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Abstract— In this paper, we address a special case of
state and parameter estimation, where the system can
be put on a cascade form allowing to estimate the state
components and the set of unknown parameters separately.
Inspired by the nonlinear Balloon hemodynamic model for
functional Magnetic Resonance Imaging problem, we propose
a hierarchical approach. The system is divided into two
subsystems in cascade. The state and input are first estimated
from a noisy measured signal using an adaptive observer. The
obtained input is then used to estimate the parameters of a
linear system using the modulating functions method. Some
numerical results are presented to illustrate the efficiency of
the proposed method.
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I. INTRODUCTION

Joint state and parameter estimation is crucial for the study

of physical systems. It is generally oriented either to the

identification or to the design of control laws for the studied

systems. This problem has been the field of intensive research

especially for nonlinear systems, and the proposed methods

are generally built using recursive algorithms. An intuitive

approach consists in including the parameters in the state

vector and estimating the augmented system using observer-

based approaches. The most widespread approach falling in

this category is the Extended Kalman Filter (EKF), which

is considered as first order approximations of nonlinear

systems. Nonetheless, it may result in biased estimations or

divergence [16]. Some systems structures, however, allow to

benefit from advanced techniques in both areas of nonlinear

state estimation and parameter estimation. The scope of

this work is restricted to state and parameter estimation

problems for systems that have directly or can be derived

into such structures. Among the techniques commonly used

for nonlinear state estimation, some are based on change of

state variables and output injection. They try to handle the

nonlinearities via state feedback by expressing them as a

function of inputs and outputs, mainly using Lie differentia-

tion [12]. The output injection uses robust observers, such as

high gain and/or sliding mode observers. These techniques

are generally sought to estimate hidden state and inputs [21].

The effectiveness of these methods is subject to the existence
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of such a transformation and its computational ease, which is

not the case for a wide class of physical systems, especially

in neuroscience. Moreover, they may require satisfying some

rank conditions that can hardly be satisfied especially for the

class of single output systems. Recently, other techniques,

such as Linear Matrix Inequalities (LMI) [9], have been

suggested for some specific cases. But, their convergence

relies upon heavy assumptions.

As for parameter identification, two main approaches have

been considered: direct approaches and indirect approaches

[22]. For direct identification approaches, there are two main

issues: the first one is concerned with the estimation of the

derivatives of the input-output signals, and the second one

is due to the measurement noise [8]. Modulating functions

method is one of the major direct identification approaches

for continuous-time systems. This method was proposed by

Shinbrot in 1957 [24]. The idea was inspired by Laplace

and Fourier transforms. Generally, the use of modulating

functions allows to transform the differential equation of

analyzed noisy signals, into a sequence of algebraic integral

equations. Then, parameters can be estimated by solving

a linear system. Unlike the classical parameter estimation

techniques such as the least square and the gradient methods,

the modulating function technique presents the advantage of

avoiding the computation of noisy output signals derivatives.

Moreover, this method takes advantage from the low-pass

filtering property of integrals [5], [15]. It has been success-

fully used for parameter identification for nonlinear systems,

time-varying systems, fractional order systems and noisy

sinusoidal signals [19], [14], [15].

In this work, we take advantage of both nonlinear state

and input estimation techniques and parameter identification

methods to estimate some key variables that allow the

understanding of a brain region behavior using functional

Magnetic Resonance Imaging (fMRI).

fMRI experiments consist in scanning the brain while

performing a specific task. The collected data, called Blood

Oxygenation Level Dependent (BOLD), is an indirect mea-

surement of the brain activity, and allows the mapping

between the neural activity and the active brain region.

Among the hemodynamic models used to relate the changes

in the blood flow, volume and oxygenation level to the

neural activity in a localized area of the brain, the Balloon

model has been first proposed by Buxton et. al. [3]. Other

variants of the Balloon model have been developed, such

as Friston’s variant [6] which is used in this paper. The

main feature of the Balloon model is that it describes

the BOLD signal as a nonlinear combination of the blood



volume and deoxyhemoglobin content, which are expressed

as nonlinear functions of the neural activity. Despite the

efforts that have been made to construct reliable models

describing all the phenomena involved in the chain from

the neural activity to the BOLD response, there is still a

great challenge in the joint estimation of the parameters

and the non measured states. The first important attempt to

characterize the hemodynamic response has been proposed

by Friston et. al. using Volterra Kernel expansion [6]. Riera

et. al. [23] proposed to use a local linearization filter to

identify the parameters of Friston’s model [6] taking into

account the noise. The local linearization can be seen as

a form of extended Kalman filter. However, this estimation

had to be contained in a specific vector space, otherwise

the problem was underdetermined and the estimation of the

input has been performed with a restrictive parametrization.

Deneux et. al. [4] used a Maximum Likelihood approach to

estimate the parameters of different versions of the balloon

model. They also studied the identifiability of the parameters.

In [7], a variational Bayesian technique, called Dynamic

Expectation Maximization, has been proposed to perform a

complete deconvolution of fMRI data enabling the estimation

of the parameters, the sates and the input. Havlicek et. al.

[10] proposed a nonlinear Kalman filtering based on an

efficient square-root cubature Kalman filter for the inversion

of nonlinear stochastic dynamic causal models. However, this

approach leaves some limitations.

This paper is organized as follows. In Section II, we

present a wide class of cascade systems, under which falls the

Balloon model. Section III is dedicated to the application of

the adaptive observers and the modulating functions method

to the hemodynamic Balloon model. In Section IV, we show

some numerical results to illustrate the performance of the

proposed method.

II. PROBLEM STATEMENT

In this section, we present the proposed approach to

estimate both the state components and some parameters for

a special class of cascade systems.

The estimation of state and parameters for nonlinear

systems has been addressed in the general framework of

adaptive observers for nonlinear systems. To the best of our

knowledge, the problem has been widely studied for the class

of state affine systems of the form:
{

ẋ = φ(x, u, t) + ψ(x, u, t)θ
y = h(x)

(1)

where x denotes the hidden state, u is the known input, θ is a

set of unknown parameters, φ and ψ are nonlinear functions.

For systems of form (1), adaptive observers, initially pro-

posed by [1] in the nonlinear case, are commonly applied

to estimate the unknowns. Basically, it can be viewed as an

observer where the parameters in θ are constant, a dynamic

equation for θ:
˙̂
θ = F (x̂, y, u, t) is added such that, under

some persistently exciting condition of u, θ̂ converges to θ.

For this purpose, an unified approach consists in transform-

ing the system into some canonical form, also called adaptive

observer form [18], [17]. After the change of coordinates, the

system (1) can be written as follows:

{

ζ̇ = Aζ + α(y, u) +Bβ(y, u, t)θ
y = Cζ

(2)

where now (A,C) is in the Brunovsky canonical form, and B
is a vector of appropriate size. Note that there exists another

adaptive observer form similar to (2), for a generalized

transformation. Readers can refer to [2].

In this paper, we focus on a class of cascade systems,

where we cannot use the standard adaptive observer tech-

nique, either because the geometric transformation of the

system is complex or because the parameters cannot be

written on the affine form. We propose to derive a version

of the adaptive observer-based approach, coupled with a

linear parameter estimation method, for a class of nonlinear

systems where the state vector x in (1) can be partitioned

into two components x1 and x2, such that (1) can be written

in a cascade form:







ẋ1 = φ(x1, u, t) + ψ(x1, u, t)θ
ẋ2 = γ(x2, u, t) + λ(u, t)w
y = h(x2)

(3)

where w = Cx1 is typically a linear partial measurement of

x1. The unknowns are w, θ, x1 and x2 as shown in Figure 1.
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Fig. 1. Studied cascade system

For systems illustrated in Figure 1 and which can be put

on the form (3), the main idea is to consider the underlying

sub-systems separately in a hierarchical way. In other words,

if the second subsystem is the observed one:

{

ẋ2 = γ(x2, u, t) + λ(u, t)w
y = h(x2)

(4)

then we can apply an adaptive observer for state affine sys-

tems method to estimate both the state x2 and the unknown

input w. In a second step, we consider the first subsystem:

{

ẋ1 = φ(x1, u, t) + ψ(x1, u, t)θ
w = Cx1

for which we propose to apply the modulating functions

method to estimate the parameters in the linear case. Note

that, due to the application that we will present in the next

section, we focus only on the parameters estimation, but the

method can be used in the general case of state and parameter

estimation.



III. APPLICATION TO THE BALLOON MODEL

The nonlinear Balloon model can be represented in a state-

space form:


















ḟ = s
ṡ = −κf (f − 1)− κss+ ǫu(t)

v̇ = 1
τ
(f − v

1

α )

q̇ = 1
τ
(f 1−(1−E0)

1

f

E0

− v
1

α
−1q)

y = V0(k1(1− q) + k2(1−
q

v
) + k3(1− v))

where the state vector x is a set of non measurable variables

which are:

• the blood inflow f ,

• the flow-inducing signal s,
• the blood venous volume v,

• the veins deoxyhemoglobin content q,

u is the input of the model which represents the stimulus

function, and y is the output given by the BOLD signal.

The parameters of the model can be split into an unknown

part which includes the neural efficiency ǫ, the flow decay κs,

the flow time constant κf , and a known set, mostly invariant

from subject to subject and from region to region of the

brain. This set comprises the venous transit time τ , Grub’s

parameter α, the oxygen extraction at rest E0 and the blood

volume fraction at rest V0.

To apply the estimation method presented above, we take:

x1 = [f, s]T , x2 = [v, q]T , θ = [κs, κf , ǫ]
T and C = [1, 0].

A. Adaptive observer for unknown input and state estimation

In this section, we focus on the estimation of state and

input for the system:

ẋ = G(x, f) =

{

1
τ
(f − v

1

α )

1
τ
(f 1−(1−E0)

1

f

E0

− v
1

α
−1q)

(5)

y = H(x) = V0(k1(1− q) + k2(1−
q

v
) + k3(1− v)) (6)

where x = [v, q]T .

For this special case, the variables are normalized to the

rest state and variations are small around the equilibrium

corresponding to absence of neural activity (u ≡ 0).

We apply an adaptive observer to the linearized system

around the rest state corresponding to x0 = [1, 1]T and f0 =
1, and show the asymptotic convergence of the estimated

state to the real one, taking into account the physics of the

system (range of variation of the main variables).

1) The observer structure: Let z = x − x0, w = f − f0
and ζ = y−Cx0 be respectively the state, the input and the

measurement of system (5) around the equilibrium point. It

can now be written in the form:

{

ż = Az +Bw + ξ(z)
ζ = Cz

(7)

where

A =
∂G(x, f)

∂x









x0

=
1

τ

(

−1/α 0
1− 1/α −1

)

,

B =
∂G(x, f)

∂f









f0

=
1

τ

[

1 1 + 1−E0

E0

ln(1− E0)
]T

,

C =
∂H(x)

∂x









x0

= V0
[

(−k3 + k2) (−k1 − k2)
]

.

and ξ(z) is the modeling error. It is worth-noting that since

the state vector is bounded by definition the non linear term

can be bounded by:

||ξ(z)|| ≤ δ. (8)

The state and input estimation is addressed using the

adaptive observer proposed in [25]. Such observers have

been developed in the linear case. In our case, we apply

the observer to system (7). Thus, we get:



















.

ẑ= Aẑ +Bŵ + (L+ hK)(ζ − ζ̂)
.

ŵ= K(ζ − ζ̂)
.

h= (A− LC)h+B

ζ̂ = Cẑ

(9)

with K = µhTCT , µ > 0 and L chosen such that A− LC
is a Hurwitz matrix.

2) The convergence analysis:

Proposition 1. Consider the hemodynamic model described

by equations (5) and (6) and its linearized version given by

equation (7) with the assumption (8). Let us consider the

adaptive observer in (9) such that the following conditions

satisfy:

(C1) : A− LC is a Hurwitz matrix,

(C2) : there exist two positive matrices P and Q satisfying

the following equation:

(A− LC)TP + P (A− LC) = −Q, (10)

(C3) : the lowest eigenvalue of Q and the highest eigen-

value of P , denoted respectively by λmin(Q) and

λmax(P ), satisfy the following relation:

λmin(Q)

λmax(P )
>

2δ

M
. (11)

where M is a given large number.

Then, the observation errors z − ẑ and w − ŵ converge

asymptotically to zero.

Proof: Let us denote the estimation errors of the state

and the input respectively by ez := z− ẑ and ew := w− ŵ.

Then, using (7) and (9) we get:

ėz = (A− LC)ez + ξ(z) +Bew − h ˙̂w. (12)

ėw = −KCez. (13)

Let us denote ē the modified error as follows:

ē = ez − hew. (14)

Then, using (12) we get:

˙̄e =(A− LC)(ē+ hew) + ξ(z) +Bew

− h ˙̂w − hėw − ḣew.
(15)



Assume that, the neural activity estimate dynamics is faster

than the real neural activity dynamics, i.e. we assume:

ėw ≃ − ˙̂w. (16)

Therefore, using (16) in (15) it yields:

˙̄e ≃ (A− LC)ē+ ξ(z) + ((A− LC)h+B)ew − ḣew.

By using the relation ḣ = (A− LC)h+B given in (9), we

obtain:

˙̄e ≃ (A− LC)ē+ ξ(z). (17)

Let us take the following Lyapunov function:

V = ēTP ē.

Then, the first order derivative with time of V is given by:

V̇ = ˙̄eTP ē+ ēTP ˙̄e.

Hence, using (17), one has:

V̇ =ēT [(A− LC)TP + P (A− LC)]ē

+ ξT (z)P ē+ ēTPξ(z).

If the conditions (C1) and (C2) are satisfied, then we have:

V̇ = −ēTQē+ ξT (z)P ē+ ēTPξ(z).

According to (8), the nonlinear term ξ is bounded. Moreover,

since P and Q are positive matrices, one can deduce the

following inequality:

V̇ ≤ [−λmin(Q)||ē||+ 2δλmax(P )]||ē||.

For ||ē|| ≤ M and the condition (C3) satisfied, we can

conclude that V̇ is negative definite. Consequently, V̇ is

asymptotically stable, i.e. we have:

ē −→ 0.

Using (13) and (14), we get:

ėw = −KC(ē+ hew).

Note that the dynamic of ē is independent of w, and ē is

bounded and tends to zero when t→ ∞. Further, if we take

K = µhTCT with µ > 0, then the following autonomous

system

ė = −KChe

is exponentially stable. Consequently, by using the same

arguments as done in [25], [13] we can deduce that:

ew −→ 0 when t −→ ∞.

B. Application of modulating functions method

1) Modulating functions method: Let l ∈ N
∗, T ∈ R

∗

+,

and g be a function satisfying the following properties:

(P1) : g ∈ Cl([0, T ]);
(P2) : g

(j)(0) = g(j)(T ) = 0, ∀ j = 0, 1, . . . , l − 1,

then g is called lth order modulating function on [0,T] [19].

By using modulating functions, one can estimate directly

parameters of the following differential equation:

y(t) +

n
∑

i=1

aiy
(i)(t) =

m
∑

i=0

biu
(i)(t), n ≥ m, (18)

where y is the output, u is the input, and ai, bi are the

unknown parameters. The main idea of the modulating

functions method is as follows: let g be lth order modulating

function on [0,T] with l = max(n,m), then we multiply both

sides of (18) by g, and integrate from 0 to T . By applying

integration by parts and using the properties (P1) and (P2),
we can obtain the following algebraic integral equation:

n
∑

i=0

(−1)iai

∫ T

0

g(i)(τ)y(τ)dτ =

m
∑

i=0

(−1)ibi

∫ T

0

g(i)(τ)u(τ)dτ,

(19)

where a0 = 1. In order to calculate all parameters ai, bi,
we need to generate at least n+m+1 linearly independent

algebraic integral equations similar to (19). The proposed

approach gives explicit formulae for the parameters, which

gains good robustness against corrupting noises from the

integrals [5], [15]. Moreover, we do not need to estimate

the derivatives of input-output signals.

2) Parameters estimation: Let us consider the following

linear system:






ḟ = s
ṡ = −κf (f − 1)− κss+ ǫu

f̂ = f +̟

(20)

where f̂ is an estimation of f , and ̟ is the corresponding

estimation error. In the following proposition, we are going

to estimate the parameter vector θ = [κf , κs, ǫ]
T using the

modulating functions method, the input u and f̂ .

Proposition 2. Let gi, for i = 1, · · · ,M , be a set of second

order modulating functions on [0, Ti], where 0 < Ti < · · · <
TM . Then, the parameter vector θ = [κf , κs, ǫ]

T can be

estimated by solving the following linear system:

D̂ θ̂ = b̂,

where, for i = 1, · · · ,M , D̂(i, 1) = −
∫ Ti

0
gi(t)f̂(t)dt,

D̂(i, 2) =
∫ Ti

0
ġi(t)f̂(t)dt, D̂(i, 3) =

∫ Ti

0
gi(t)u(t)dt, and

b̂(i) =
∫ Ti

0
g̈i(t)f̂(t)dt.

Proof: According to (20), we can obtain the following

differential equation:

f̈(t) = −κf (f(t)− 1)− κsḟ(t) + ǫ u(t). (21)



By multiplying both sides of (21) by gi, and by integrating

from 0 to Ti, we get:
∫ Ti

0

gi(t)f̈(t)dt = −κf

∫ Ti

0

gi(t)(f(t)− 1)dt

− κs

∫ Ti

0

gi(t)ḟ(t)dt+ ǫ

∫ Ti

0

gi(t)u(t)dt.

Then, by applying integration by parts and using the prop-

erties (P1)− (P2), we obtain:

∫ Ti

0

g̈i(t)f(t)dt = −κf

∫ Ti

0

gi(t)f(t)dt

+ κs

∫ Ti

0

ġi(t)f(t)dt+ ǫ

∫ Ti

0

gi(t)u(t)dt.

Hence, we obtain the following linear system:

D θ = b, (22)

where, for i = 1, · · · ,M , D(i, 1) = −
∫ Ti

0
gi(t)f(t)dt,

D(i, 2) =
∫ Ti

0
ġi(t)f(t)dt, D(i, 3) =

∫ Ti

0
gi(t)u(t)dt, and

b(i) =
∫ Ti

0
g̈i(t)f(t)dt. Consequently, the parameter θ can

be estimated by solving (22) and using f̂ .

IV. NUMERICAL RESULTS

To illustrate the method presented above, a set of syn-

thetic data was generated using the Balloon model, with

the parameters values summarized in Table I. The adaptive

observer, described in the previous section, is then applied

to the continuous system using a forth order Runge Kutta

scheme for integration. The time step for integration is

Te = 0.1s, and a white gaussian noise, corresponding

to a Signal to Noise Ratio (SNR) of 30 is added to the

simulated BOLD signal as shown in Figure 2. The estimation

of blood flow is illustrated in Figure 3, blood volume and

deoxyhemoglobin content are shown in Figure 4. In order

to estimate the parameter θ = [κf , κs, ǫ]
T using Proposition

2, we use a sliding integration window of finite length in

our identification procedure with the following modulating

functions: for i = 1, · · · , 6,

gi(t) = (Ti − t)3t3,

where Ti = 5+2i. Consequently, the length of the sliding in-

tegration window is equal to T6 = 17, and our identification

procedure begins at 17s. Moreover, we apply the numerical

trapezoidal integration method to approximate each integra-

tion window. Let us remark that, due to the filtering property

of the observer, the estimation may present a time delay, as

shown in Figure 3. Nevertheless, in practical situations, the

value of the delay can easily be estimated. Indeed, the linear

subsystem presents no modeling delays, allowing to provide

an estimate of the observer delay as the difference between

the triggering times of u and f̂ . Therefore, to avoid errors

in the parameters’ estimation, we shift the input u backward

with a value equal to the time-delay. In this example, we

take 8Te as the value of the time-delay. The study of the

value of the time-delay is out of the scope of this paper.

Finally, we obtain the estimated parameters in Figure 5,

and the corresponding relative estimation errors in Figure 6.

Let us mention that since the modulating functions method

uses a sliding integration window of finite length, it is a

non-asymptotic method. The convergence of the estimations

depends on the time step Te. Hence, we can improve the

estimation errors in Figure 6 by reducing Te (see [5], [15]

for more details).

Parameters Values

ǫ 0.38

κs 1.25

κf 2.5

τ 1

α 0.2

E0 0.8

TABLE I

PARAMETERS OF THE BALLOON MODEL
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Fig. 2. True noisy (blue) and estimated (red) BOLD signals
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V. CONCLUSIONS

The joint estimation of states and parameters for a nonlin-

ear hemodynamic model has been addressed in this work.

The studied model cannot be presented as a state affine

system, but falls in a class of cascade systems where it is

possible to couple an adaptive observer with a parameter
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Fig. 4. Blood volume v (blue) and deoxyhemoglobin content q (green).
The reference unknown signals are plotted in continuous lines while the
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identification technique. The adaptive observer has shown

robustness against bounded model nonlinearities. Parameter

estimation was performed using the algebraic modulating

function technique, which provides accurate estimates avoid-

ing the computation of noisy signals derivatives. The pro-

posed method has been validated on a set of synthetic data

and has shown satisfying results. Future work will address

the validation of the approach on real data sets and emphasize

the joint estimation of states, parameters and the input (the

neural activation) of the Balloon model.
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