concurrently pick their

work item. This list is dynamically updated each time a new

macrocell has been processed.

All the nsockets ⇥ ncores cores of the supercomputing node are
used in this parallel wavefront algorithm.

When we are using the vacuum condition, with no external
neutron source, we can extract more parallelism from the sweep
operation. In fact, we can start the sweep for all 8 octants in
parallel as indicated on Figure 4, provided the scalar flux re-
duction is performed by using mutexes, in order to avoid race
conditions which can lead to wrong results. This corresponds to
the parallelization of the most external forall loop of the Al-
gorithm 2. By so doing, the potential parallelism is multiplied
by 8 which can significantly improve the speed-up especially
when a large number of cores are used to sweep small geome-
tries. It is an ongoing work to extend this strategy to symmetric
boundary conditions. Basically you start the sweep of an octant
as soon as its first macrocell has been swept for the previous
octant: it follows a pipeline of the sweep over the octants.

2. SIMD Parallelism

During each sweep, the angular directions that belong to the
same octant are computed via SIMD instructions allowing to
process simultaneously up to 8 simple precision floating point
operations when using Intel AVX (Advanced Vector Exten-
sions) instructions. In this section we recall the basic of the
SIMD programming model with emphasis on Intel SSE and
AVX; then we present how we handle these instructions in
DOMINO.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Figure 4: Parallelization of the sweep operation: all 4 octants are

swept simultaneously. Pink colored macrocells are concurrently

processed using mutexes: the first thread that starts the sweep

of a given macrocell activates a lock that prevents other threads

from starting to process the same macrocell and at the end, the

lock is released so that another thread can start processing this

macrocell.

SIMD Programming Model Vectorization is a computing
model which consists in applying a single instruction to multi-
ple data (SIMD). Most modern processors provide dedicated
functional units that implement such instructions. Exploitation
of these units can be done by relying on automatic vectoriza-
tion by the compiler. However, while automatic vectorization
is possible for simple loops, it is generally not the case for
complex kernels. Meanwhile, by explicitly using assembly
instructions or compiler intrinsics corresponding to the target
architecture, one can make use of these vector units with the
expense of some hardware constraints specific to vector instruc-
tions. In fact, vector instructions operate on packed data loaded
inside specialized registers of fixed size. To perform fast load
and store operations, data items need to be well aligned on
cache boundary: 16 bytes for Intel SSE and 32 bytes for Intel
AVX. Sometimes we have to resort to padding to satisfy this
requirement. As an example, when loading 256 bits packet
data with Intel AVX in a contiguous memory region of size
256 + 32 ⇥ 3 = 352 bits, we need to extend this region with
512 − 352 = 160 bits at the memory allocation stage. Attention
should be ported on padding as it increases global memory
consumption and useless computations.

Angular Vectorization For the octant currently being swept,
inside each spatial cell, we compute simultaneously several
angular directions belonging to the octant (the forall loop on
line 0 of Algorithm 2). SIMD instructions operate on packs
of directions. The pack size, which depends on the precision
and on the target architecture, is 8 in single precision and 4 in
double precision on AVX enabled processors; on SSE enabled
processors this pack size is divided by 2. Handling any angular
quadrature order requires us to set up a padding system: for ex-
ample, S 16 Level Symmetric angular quadrature formula gives
16(16 + 2) = 288 angular directions or 288/8 = 36 directions
per octant; when using single precision Intel AVX, as 36 is not
a multiple of 8, we perform 40 angular directions processing
per spatial cell corresponding to an efficiency of 36/40 = 0.9.

On the other hand, product quadrature formulas, such as Gauss-

Legendre, give more flexibility to overcome this limitation as
you can choose a combination of the number of azimutal and
polar directions that give a total number of directions divisible
by, say, 8.
C++ programming language is well suited to deal with this

vectorization procedure. Instead of hard-coding compiler intrin-
sics in the code, the arithmetic operators needed are overloaded
by their corresponding intrinsics; we rely on Eigen2 for doing
this job. Hence we are able to benefit from new vector instruc-
tions of the next generation of processors without having to
modify the code, improving maintainability and readability of
the code. Listing 1 shows a snapshot of the SIMD implementa-
tion of the sweep algorithm, which features some constructs of
then Eigen library.

...

typedef Eigen::Array<RealType, blockSize , 1>

BlockArray;

typedef Eigen::Map<BlockArray ,Eigen::Aligned>

BlockArrayView;

...

const int nblocks=directionPerOctant/blockSize;

for (int b=0; b<nblocks; b++){

...

BlockArrayView psiX(&psiXd[dir]);

psiOut+= epsX*psiX+epsY*psiY+epsZ*psiZ;

BlockArray denom(sigmaIJK);

denom+=epsX; denom+=epsY; denom+=epsZ;

psiOut/=denom;

phi+=psiOut*ConstBlockArrayView(&weight[dir]);

}

Listing 1: The SIMD implementation of the sweep algorithm:

BlockArray is a type representing an array of packed data.

IV. Sweep Scalability and Efficiency

We analyze the performance of the sweep operation for a simple
2-group ke f f computation with 480 ⇥ 480 ⇥ 480 spatial cells
with different angular quadratures on the A and B computing
nodes described in Table 1.

Node A Node B

Name Intel X7560 Intel E5-2670
Architecture Nehalem Sandy Bridge

SIMD Inst. SSE4 AVX
SIMD Units/Core 2 2
SIMD width (float) 4 8
SIMD width (double) 2 4

Ncore 32 16

Frequency (GHz) 2.26 2.6

float Peak Performance (GFLOPS) 578 666

double Peak Performance (GFLOPS) 289 332

Table 1: Characteristics of two computing nodes. The theoretical

peak performance figures are computed from Eq. (5).

Figure 5 summarizes the performance of the 2-level paral-
lel implementation (multicore+SIMD) of DOMINO for differ-
ent Level-Symmetric angular quadratures on Node A. Since

2Eigen is a C++ template library for linear algebra: matrices, vectors,
numerical solvers, and related algorithms.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

the arithmetic intensity of the computation increases with the
number of direction, the sweep performance improves with
the angular quadrature order. Because of their relatively low
arithmetic intensities, the parallel speed-ups of the S 2 and S 4

computations saturate above 16 cores while it is not the case for
the S 8−16 quadratures. Note that S 2 and S 4 timings are exactly
the same due to our padding strategy (see section 2). Here we
use SIMD units that process at least 4 angular directions that
belong to the same octant simultaneously. Since a given S N

Level-Symmetric defines do = N(N + 2)/8 angular directions
per octant, we obtain do = 1 (resp. do = 3) for the S 2 (resp.
S 4) quadrature leading to 4 − 1 = 3 (resp 4 − 3 = 1) padded
directions.

Figure 5: Time per sweep over all angular directions as a function

of the core number on Node A (mesh: 480 ⇥ 480 ⇥ 480).

In order to assess the sweep perfomance we compare the
corresponding GFLOPS (Giga FLOating Point operations per
Second) to the theoretical Peak performance of the computing
Nodes. These two metrics are defined as:

• GFLOPS value is estimated by dividing the number of
floating point operations by the completion time:

GFLOPS =
25 ⇥ Ncells ⇥ Ndir

Time in nanoseconds
, (4)

where the factor 25 is the total number of the floating point
operations in the sweep operation, counted in section 2.

• The peak performance of a supercomputing node is evalu-
ated by taking into account all the operations that all the
available floating point arithmetic units can complete per
clock cycle:

Peak = ncores ⇥ frequency ⇥ SIMD width ⇥ SIMD units.
(5)

Table 2 summarizes the 32-core performance correspond-
ing to Figure 5. While the S 2 and S 4 timings are identical
(27.9s), the corresponding GFLOPS figures (11.2 and 33.8) dif-
fer since we only count useful angular directions (1 and 3) in the
GFLOPS evaluation (Eq 4). In the S 16 case (Ndir = 288), the
sweep performance reaches 248.9 GFLOPS which corresponds
to 43% of the Node A peak performance in single precision.

Ndir Seq. 32-Core Speed GFLOPS % Peak
Time (s) Time (s) Up (Eq 4) Perf.

S2 8 ⇥ 1 27.9 1.96 14.2 11.2 1.94%

S4 8 ⇥ 3 27.9 1.96 14.2 33.8 5.8%

S8 8 ⇥ 10 41.5 1.84 22.6 120.4 20.8%

S12 8 ⇥ 21 65.0 2.4 27.0 190.6 32.9%

S16 8 ⇥ 36 89.7 3.2 28.0 248.9 43.0%

Table 2: Time per sweep over all angular directions using 1 and

32 cores on Node A (mesh: 480 ⇥ 480 ⇥ 480).

Impact of Parallelizing Over the Octants

Figure 6 shows the performance behavior that one can observe
when allowing to compute all the octants in parallel as ex-
plained in the previous section. For the large spatial mesh,
the parallelism over the octant is negligible. On the contrary,
for the smaller mesh the additional amount of task-parallelism
helps to maintain a speed-up almost linear up to 32 cores.

Figure 6: Performance impact of the octant parallelization (mesh:

120 ⇥ 120 ⇥ 120 and 480 ⇥ 480 ⇥ 480, using S 8 Level Symmetric

quadrature on Node A)

Performance on Node B: From SSE To AVX Instructions

The same experiments were carried out using Node B. Here we
use Gauss-Legendre quadratures. The corresponding result are
summarized in Figure 7. This nodes accepts AVX instructions
but is still compatible with SSE4 version of the sweep. Scalar,
SSE and AVX versions of the sweep have been evaluated on
Node B using 16 threads. The results are summarized in Table 3.
One can see that, in this case, the performance does not increase
much when switching from SSE to AVX. We are currently
investigating this issue.

The performance of the sweep operation reaches 237.7
GFLOPS which corresponds to 35.71% of the peak perfor-
mance of the supercomputing node B in single precision. As a
general trend, the 16-core Sandy Bridge node leads to sweep
performances that are on par with the 32-core Nehalem node.

In the next section we show that the good performance of
the sweep kernel allows DOMINO to solve 3D PWR reactivity
problems efficiently.



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

Node A (32 cores) Node B (16 core)

Time (s) Speed-Up Time (s) Speed-Up

Scalar 21.46 ⇥1 28.25 ⇥1
SSE 5.62 ⇥3.81 6.82 ⇥4.14

AVX - - 5.95 ⇥4.74

Table 3: Impact of SIMD parallelism for a 32 ⇥ 16

Gauss-Legendre quadrature sweep performance (mesh:

480 ⇥ 480 ⇥ 480).

Figure 7: Time per sweep over all angular directions, using

Gauss-Legendre quadrature formula, as a function of the core

number on Node B (mesh: 480 ⇥ 480 ⇥ 480)

V. 3D PWR Full Core Performance

The benchmark used for calculations is described in Ref.(2) It
corresponds to a simplified 3D PWR first core loaded with 3
different types of fuel assemblies characterized by a specific
235 U enrichment (low, medium and highly enriched uranium).
No inserted control device is considered in this core model.
Along the z-axis, the 360 cm assembly is axially reflected with
30 cm of water which results in a total core height of 420 cm.
The 3 types of fuel assemblies appear in Figure 8 where the
central assembly corresponds to the lowest enrichment, while
the last row of fuel assemblies have the highest enrichment to
flatten the neutron flux.

Each fuel assembly is a 17 ⇥ 17 array with a lattice pitch of
1.26 cm that contains 264 fuel pins and 25 water holes. The
boundary condition associated with this benchmark problem
is a pure leakage without any incoming angular flux. The
associated nuclear data, an 8-group and a 26-group libraries,
were obtained from a fuel assembly heterogeneous transport
calculation performed with the cell code DRAGON.(16)

A 26-group computation has been carried out with DOMINO
using a S 16 Level-Symmetric angular quadrature. Table 4 sum-
marizes the results of this keff computation. We assess the
accuracy of DOMINO by comparing obtained neutron flux and
keff to a reference obtained with MCNP5. To make easier the
comparisons to MCNP results, the 3D 26-group fluxes are inte-
grated over energy and space. Practically, a group collapsing is
performed from 26 to 2 energy groups with a boundary fixed

Figure 8: 2D-View of the PWR Core Model

at 0.625 eV, and a spatial integration over each pin-cell along
z-axis is done. Comparisons between DOMINO and MCNP
presented in Table 4 are computed in the form:

∆ke f f =
kDOMINO

e f f
− kMCNP

e f f

kMCNP
e f f

⇥ 105 in pcm,

|δφg| = max
{pi}
|
φDOMINO

g (pi) − φMCNP
g (pi)

φMCNP
g (pi)

|,

where pi stands for the pin cell index.

26-group

Ndir 288

X Mesh Size 2 ⇥ 289
Y Mesh Size 2 ⇥ 289
Z Mesh Size 2 ⇥ 70

NDoF 1.05 ⇥ 1012

keff 1.008361

∆keff (pcm) 12
|δφ1| (%) 0.69
|δφ2| (%) 0.34

Wall-clock time (min) 658

Sweep Perf. 235 gflops
(%) Peak Perf. 40.7%

DOMINO Perf. 111 gflops
(%) Peak Perf. 19.2%

Table 4: 3D PWR keff computation with S 16 angular quadrature

on Node A (see Table 1). The keff tolerance is set to 1 ⇥ 10−5. The

flux and keff obtained with DOMINO are compared to a MCNP5

reference.

The 26-group ke f f computation completes in less than 11h,
and corresponds to a sweep performance of 235 GFLOPS which
is equivalent to 40.74% of the peak performance of the super-
computing node A. In order to evaluate the performance of



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

the complete DOMINO ke f f computation we divide the sweep
operation number (Eq.4) by the complete wall-clock time3. It
leads to an average performance of 111 GFLOPS.

Based on our 3D PWR model, the comparison with MCNP
and the performance evaluation in terms of GFLOPS show
that DOMINO is both accurate and computationally efficient.
However it is important to compare DOMINO to other deter-
ministic solvers in order to check if all the counted floating
point operations correspond to a truly efficient algorithm.

1. DOMINO Compared With Pentran And Denovo

There exists several deterministic neutron transport solvers
based on discrete ordinates method; we propose here a com-
parison of DOMINO with two solvers that can address 3D
Cartesian meshes.

Pentran

PENTRAN(8) is a 3D discrete ordinates code that can automat-
ically distribute the problem phase space among the angular
(A), energy (E), and spatial variables (S) using a parallel mem-
ory and task allocation across a virtual processor array (VPA).
One has the possibility to focus on one of the axes of the VPA
by assigning a specific weight for this axis; the parallelism is
implemented using a pure MPI programming model to exploit
both shared and distributed memory supercomputers.

We compare S 8 DOMINO and PENTRAN keff computations
for the 8-group version of our PWR Benchmark.(8) The results,
obtained on Ivanoe, the EDF Intel Xeon based supercomputer4,
are summarized in Table 5. Note that different values for the
stopping criterion associated to the flux (✏φ) has been used for
the different computations. The PENTRAN results have been
extracted from ref.(2)

Using a single node DOMINO is faster (67 min) than PEN-
TRAN running on 289 nodes (4752 min). Actually, PENTRAN
is a general-purpose transport code and is not specially adapted
to 3D PWR simulations. In particular, PENTRAN lacks an
efficient acceleration scheme that is required to cope efficiently
with highly diffusive media. In order to compare the perfor-
mances of the parallel implementations of the codes, a non-
accelerated DOMINO computation has been carried out (third
column in Table 5). This non-accelerated DOMINO computa-
tion remains faster (573 min) than PENTRAN.

Several factors can explain this large performance differ-
ence. The PENTRAN code is built upon a single programming
paradigm and does not explicitly address shared memory and
vector issues that tend to become more and more important
on modern processors. In addition, the spatial discretization
scheme of DOMINO (DD0) is simpler than the DTW scheme
used in PENTRAN and should consume less CPU cycles. At
last it is difficult to evaluate the efficiency penalty arising from
using a distributed architecture (289 nodes) compared to our
shared memory approach. We are about to complete a dis-
tributed version of DOMINO that would allow us to conclude
on this point.

3Here we neglect all the other flops of the rest of the code.
4Ivanoe was ranked 213 in the June 2013 Top 500 list.

PENTRAN DOMINO DOMINO
No Accel

PWR 8g(8) PWR 8g PWR 8g

Computer Ivanoe Ivanoe Ivanoe

XY Mesh 578 ⇥ 578 578 ⇥ 578 578 ⇥ 578
Z Mesh 168 168 168
Ndir 80 80 80
Ngroup 8 8 8
✏φ tol 5 ⇥ 10−5 1 ⇥ 10−5 5 ⇥ 10−5

NDoF (⇥109) 35.9 35.9 35.9
keff 1.00867 1.00940 1.00940
δkeff (pcm) 57 14 14

Ncores 3468 32 32

Wall-clock
time (min) 4752 67 573

DoF/min
(⇥106) 7.6 536 62.6

DoF/min/core
(⇥106) 2.2 ⇥ 10−3 16.7 1.96

Table 5: DOMINO-PENTRAN Comparison for a S 8 8-group 3D

PWR keff computation.

Denovo

Denovo(9) is another deterministic neutron transport solver
based on the discrete ordinates method, for radiation shield-
ing and reactor physics applications under active development
at ORNL. It implements a multilevel parallel decomposition
on the phase space. This decomposition allows concurrency
over energy in addition to space-angle parallelism. The spatial
parallelism uses the KBA-based parallel decomposition; eigen-
value solvers implemented in Denovo are power iteration, as in
DOMINO, and an Arnoldi solver.

Extracted from ref,(9) we compare S 12 calculations per-
formed with the Denovo solver on a 2-group version of the
PWR-900 benchmark(17) with DOMINO. The Denovo com-
putation was run on the Jaguar XT5 supercomputer (18688
compute nodes, each with dual 2.6 GHz AMD 6-core Istanbul
processor). Please note that this machine differs from Ivanoe
and that the performance comparison is not very precise. In
addition, the axial meshes used in DOMINO and Denovo are
slightly different (756 vs 700). Nonetheless, we hope that this
comparison provides a correct trend on how DOMINO com-
pares to Denovo. The results are summarized in Table 6.

Denovo is able to use efficiently a large number of nodes and
thus solves the 2-group problem much faster than DOMINO.
This illustrates our need to address many-node computations
with DOMINO. As a positive point, we confirm that DOMINO
makes an efficient use of the available 32 cores. Although the
number of solved DoF per minute and per core (DoF/min/core)
of DENOVO (1.88 ⇥ 106) is lower than the one of DOMINO
(64.7 ⇥ 106), one should keep in mind that Amdahl’s law im-
poses this metric to decrease with the number of cores. Note
that this number (64.7 ⇥ 106) is significantly higher than what
we measure for the 8-group computation (16.7 ⇥ 106). Indeed
one needs more inner-group iterations when the group number



Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013)

La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

DENOVO DOMINO
PWR 2g(3) PWR 2g

Computer Jaguar Ivanoe

XY Mesh 578 ⇥ 578 578 ⇥ 578
Z Mesh 700 756
Ndir 168 168
Ngroup 2 2
keff tol 1 ⇥ 10−3 1 ⇥ 10−5

NDoF (⇥109) 78.6 84.9

Ncores 20400 32

Wall-clock
time (min) 2.05 41

DoF/min
(⇥106) 38330 2069

DoF/min/core
(⇥106) 1.88 64.7

Table 6: DOMINO-Denovo Comparison for a S 12 2-group 3D

PWR keff computation.

increases.

VI. Conclusion

The two-level (multi-core+SIMD) parallel implementation of
the sweep algorithm in DOMINO has been described. It leads
to a very efficient deterministic Cartesian transport solver that
runs on shared-memory HPC nodes. Compared to Monte-Carlo
solution (MCNP), DOMINO exhibits very accurate results both
on 8 and 26 energy groups 3D PWR Benchmark. On compa-
rable 3D nuclear core reactivity computations, DOMINO has
shown to be very fast compared to PENTRAN and not very far
from Denovo, a solver that addresses much larger HPC devices.
We believe that the very high Flops/Watt ratio of DOMINO
makes it a very promising building block for a future distributed
memory nuclear simulation tool.

ACKNOWLEDGMENTS

The authors wish to thank Stanislas Odinot from Intel Corpo-
ration for providing access to different Intel devices. We also
thank our reviewers who encouraged us to compare DOMINO
with other transport codes.

References

1) W. Kirschenmann, L. Plagne, A. Ponçot, and S. Vialle, “Parallel
SPN on Multi-Core CPUS and Many-Core GPUS,” Transport

Theory and Statistical Physics, 39, 2-4, 255-281 (2011).
2) T. Courau, L. Plagne, A. Ponçot, and G. Sjoden, “Hybrid Par-

allel Code Acceleration Methods in Full-Core Reactor Physics
Calculations,” Proc. Physor 2012 - Advances in Reactor Physics,
2010.

3) G. G. Davidson, T. M. Evans, J. J. Jarrell, and R. N. Slaybaugh,
“Massively Parallel, Three-Dimensional Transport Solutions for
the k-Eigenvalue Problem,” Proc. International Conference on

Mathematics and Computational Methods Applied to Nuclear

Science & Engineering (M&C 2011), Brazil, May, 2011.

4) F. Petrini et al., “Multicore surprises: Lessons learned from opti-
mizing Sweep3D on the Cell Broadband Engine,” Proc. Parallel

and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE

International, p. 1–10, IEEE, 2007.
5) K. R. Koch, R. S. Baker, and R. E. Alcouffe, “Solution of the first-

order form of the 3-D discrete ordinates equation on a massively
parallel processor,” Transactions of the American Nuclear Society,
65, 108, 198–199 (1992).

6) Intel TBB: a C++ template library for task parallelism, “https:
//www.threadingbuildingblocks.org,”.

7) Eigen: a C++ template library for linear algebra, “http://
eigen.tuxfamily.org/index.php?title=Main_Page,”.

8) T. Courau and G. Sjoden, “3D Neutron Transport and HPC: A
PWR Full Core Calculation Using PENTRAN SN Code and IBM
BLUEGENE/P Computers,” Progress in Nuclear Science and

Technology, 2, 628–633 (2011).
9) T. M. Evans, G. G. Davidson, and R. N. Slaybaugh, “Three-

dimensional full core power calculations for pressurized water
reactors,” Proc. Journal of Physics: Conference Series, SciDAC,
volume 68, 2010.

10) T. Courau, S. Moustafa, L. Plagne, and A. Ponçot, “DOMINO:
A Fast 3D Cartesian Discrete Ordiantes Solver for Reference
PWR Simulations and SPN Validations,” Proc. International

Conference on Mathematics and Computational Methods Applied

to Nuclear Science& Engineering (M&C 2013), USA, May, 2013.
11) L. Plagne and A. Ponçot, “Generic Programming for Determinis-

tic Neutron Transport Codes,” Proc. Mathematics& Computation,

Supercomputing, Reactor Physics and Nuclear and Biological Ap-

plications, Palais des Papes, Avignon, France, September, 2005.
12) E. Larsen, “Unconditionally stable diffusion synthetic accelera-

tion methods for the slab geometry discrete ordinates equations,”
Nuclear Science and Engineering (1982).

13) N. Martin and A. Hébert, “A three-dimensional high-order dia-
mond differencing discretization with a consistent acceleration
scheme,” Annals of Nuclear Energy, 36, 11-12, 1787 - 1796
(2009).

14) A. Vladimirov, “Arithmetics on Intel’s Sandy Bridge and West-
mere CPUs: not all FLOPS are created equal,” Colfax Interna-

tional (2012).
15) A. Robison, M. Voss, and A. Kukanov, “Optimization via reflec-

tion on work stealing in TBB,” Proc. Parallel and Distributed

Processing, 2008. IPDPS 2008. IEEE International Symposium

on, p. 1–8, IEEE, 2008.
16) G. Marleau, A. Hébert and R. Roy, “A User’s Guide for

DRAGON 3.05,” IGE-174 Rev.6, Institut de Génie Nucléaire,
École Polytechnique de Montréal (2006).

17) T. Courau, “Specifications of a 3D PWR Core Benchmark for
Neutron Transport,” Technical Note CR-128/2009/014 EDF-SA
(2009).

https://www.threadingbuildingblocks.org
https://www.threadingbuildingblocks.org
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page

	INTRODUCTION
	THE DOMINO COCAGNE SN SOLVER
	DOMINO Numerical Schemes
	The Sweep Algorithm
	The Critical Arithmetic Intensity Issue

	TWO LEVELS OF PARALLELISM INSIDE THE DOMINO SOLVER
	The Multicore Parallelism
	SIMD Parallelism

	Sweep Scalability and Efficiency
	3D PWR Full Core Performance
	DOMINO Compared With Pentran And Denovo

	Conclusion

