
HAL Id: hal-00987985
https://inria.hal.science/hal-00987985

Submitted on 7 May 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enforcement and Validation (at runtime) of Various
Notions of Opacity

Yliès Falcone, Hervé Marchand

To cite this version:
Yliès Falcone, Hervé Marchand. Enforcement and Validation (at runtime) of Various Notions of
Opacity. Discrete Event Dynamic Systems, 2015, 25 (4), pp.531-570. �10.1007/s10626-014-0196-4�.
�hal-00987985�

https://inria.hal.science/hal-00987985
https://hal.archives-ouvertes.fr

Discrete Event Dynamic Systems manuscript No.
(will be inserted by the editor)

Enforcement and Validation (at runtime) of Various
Notions of Opacity

Yliès Falcone · Hervé Marchand

Received: date / Accepted: date

Abstract We are interested in the validation of opacity. Opacity models the
impossibility for an attacker to retrieve the value of a secret in a system of
interest. Roughly speaking, ensuring opacity provides confidentiality of a secret
on the system that must not leak to an attacker. More specifically, we study
how we can model-check, verify and enforce at system runtime, several levels
of opacity. Besides existing notions of opacity, we also introduce K-step strong
opacity, a more practical notion of opacity that provides a stronger level of
confidentiality.

Keywords opacity · K-step opacity · runtime verification · runtime
enforcement

1 Introduction

Security is a major concern in nowadays information systems. While infras-
tructures are becoming more complex, it becomes harder to ensure desired
security properties. Usually three dimensions in security are distinguished:
confidentiality, integrity, availability. Confidentiality is concerned with ensur-
ing that the information in a system is accessible only to appropriate users.

Y. Falcone
UJF-Grenoble 1, Grenoble, France
Laboratoire d’Informatique de Grenoble (LIG), UMR 5217, F-38041, Grenoble, France
Tel.: +33 4 76 82 72 14
Fax: +33 4 76 51 49 85
E-mail: Ylies.Falcone@ujf-grenoble.fr

H. Marchand
Inria, Rennes - Bretagne Atlantique, Rennes, France
Tel.: +33 2 99 84 75 09
Fax: +33 2 99 84 71 71
E-mail: Herve.Marchand@inria.fr

2 Yliès Falcone, Hervé Marchand

Integrity aims to avoid alteration of data (e.g., during their treatment, trans-
mission,. . .). Availability aims to maintain system resources operational when
they are needed. Among existing security notions, opacity (see e.g., Badouel
et al (2007); Bryans et al (2008)) is a generic and general notion used to express
several existing confidentiality concerns such as trace-based non-interference
and anonymity (see Bryans et al (2008)) and even secrecy (see Alur and
Zdancewic (2006)). Opacity aims at preserving unwanted retrievals of a system
secret (e.g., values of confidential variables) by untrusted users while observing
the system. Roughly speaking, when examining the opacity of a secret on a
given system, we check whether there are some executions of the system which
can lead an external attacker to know the secret; in that case the secret is said
to be leaking. While usual opacity is concerned by the current disclosure of a
secret, K-opacity, introduced in Saboori and Hadjicostis (2007), additionally
models secret retrieval in the past (e.g., K execution steps before).

Ensuring opacity and some of its variant on a system is usually performed
using supervisory control (see Cassandras and Lafortune (2006) for an intro-
duction), as for example in Dubreil et al (2010), Takai and Oka (2008), Takai
and Kumar (2009) and Saboori and Hadjicostis (2012). In an abstract way,
supervisory control consists in using a so-called controller to disable undesired
behaviors of the system, e.g., those leading to reveal the secret. The tech-
nique of dynamic observability was proposed in Cassez et al (2009) to ensure
the opacity of secrets. This technique consists in dynamically restraining, at
each execution step of the system, the set of observable events to ensure opac-
ity. Finally, Wu and Lafortune (2012) enforces opacity by statically inserting
additional events in the output behavior of the system while preserving its
observable behavior.

Motivations - the limitations of existing validation methods for opacity. Whilst
there exist established techniques to ensure opacity, these techniques suffer
from practical limitations preventing their applicability in some situations.
First, supervisory control is an intrusive technique. Indeed, the internal be-
havior of the underlying system has to be modifiable before implementing a
supervisory control approach. Second, to ensure opacity, supervisory control
entails to disable some internal behaviors of the underlying system. As a conse-
quence, opacity preservation comes often at the price of not achieving intended
service fulfillment. Moreover, when a controller disables an action in the sys-
tem, it also disables all its subsequent behaviors. That is to say, supervisory
control does not take into account the situations where opacity leakage might
be temporary: every opacity leakage is definitive. Third, ensuring opacity via
dynamic observability comes at the price of destroying observable behavior of
the system.

Those limitations motivate for investigating the use of other validation
techniques, not suffering from the aforementioned limitations, in order to en-
sure opacity.

Enforcement and Validation (at runtime) of Various Notions of Opacity 3

Runtime validation techniques. In this paper we are interested in runtime
validation techniques, namely runtime verification and runtime enforcement,
so as to validate several levels of opacity on a system. Runtime verification
(see Pnueli and Zaks (2006); Havelund and Goldberg (2008); Falcone et al
(2009b)) consists in checking during the execution of a system whether a de-
sired property holds or not. Generally, one uses a special decision procedure,
a monitor, grabbing relevant information in the run of an executing system
and acting as an oracle to decide property validation or violation. Runtime en-
forcement (see Schneider (2000); Hamlen et al (2006); Falcone et al (2009a)) is
an extension of runtime verification aiming to circumvent property violations.
Within this technique the monitor not only observes the current program ex-
ecution, but also modifies it. It uses an internal memorization mechanism in
order to ensure that the expected property is fulfilled: it still reads an input
sequence but now produces a new sequence of events so that the property is
enforced.

Paper organization. The remainder of this paper is organized as follows. Sec-
tion 2 presents at an abstract level the three analysis that we propose to
validate opacity. In Section 3, we introduce some preliminaries and notations.
Then, Section 4 presents the various notions of opacity we consider. In Sec-
tion 5 and Section 6, we verify and enforce opacity at runtime, respectively.
Section 7 is dedicated to the description of related work. Finally, Section 8 gives
some concluding remarks and opened perspectives. To facilitate the reading of
this article, some technical proofs are given in Appendix A.

This article extends an article that appeared in the 52nd Conference on
Decision and Control (see Falcone and Marchand (2013)). More specifically,
this article brings the following additional contributions:

– to introduce the notion of K-step strong opacity that provides a stronger
level of confidentiality;

– to introduce the notion of K-delay trajectory estimator that extends the
notion of K-delay state estimator introduced in Saboori and Hadjicostis
(2007) for the verification of what we will refer to as K-step weak opacity;

– to propose runtime verification and enforcement for the verification of K-
step strong opacity (in addition to the usual notion of opacity of Badouel
et al (2007) and K-step weak opacity of Saboori and Hadjicostis (2007));

– to prove the correctness of the runtime verification and enforcement mon-
itors that we synthesize;

– to propose a more complete presentation of the concepts that appeared in
the conference version.

2 The proposed approach

Context. The considered problem can be depicted in Fig. 1a. A system G
produces sequences of events belonging to an alphabet Σ. Among the possible
executions of the system, some of these are said to be secret. Some events of

4 Yliès Falcone, Hervé Marchand

observable

events

Attacker
in

te
rf

a
c
e

o
n

S opaque?Σo

GΣ(S)

(a) System vs Opacity

events

obs.

Runtime

reaction

o
n

in
te

rf
a
c
e

verdicts

Admin

Attacker

Verifier
Σo

GΣ(S)

(b) Opacity Verification

obs.
eventso

n
in

te
rf

ac
e

Enforcer
Runtime

Attacker

opaque
sequence

Σo

GΣ(S)

(c) Opacity Enforcement

Fig. 1 Several ways to validate the opacity of a secret on a system

the system, in a sub-alphabet Σo ⊆ Σ, are observable by an external attacker
through the system interface. We assume that the attacker does not interfere
with the system (i.e., he performs only observations through the interface) and
has a perfect knowledge of the structure (even internal) of the system. We are
interested in the opacity of the secret executions on the considered system.
That is, from a sequence of observable events, the attacker should not be able
to deduce whether the current execution of the system (corresponding to this
observation) is secret or not. In this case, the secret S is said to be opaque1

w.r.t. the considered system and its interface.

Three techniques to validate opacity. We sketch the techniques that we pro-
pose to analyze and validate the opacity of a system. When model-checking
(Fig. 1a) the opacity of a secret on the considered system, we take its specifica-
tion to perform an analysis that provides the executions leading to a security
leakage when they are observed through the interface of the system. This in-
dicates existing flaws to the system designer so as to correct them. When
verifying opacity at runtime (Fig. 1b), we introduce a runtime verifier which
observes the same sequence of observable events as the attacker. The runtime
verifier is a special kind of monitor that is in charge of producing verdicts re-
lated to the preservation or violation of the considered notion of opacity. With
such a mechanism, the system administrator may react and (manually) take
appropriate measures. When enforcing opacity at runtime (Fig. 1c), we intro-
duce a runtime enforcer between the system and the attacker. The sequence of
observable events from the system is directly fed to the enforcer. The new sys-
tem now consists in the initial system augmented with the runtime enforcer.
The attacker now observes the outputs produced by the runtime enforcer. The
runtime enforcer modifies its input sequence and produces a new one in such a
way that, on the output execution sequence seen by the attacker, the desired
notion of opacity is preserved w.r.t. the actual execution on the initial system.
Thus, the runtime enforcement approach proposed in this article automatically
prevents opacity violation.

Originality. Opacity cannot be expressed as a property that can be decided
on a single execution of the system in isolation. It obviously depends on the

1 Several notions of opacity will be considered in this paper. Here we present only the
simplest one informally.

Enforcement and Validation (at runtime) of Various Notions of Opacity 5

current execution but also on the alternative, observationally equivalent, be-
haviors of the system. Runtime techniques (see Havelund and Goldberg (2008)
for an overview) are thus not directly applicable in order to validate the opacity
of systems. Then, one originality of this paper is to consider opacity preser-
vation by the observable sequences of the system. It will allow us to apply
runtime techniques operating on the observable behavior of a system. More-
over, to the best of our knowledge, the only runtime technique dedicated to
opacity was the one proposed in Dubreil et al (2009). The authors proposed a
runtime verification framework for the simplest variant of opacity proposed in
this paper. Thus, this paper addresses the runtime verification for more evolved
notions of opacity. Moreover, no runtime enforcement approach was proposed
to validate any notion of opacity. Note also that, in some sense, compared to
traditional runtime verification and enforcement approaches, this paper also
studies how more evolved kinds of properties, such as opacity, can be validated
using standard runtime-based techniques.

Advantages. Compared to previously depicted validation methods for opacity,
the runtime validation techniques proposed in this article have several advan-
tages. First, these techniques are not intrusive. Indeed, a runtime verification
or runtime enforcement framework does not suppose being able to modify
the internal behavior of the monitored system. It might be particularly use-
ful when dealing with legacy code, leading model-checking to become obsolete
since the internal system behavior cannot be modified. Moreover, the proposed
runtime-based approaches do not distort the internal nor the observable be-
havior of the system. Furthermore, checking the opacity at runtime opens the
way to react to misbehaviors; as it is shown with runtime enforcement in this
paper. Ensuring opacity with runtime enforcement also has the advantage to
modify only the observable behavior of the system in a minimal way : runtime
enforcers, as defined in this article, delay the initial execution sequence at a
minimum. This affords better confidence to the system provider.

3 Preliminaries and notation

Unless otherwise specified, considered functions are total. N denotes the set
of non-negative integers. B denotes the set of Boolean values (true, false).
Considering a finite set of elements E, a sequence s over E is formally defined
by a total function s : I → E where I is the integer interval [0, n] for some
n ∈ N. A language over E is a set of sequences over E. We denote by E∗ the
universal language over E (i.e., the set of all finite sequences over E), by E+ the
set of non-empty finite sequences over E. Furthermore, for n ∈ N \ {0, 1}, the

generalized Cartesian product of E is En def

= E×E×· · ·×E, i.e., the Cartesian
product of E of dimension n. The empty sequence of E∗ is denoted by ǫE or
ǫ when clear from the context. The length of a finite sequence s ∈ E∗ is noted
|s|. For a sequence s ∈ E+ and i < |s|, the (i+1)-th element of s is denoted by
si, and the subsequence containing the i+1 first elements of s is denoted s···i.

6 Yliès Falcone, Hervé Marchand

For s, s′ ∈ E∗, we denote by s · s′ the concatenation of s and s′, and by s � s′

the fact that s is a prefix of s′. The sequence s ∈ E∗ is said to be a prefix of
s′ ∈ E∗ when ∀i ∈ [0, |s| − 1] : si = s′

i
and |s| ≤ |s′|. The prefix-closure of a

language L wrt. E∗ is defined as Pref(L)
def

= {s ∈ E∗ | ∃s′ ∈ E∗ : s · s′ ∈ L}.

Given s′ � s, |s− s′|
def

= |s| − |s′|.
We assume that the behaviors of systems are modeled by Labelled Transi-

tions Systems (LTS for short) which actions belong to a finite set Σ. Sequences
of actions are named execution sequences. The formal definition of an LTS is
as follows:

Definition 1 (LTS) A deterministic LTS is a 4-tuple G = (QG , qG
init

, Σ, δG)
where QG is a finite set of states, qG

init
∈ QG is the initial state, Σ is the

alphabet of actions, and δG : QG ×Σ → QG is the partial transition function.

We consider a given LTS G = (QG , qG
init

, Σ, δG). For q ∈ QG , the new LTS G(q)

is the LTS G initialised in q, i.e., G(q)
def

= (QG , q, Σ, δG). We write q
a
→G q′ for

δG(q, a) = q′ and q
a
→G for ∃q′ ∈ QG : q

a
→G q′. We extend →G to arbitrary

execution sequences by setting: q
ǫ
→G q for every state q, and q

sσ
→G q′ whenever

q
s
→G q′′ and q′′

σ
→G q′, for some q′′ ∈ QG . Given Σ′ ⊆ Σ, G is said to be

Σ′-complete whenever ∀q ∈ QG , ∀a ∈ Σ′ : q
a
→G . It is complete if it is Σ-

complete. We set for any language L ⊆ Σ∗ and any set of states X ⊆ QG ,

∆G(X,L)
def

= {q ∈ QG | ∃s ∈ L, ∃q′ ∈ X : q′
s
→G q}. L(G)

def

= {s ∈ Σ∗ |

qG
init

s
→G} denotes the set of execution sequences of the system G. Given a set

of marked states FG ⊆ QG , the marked (generated) language of G is defined as

LFG
(G)

def

= {s ∈ Σ∗ | ∃q ∈ FG : qG
init

s
→G q}, i.e., the set of execution sequences

that end in FG . Previous notations apply to deterministic finite-state machines
(FSM) which are LTSs with an output function.

Observable Behavior. The observation interface between a user and the system
is specified by a sub-alphabet of events Σo ⊆ Σ. The user observation through
an interface is then defined by a projection, denoted by PΣo

, from Σ∗ to Σ∗
o

that erases in an execution sequence of Σ∗ all events not in Σo. Formally,

PΣo
(ǫΣ)

def

= ǫΣ and PΣo
(s · σ)

def

= PΣo
(s) · σ if σ ∈ Σo and PΣo

(s) otherwise.

This definition extends to any language L ⊆ Σ∗: PΣo
(L)

def

= {µ ∈ Σ∗
o | ∃s ∈

L : µ = PΣo
(s)}. In particular, given an LTS G over Σ and a set of observable

actions Σo ⊆ Σ, the set of observed traces of G is TΣo
(G)

def

= PΣo
(L(G)).

Given two execution sequences s, s′ ∈ Σ∗, they are equivalent w.r.t. PΣo
,

noted s ≈Σo
s′ whenever PΣo

(s) = PΣo
(s′). Given two execution sequences

s, s′ such that s′ � s, s \ s′ is the suffix of s that permits to extend s′ to s,

and |s− s′|Σo

def

= |PΣo
(s)| − |PΣo

(s′)| corresponds to the number of observable
events that are necessary to extend s′ into s. Conversely, given L ⊆ Σ∗

o , the

inverse projection of L is P−1
Σo

(L)
def

= {s ∈ Σ∗ | PΣo
(s) ∈ L}. Given µ ∈ TΣo

(G),

[[µ]]GΣo

def

= P−1
Σo

(µ) ∩ L(G) (noted [[µ]]Σo
when clear from context) is the set of

observation traces of G compatible with µ, i.e., execution sequences of G having

trace µ. Given µ′ � µ, we note [[µ′/µ]]Σo

def

= [[µ′]]Σo
∩ Pref([[µ]]Σo

) the set of

Enforcement and Validation (at runtime) of Various Notions of Opacity 7

q0 q′
0

q1 q2 q3

q4 q5 q6
b

τ

a

a b a
a,b

b

a
b

a,b

(a) G1

q0 q1 q2

q4 q5 q3

τ

a

a
bb

b a

(b) G2

q0 q1 q2 q3

q5 q6 q7 q4

τ

a

a b

a
b a

a
a

(c) G3

q0 q1 q2 q3

q4q5 q6 q7

τ

a

a b

a

b a

c c

(d) G4

q0 q1

q2 q3

a
b

τa

b
b

a

(e) G5

Fig. 2 Several systems with secret states (red squares)

traces of G that are still compatible with µ′ knowing that µ′ is the prefix of µ
that occurred in the system.

4 Several notions of opacity

In this section, we formalize three different kinds of opacity. Each of them
provides a different level of confidentiality for the secret. Opacity is defined
on the observable and unobservable behaviors of the system. In the rest of the
article, we let G = (QG , qG

init
, Σ, δG) be an LTS over Σ and Σo ⊆ Σ. We shall

consider that the confidential information is directly encoded in the system by
means of a set of states2 S ⊆ QG .

4.1 Simple opacity

If the current execution sequence of the system is t ∈ L(G), the attacker should
not be able to deduce, from the knowledge of PΣo

(t) and the structure of G,
that the current state of the system is in S. This is captured by the notion of
opacity introduced by Bryans et al (2008) for transition systems:

Definition 2 (Simple opacity) On G, the secret S is opaque under the pro-
jection PΣo

or (G, PΣo
)-opaque if

∀t ∈ LS(G), ∃s ∈ L(G) : s ≈Σo
t ∧ s /∈ LS(G).

Example 1 Consider the LTS G1 of Fig. 2a, with Σo = {a, b}. The secret is
given by S = {q2, q5}. S is not (G1, PΣo

)-opaque, as after the observation of
a trace in b∗ · a · b, the attacker knows that the system is currently in a secret
state. Note that he does not know whether it is q2 or q5 but he knows that the
state of the system is in S.

2 Equivalently, the secret can be given by a regular language over Σ∗, see Cassez et al
(2009) for more details.

8 Yliès Falcone, Hervé Marchand

Another characterization of opacity was given by Dubreil (2009) in terms of
observed traces: S is opaque w.r.t. G and PΣo

whenever ∀µ ∈ TΣo
(G) : [[µ]]Σo

6⊆
LS(G). Hence, the set of traces for which the opacity of the secret S is leaking
is defined by:

leak(G, PΣo
, S,OP0)

def

= {µ ∈ TΣo
(G) | [[µ]]Σo

⊆ LS(G)}.

Furthermore, S is (G, PΣo
)-opaque if and only if leak(G, PΣo

, S,OP0) = ∅.

4.2 K-step based opacity

Simple opacity requires that the secret should not be revealed only when the
system is currently in a secret state. However, one can argue that confiden-
tiality requirements may also prohibit inferring that the system went through
a secret state in the past.

Example 2 Consider the LTS G2 of Fig. 2b, with Σo = {a, b}. The secret
given by S = {q2} is opaque, since after the observation of a, the attacker
does not know whether the system is in state q4 or q2 and the secret is not
leaked. However, after the observation of a ·b ·a, the unique execution sequence
corresponding to this observation is τ · a · b · a, and the attacker can deduce
that after the observation of the last a, the system was actually in state q2 two
steps ago.

To take into account this particularity, we now introduce two notions of opac-
ity: K-step weak opacity defined in Saboori and Hadjicostis (2007)3, and K-
step strong opacity. Intuitively, these notions take into account the opacity of
the secret in the past and also allow to say that the knowledge of the secret
becomes worthless after the observation of a given number of actions.

Definition 3 (K-step weak opacity) For K ∈ N, the secret S is K-step
weakly opaque on G under the projection PΣo

or (G, PΣo
,K)-weakly opaque if

∀t ∈ L(G), ∀t′ � t : |t− t′|Σo
≤ K ∧ t′ ∈ LS(G)

⇒ ∃s ∈ L(G), ∃s′ � s : s ≈Σo
t ∧ s′ ≈Σo

t′ ∧ s′ /∈ LS(G).

The secret S is K-step weakly opaque on G if for every execution t of G, for
every secret execution t′ prefix of t with an observable difference inferior to
K, there exist two executions s and s′ observationally equivalent respectively
to t and t′ s.t. s′ is not a secret execution.

Remark 1 If S is (G, PΣo
,K)-weakly opaque then S is (G, PΣo

,K ′)-weakly
opaque for K ′ ≤ K. Moreover, 0-step weak opacity corresponds to simple opac-
ity.

3 Compared with Saboori and Hadjicostis (2007), for simplicity, we only consider a unique
initial state and deterministic LTSs.

Enforcement and Validation (at runtime) of Various Notions of Opacity 9

Example 3 For the system G2 in Fig. 2b, we can easily check that the secret
is (G2, PΣo

, 1)-weakly opaque. However, the secret is not (G2, PΣo
, 2)-weakly

opaque as after the observation of a·b·a, the only compatible execution sequence
corresponding to this observation is τ · a · b · a, and the attacker can deduce,
after the occurrence of the last a, that the system was actually in state q2 two
steps ago.

To validate opacity with runtime techniques, we will need to characterize K-
step weak opacity in terms of observable traces of the system.

Proposition 1 S ⊆ QG is (G, PΣo
,K)-weakly opaque iff

∀µ ∈ TΣo
(G), ∀µ′ � µ : |µ− µ′| ≤ K ⇒ [[µ′/µ]]Σo

6⊆ LS(G).

S is (G, PΣo
,K)-weakly opaque if for each observable trace µ of the system,

and each of its prefixes µ′ with less than K observations less than µ, if there
exists an execution compatible with µ′ ending in a secret state, then there
exists another compatible execution of the system that does not end in a
secret state.

The proof of this proposition is given in Appendix A.1. In the sequel, the
set of traces, for which the K-step weak opacity of the secret is revealed, is
formally defined by:

leak(G, PΣo
, S,OPW

K
)

def

= {µ ∈ TΣo
(G) | ∃µ′ � µ : |µ− µ′| ≤ K ∧ [[µ′/µ]]Σo

⊆ LS(G)}
(1)

where OPW

K
indicates that predicate leak is parameterized with K-weak opac-

ity.

Corollary 1 S is (G, PΣo
,K)-weakly opaque iff leak(G, PΣo

, S,OPW

K
) = ∅.

In some cases, it is interesting to characterize the set of traces that reveal the
secret at exactly k steps with k ≤ K. This set is defined as follows:

leak(G, PΣo
, S,OPW

K , k)
def

= {µ ∈ TΣo
(G) | (3) ∧ (4)}, (2)

with

∃µ′ � µ : |µ− µ′| = k ∧ [[µ′/µ]]Σo
⊆ LS(G), (3)

∀µ′ � µ : |µ− µ′| < k ⇒ [[µ′/µ]]Σo
6⊆ LS(G). (4)

That is, there exists an observation trace that reveals the opacity of the secret
k steps ago (3) and every observation trace which is produced strictly less than
k steps ago does not reveal the opacity (4). Furthermore, one may notice that
⋃

0≤k≤K leak(G, PΣo
, S,OPW

K
, k) = leak(G, PΣo

, S,OPW

K
).

Example 4 (Limits of K-step weak opacity) Let us consider the LTS G3

in Fig. 2c, with Σo = {a, b}. The secret is given by S = {q2, q6}. According
to Definition 3, S is (G3, PΣo

,K)-weakly opaque for every K ∈ N. However,
after the observation a · b, the attacker can deduce that G3 is either in state

10 Yliès Falcone, Hervé Marchand

q6 ∈ S (if the actual execution sequence is a · b) or was in state q2 ∈ S after
the observation of a (if the actual execution sequence is τ · a · b). In all cases,
the attacker knows that at most one observation before the occurrence of b, G3

was in a secret state or is currently in a secret state.

The previous example leads us to introduce K-step strong opacity. This notion
takes into account the limitation of K-step weak opacity and prevents the
attacker to be sure that the secret occurred during the last K observable
steps.

Definition 4 (K-step strong opacity) For K ∈ N, S is K-step strongly
opaque on G under the projection PΣo

(or (G, PΣo
,K)-strongly opaque) if

∀t ∈ L(G), ∃s ∈ L(G) :
(

s ≈Σo
t ∧

(

∀s′ � s : |s− s′|Σo
≤ K ⇒ s′ /∈ LS(G)

)

)

.

Intuitively, a secret is K-step strongly opaque if for each execution sequence of
the system t, there exists another execution sequence s, equivalent to t, that
never crossed a secret state during the last K observations. In other words,
for each observable trace µ of the system, there exists at least one execution
sequence compatible with µ that did not cross a secret state during the last
K observations. Using the set

FreeSK(G)
def

= {t ∈ L(G) | ∀t′ � t : |t− t′|Σo
≤ K ⇒ t′ /∈ LS(G)},

corresponding to the execution sequences of G that did not cross a secret state
during the last past K observations, we can give another characterization of
strong opacity.

Proposition 2 On G, S ⊆ QG is (G, PΣo
,K)-strongly opaque if and only if

∀µ ∈ TΣo
(G) : [[µ]]Σo

∩ FreeSK(G) 6= ∅.

The proof of this proposition is given in Appendix A.1.

Remark 2 If S is (G, PΣo
,K)-strongly opaque then it is also (G, PΣo

,K ′)-
strongly opaque for K ′ ≤ K. And if S is (G, PΣo

,K)-strongly opaque, then it
is (G, PΣo

,K)-weakly opaque.

We note leak(G, PΣo
, S,OPS

K
)

def

= {µ ∈ TΣo
(G) | [[µ]]Σo

∩FreeSK(G) = ∅} the set of
traces for which there is an information flow w.r.t.K-step strong opacity where
OPS

K
indicates that predicate leak is parameterized with K-strong opacity. As

for K-step weak opacity, it is useful to know when exactly at most k steps ago
the system went through a secret state. Then, the set leak(G, PΣo

, S,OPS

K
) can

be decomposed as

leak(G, PΣo
, S,OPS

K, k)
def

= {µ ∈ TΣo
(G) | [[µ]]Σo

∩ FreeSk (G) = ∅

∧ ∀k′ < k : [[µ]]Σo
∩ FreeSk′(G) 6= ∅}.

We get that leak(G, PΣo
, S,OPS

K
) = ∪k≤K leak(G, PΣo

, S,OPS

K
, k). Intuitively,

the strong opacity of the secret leaks at k steps via the observed trace if it
does not have a compatible execution sequence not free of secret states during
the last k steps.

Enforcement and Validation (at runtime) of Various Notions of Opacity 11

Example 5 Back to G3 (Fig. 2c), following the reasons developed in Exam-
ple 4, the secret is not (G3, PΣo

, 1)-strongly opaque. Considering the LTS G4

(Fig. 2d), the secret is (G4, PΣo
,K)-weakly opaque for every K ∈ N and

(G4, PΣo
, 1)-strongly opaque. However the secret is not (G4, PΣo

, 2)-strongly
opaque since after the observed trace a · b · a, we know that either the system
is in q7 (which is a secret state) or is in q4. In both cases, we know that the
system was in a secret state at most 2 steps ago.

5 Verification of opacity at runtime

We are now interested in verifying the opacity of a secret on a given system
modelled by an LTS. The device that we build, operates at runtime, but it
can also be used to model-check opacity (see Section 5.3).

observable
events

Proj.
Map

Attacker

Admin
verdictsMonitor

Verification

reactions

µ ∈ Σ
∗

o

PΣo

OP (G,PΣo
, S)

v ∈ B
∗

OP

GΣ(S)

Fig. 3 Opacity verification at runtime

We aim to build a runtime verifier (see Fig. 3), i.e., a monitor capturing, for
each observation µ ∈ Σ∗

o what a user can infer about the current execution of
the system and the possible leakage of the secret w.r.t. the considered opacity.
This monitor can be used by an administrator to discover opacity leakages on
the system and take appropriate reactions.

In this section, we shall focus onK-weak/strong opacity. We refer to Dubreil
et al (2009) and Falcone and Marchand (2010b) for details regarding the run-
time verification of simple opacity.

Definition 5 (Runtime verifier) A runtime verifier (R-Verifier) V is a fi-
nite state machine (QV , qV

init
, Σo, δV , DOP, Γ

V) where ΓV : QV → DOP is the
output function. DOP is a truth domain dedicated to the considered notion of

opacity. For K-step based opacity DOP = DK
OP

def

= {leak0, . . . , leakK, noleak}.

We now state the properties that an R-Verifier should satisfy:

Definition 6 (R-Verifier soundness and completeness) An R-Verifier
V is sound and complete w.r.t. G, PΣo

, S and OP ∈ {OPW
K ,OPS

K} whenever
∀µ ∈ TΣo

(G), ∀l ∈ [0,K] :

ΓV(δV(q
V
init

, µ)) = leakl ⇔ µ ∈ leak(G, PΣo
, S,OP, l)

∧ ΓV(δV(q
V
init

, µ)) = noleak ⇔ µ /∈ leak(G, PΣo
, S,OP).

12 Yliès Falcone, Hervé Marchand

An R-Verifier is sound (⇒ direction) if it never gives a false verdict. It is
complete (⇐ direction) if all observations corresponding to the current leakage
of opacity raise an appropriate “leak” verdict: it raises a noleak verdict when
the opacity is preserved, an it raises a leakl verdict when the opacity leaks at
l observable steps on the system.

5.1 K-delay trajectory estimators

When generating R-Verifiers of K-step weak and strong opacity, we will need
the notion of K-delay trajectory estimator4 which is an extension to the mech-
anism proposed in Saboori and Hadjicostis (2007). Intuitively, a K-delay tra-
jectory estimator, according to the observation interface of a system, indicates
the estimated states of the system during the K previous steps along with
extra information about opacity leakage on transitions.

First, we need to introduce additional notations. Recall that the set of l-

tuples of states, for l ≥ 2, of G is Ql def

= QG×QG×· · ·×QG def

= {(q1, . . . , ql) | ∀i ∈
[1, l] : qi ∈ QG}. Intuitively elements of Ql correspond to partial sequences of

states. A set m ∈ 2Q
l×B

l−1

is called an l-dimensional trajectory mapping. We
denote by m(i) the set of the (l− i)th trajectory of elements of m. Intuitively,
m(0) will correspond to the current state estimate whereas m(i) will corre-
spond to the trajectory estimate knowing that i observations have been made:
it contains the state estimate knowing that i observations have been made and
the secrecy of partial runs between state estimates i steps and i − 1 step(s)
ago. We also need to define:

– the shift operator ◭: 2Q
l×B

l−1

× 2Q
2×B → 2Q

l×B
l−1

s.t.

m ◭ m2
def

= {((q2, . . . , ql+1), (b2, . . . , bl)) ∈ Ql × Bl−1 |
((q1, . . . , ql), (b1, . . . , bl−1)) ∈ m ∧ ((ql, ql+1), bl) ∈ m2},

– the observation mapping Obs : Σo → 2Q
2×B s.t.

Obs(σ)
def

= {((q1, q2), b) ∈ Q2 × B |

q1, q2,∈ QG , ∃s ∈ Σ+ : PΣo
(s) = σ ∧ q1

s
→G q2 ∧ b = s ∈ FreeS1 (G(q1))},

– the function ⊙l : 2
E → 2E

l

s.t. ⊙l(E)
def

= {(e, . . . , e) | e ∈ E}, for a set E.

Based on the previous operations, K-delay trajectory estimators are defined
as follows:

Definition 7 (K-Delay Trajectory Estimator) For G, a secret S, a pro-
jection PΣo

, the K-delay trajectory estimator is an LTS D = (MD,mD
init

, Σo,
δD) s.t.:

– MD is the smallest subset of 2Q
K+1×B

K

reachable from mD
init

with δD,

– mD
init

def

=
{

(tq, tbq) | (1) ∧ (2)
}

with:

4 We will also use it in Section 6 in order to enforce the various notions of opacity.

Enforcement and Validation (at runtime) of Various Notions of Opacity 13

– (1) = tq ∈ ⊙K+1({q}) ∧ tbq ∈ ⊙K({bq}),

– (2) = q ∈ ∆G({q
G
init

}, [[ǫ]]Σo
) ∧ bq

def

= q /∈ S,

– δD : MD×Σo → MD defined by δD(m,σ)
def

= m ◭ Obs(σ), for any m ∈ MD

and σ ∈ Σo.

A K-delay trajectory estimator, for G, is an LTS whose states contain suffixes
of length K of “observable runs” that are compatible with the current obser-
vation on G. Moreover, it also contains information regarding the secret states
traversed between two consecutive states of (q0, . . . , qK), i.e., bi is true when-
ever there exists a partial execution s between qi−1 and qi that does not cross
a secret state. On each transition fired by σ ∈ Σo, possibly visited states more
than K steps ago are forgotten, and the current state estimate is updated: for
a transition, the arriving state is obtained using the shift operator (◭) and
putting in front (at the location of the current state estimate) compatible cur-
rent states according to the state estimate at the previous step (i.e., Obs(σ)
“filtered” by ◭).

Remark 3 (About initial state mD
init

) Note that for the particular case of
the initial state mD

init
, we do not use the set FreeSl (G) of free trajectories because

it is used only for trajectories with at least one observation. Furthermore,
the considered notions of opacity depend on observations and our K-delay
trajectory estimators should remain consistent with the observation ǫΣo

. That
is, we should consider all trajectories compatible with the empty observation
and thus all possible states reached by such trajectories. Thus, for the initial
case, we consider only the reachable states with no observable event because
the attacker does not know whether the system has started before observing an
event: the states reachable through non-observable events are thus considered.
Note that this is consistent with Saboori and Hadjicostis (2007) since in their
definition the initial set of states was assumed to be either unknown (i.e., the
whole state space) or reduced to a strict subset of the state space. In our case,
we assume that the initial knowledge of the attacker, i.e., the set of possible
system states when the attacker begins to monitor, is given by the set of states
reachable from the initial state by a sequence of unobservable events. Note
that we could have chosen, without any particular difficulty, a more general
definition as the one in Saboori and Hadjicostis (2007).

For K-step weak opacity analysis, we will only use information about tra-
versed states. In this particular case, K-delay trajectory estimators reduce to
the mechanism proposed in Saboori and Hadjicostis (2007). For K-step strong
opacity analysis, we will need to use both traversed states and Booleans record-
ing partial trajectory’s opacity preservation.

Example 6 (2-delay trajectory estimators) The 2-delay trajectory esti-
mators5 of G2 and G5 are respectively represented in Fig. 4a and Fig. 4b, with
Σo = {a, b}.

5 For clarity, in the states of the graphic representation of K-delay trajectory estimators,
a state qi is noted i.

14 Yliès Falcone, Hervé Marchand

m0

m1 m2

m3

m4

m5

m6

a

b

a

b b
b

a
a

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

m0

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

m1

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

m2

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

m3

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

m4

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

m5

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

m6

(a) 2-delay trajectory estimator for G2 of Fig. 2b

m0

m1

m2

m3

m4

m5

m6

m7 m8

m9 m10

m11

m12 m13

m16

m14

m15

a

a
b

a

b

b
a

a

b

a

b

a

b
b

a

b

a

b

b

b

a

a

b

a

a

b

a

b

a

b

a

b

b

a

0 0 0

1 1 1

2 2 2

3 3 3

m0

0 0 0

1 1 1

2 2 2

3 3 3

m1

0 0 0

1 1 1

2 2 2

3 3 3

m2

0 0 0

1 1 1

2 2 2

3 3 3

m3

0 0 0

1 1 1

2 2 2

3 3 3

m4

0 0 0

1 1 1

2 2 2

3 3 3

m5

0 0 0

1 1 1

2 2 2

3 3 3

m6

0 0 0

1 1 1

2 2 2

3 3 3

m7

0 0 0

1 1 1

2 2 2

3 3 3

m8

0 0 0

1 1 1

2 2 2

3 3 3

m9

0 0 0

1 1 1

2 2 2

3 3 3

m10

0 0 0

1 1 1

2 2 2

3 3 3

m11

0 0 0

1 1 1

2 2 2

3 3 3

m12

0 0 0

1 1 1

2 2 2

3 3 3

m13

0 0 0

1 1 1

2 2 2

3 3 3

m14

0 0 0

1 1 1

2 2 2

3 3 3

m15

0 0 0

1 1 1

2 2 2

3 3 3

m16

(b) 2-delay trajectory estimator for G5 of Fig. 2e

Fig. 4 Some trajectory estimators

– For the 2-delay trajectory estimator of G2, examining m2 gives us the fol-
lowing information: the current state estimate is {q3, q5}, i.e., G2 is either
in q3 or q5. It was at the previous step in either state q2 or q4. It was
two steps ago in either state q0 or q1. It followed one of the partial runs

q0
τ ·a
−→G2

q2
b

−→G2
q3, q0

a
−→G2

q4
b

−→G2
q5, q1

a
−→G2

q2
b

−→G2
q3 rep-

resented by straight lines in the dashed box representing m2. Moreover,
every partial run is coloured in red whenever the actual compatible exe-
cution sequences surely crossed a secret state (i.e., when the Boolean is

false). For instance in m2, the partial runs q0
τ ·a
−→G2

q2
b

−→G2
q3 and

q1
a

−→G2
q2

b
−→G2

q3 are associated to execution sequences that surely
crossed a secret state.

– For the 2-delay trajectory estimator of G5, examining m9 gives us the fol-
lowing information: the current state estimate is {q3}, i.e., G5 is surely
in q3. It was at the previous step either in q0 or in q2 and it followed

one of the partial runs q3
a·τ
−→G5

q2
b

−→G5
q3, q3

a
−→G5

q0
τ ·b
−→G5

q3 rep-
resented by straight lines in the dashed box representing m9. The partial

runs q0
τ ·b
−→G5

q3 and q2
b

−→G5
q3 are associated to execution sequences

that surely crossed a secret state (in these cases q2).

Enforcement and Validation (at runtime) of Various Notions of Opacity 15

Suitability of K-delay trajectory estimators. K-delay trajectory estimators in-
deed exactly capture state estimation (with states tuples) and opacity preser-
vation (with Boolean tuples) in the past. It is formally expressed by the two
following lemmas6.

Lemma 1 Given a system G modelled by an LTS (QG , qG
init

, Σ, δG) and the
corresponding K-delay trajectory estimator D = (MD,mD

init
, Σo, δD), then

• ∀µ ∈ TΣo
(G) s.t. |µ| ≥ K ∧ µ = µ′ · σ1 · · ·σK ,

∀s ∈ [[µ]]Σo
: (s = s′ · s1 · · · sK ∧ ∀i ∈ [1,K] : PΣo

(si) = σi)

∃(q0, . . . , qK) ∈ δD(mD
init

, µ) : q0
s1→G q1 · · · qK−1

sK→G qK ,

• ∀µ ∈ TΣo
(G) s.t. n = |µ| < K ∧ µ = σ1 · · ·σn,

∀s ∈ [[µ]]Σo
: (s = s′ · s1 · · · sn ∧ ∀i ∈ [1, n] : PΣo

(si) = σi),

∃(q0, . . . , qK) ∈ δD(mD
init

, µ) : qK−n
s1→G qK−n+1 · · ·

sn−1

→ G qK−1
sn→G qK ,

∧ qG
init

s′

→G qK−n.

Lemma 2 Given a system G modelled by an LTS (QG , qG
init

, Σ, δG) and the
corresponding K-delay trajectory estimator D = (MD,mD

init
, Σo, δD), then

∀m ∈ MD, ∀(q0, . . . , qK) ∈ m, ∀µ ∈ TΣo
(G) : δD(mD

init
, µ) = m :

• |µ| = 0 ⇒ ∀(q, . . . , q) ∈ m = mD
init

, ∃s ∈ [[µ]]Σo
: qG

init

s
−→G q ∧ PΣo

(s) = ǫ,

• n = |µ| < K ∧ µ = σ1 · · ·σn ⇒
∃s′ · s1 · · · sn ∈ [[µ]]Σo

:

qG
init

s′

→G qK−n
s1→G qK−n+1 · · · qK−1

sn→G qK ∧ ∀i ∈ [1, n] : PΣo
(si) = σi

• |µ| ≥ K ∧ µ = µ′ · σ1 · · ·σK ⇒
∃s′ · s1 · · · sK ∈ [[µ]]Σo

:

qG
init

s′

→G q0
s1→G q1 · · ·

sK→G qK ∧ ∀i ∈ [1,K] : PΣo
(si) = σi.

Technical proofs can be found in Appendix A.2. We prefer to give here the
intuition on the suitability of K-delay trajectory estimators. Lemmas 1 and 2
state respectively the completeness and soundness of K-delay trajectory esti-
mators:

– Lemma 1 states that for all observation traces that the system can produce,
according to its length (|µ| ≥ K or |µ| < K) there exists a trajectory
in one state of the trajectory estimator that records the appropriate last
observation steps of µ (the last K ones if |µ| ≥ K or the last ones if
|µ| < K).

– Lemma 2 states that all trajectories contained in all states of K-delay tra-
jectory estimators correspond to actual observation traces on the system.

6 As in Lemmas 1 and 2 we are only interested by the capture of state estimates by K-
delay trajectory estimators, we focus on state tuples and ignore Booleans. That is, for the
sake of readability, states of a K-delay trajectory estimators are noted (q0, . . . , qK) instead
of ((q0, . . . , qK), (b0, . . . , bK−1)).

16 Yliès Falcone, Hervé Marchand

Using the two previous lemmas, we can directly show the following proposition:

Proposition 3 For G modelled by an LTS (QG , qG
init

, Σ, δG), and Σo ⊆ Σ, the
K-delay trajectory estimator D = (MD,mD

init
, Σo, δD) of G is s.t.:

∀µ ∈ TΣo
(G) : δD(mD

init
, µ) = m

⇒ ∀i ∈ [0,min{|µ|,K}] : m(i) = δG(q
G
init

, [[µ···|µ|−i−1/µ]]Σo
).

Even though differently presented, a similar result can be found in Saboori
and Hadjicostis (2011).

5.2 R-Verifier synthesis

We tackle now the R-Verifier synthesis problem for K-step based opacity.

Synthesis for K-weak opacity. For K-weak opacity, R-Verifiers are synthesized
directly from K-delay trajectory estimators.

Proposition 4 For G, S ⊆ QG, the R-Verifier V = (QV , qV
init

, Σo, δV ,DK
OP

, ΓV)
built from the K-delay trajectory estimator7 D = (MD,mD

init
, Σo, δD) of G

where QV = MD, qV
init

= mD
init

, δV = δD, and ΓV : QV → DK
OP

defined by

– ΓV(m) = noleak if ∀k ∈ [0,K] : m(k) /∈ 2S,
– ΓV(m) = leakl where l = min{k ∈ [0,K] | m(k) ∈ 2S} otherwise,

is sound and complete w.r.t. G, PΣo
, S and the K-step weak opacity.

ForK-weak opacity and an observation trace µ, an R-Verifier produces verdicts
as follows. It produces the verdict noleak if for each of the K last prefixes of
µ, there exists a compatible sequence that is not ending in a secret state. It
produces the verdict leakl if l is the minimum distance with an observation
among the K last ones s.t. the system was in a secret state, µ ∈ leak(G, PΣo

,
S,OPW

K
, l). The proof of this proposition is given in Appendix A.2.3.

Synthesis for K-strong opacity. Synthesis of R-Verifiers for K-strong opacity
is similarly based on the trajectories of K-delay estimators. As one expects, in
a state of an estimator, the opacity of a secret will rely on whether all trajec-
tories surely traverse a secret state. However, the set of considered trajectories
requires to be be slightly adapted before being used to state verdicts. Intu-
itively, for some systems, some trajectory (represented by the traversed states)
can be redundant with another in the sense that it contains overlapping actual
pathes on the system that are observationnally equivalent for some suffix. Yet,
given a number of observations, one trajectory could be free of secret state
and not the other one. To see how this can pose an issue for the evaluation of
strong-opacity leakage, consider the system in the example below.

7 For clarity, for K-step weak opacity, only information about traversed state is considered
in trajectory estimators since it is the sole information needed.

Enforcement and Validation (at runtime) of Various Notions of Opacity 17

Example 7 (System with overlapping trajectory) Consider Gp depicted
in Fig. 5a where Σo = {a, b} and Sp = {q1, q3}. The sequences a and τ ·τ ·a are
observed as a. The system Gp necessarily traverses a secret state when executing

these sequences. Indeed, we have a ∈ LSp
(Gp) and consequently a /∈ Free

Sp

1 (Gp).
Moreover, since τ ∈ L(Gp), τ � τ · τ · a, and |τ · τ · a − τ |Σo

≤ 1, we have

τ · τ · a /∈ Free
Sp

1 (Gp). By Proposition 2, Sp is not (Gp, PΣo
, 1)-strong opaque.

However, examining the trajectories contained in state m1, the partial trajec-
tory q2

a
−→Gp

q4 could mislead us in the sense that it does not traverse a secret
state. But, to enter state q2 the system must traverse q1, and, going from q1
to q2 does not require any further observation. Roughly speaking, the state m1

contains redundant information w.r.t. strong opacity and the aforementioned
trajectory should be projected.

We now formalize this notion of projection using the notion of redundant
trajectory. Given a system G and its associated trajectory estimator D =
(MD,mD

init
, Σo, δD) and m ∈ MD, we define the predicate redundant : MD ×

(QK ×BK−1)× (QK ×BK−1) → {true, false} indicating whether or not, given
m ∈ MD, a trajectory t =

(

(q1, . . . , qK), (b1, . . . , bK−1)
)

∈ m is redundant

with a trajectory t′ =
(

(q′1, . . . , q
′
K), (b′1, . . . , b

′
K−1)

)

∈ m:

redundant(m, t, t′) = ∃j ∈ [1,K − 1] :
bj 6= b′j ∧ qj 6= q′j ∧ ∀i ∈ [j + 1,K] : qi = q′i ∧ ∀i ∈ [j + 1,K − 1] : bi = b′i

∧∀s′′ ∈ Σ∗ : |s′′|Σo
= 1 ∧ q′j

s′′

−→G q′j+1 ⇒ qj ∈ ∆G

(

{q′j},Pref({s
′′})

)

.

Within a state m of a trajectory estimator, t =
(

(q1, . . . , qK), (b1, . . . , bK−1)
)

is redundant with t′ =
(

(q′1, . . . , q
′
K), (b′1, . . . , b

′
K−1)

)

if one can find an index
j ∈ [1,K − 1] s.t. t and t′ agree on trajectory elements with index greater
than j (i.e., from j + 1 to K states are equal, and from j + 1 to K − 1
Booleans are equal) and differ at position j. This means that the trajectories
agree from the current state to the (K − j)th state in the past. Moreover, all
paths of observable length 1 from q′j to q′j+1 go through qj . Note, the interval
[j + 1,K − 1] is possibly denoting an empty set (when j = K − 1).

Observe that in the trajectory estimator of Example 7, some trajecto-
ries are redundant. In state m1, the trajectories

(

(2, 2, 4), (true, true)
)

and
(

(1, 1, 4), (false, false)
)

are redundant with the trajectory
(

(0, 0, 4), (false, false)
)

:
the trajectories agree on the current state (state 4) and differ on index 1. Sim-
ilarly, in state m2, the trajectories

(

(2, 4, 4), (true, true)
)

and
(

(1, 4, 4), (false,

false)
)

are redundant with the trajectory
(

(0, 4, 4), (false, false)
)

.
Filtering out the redundant trajectories of a state m is noted m ↓ and

defined as: m ↓
def

= {t ∈ m | ∄t′ ∈ m : redundant(m, t, t′)}.

Proposition 5 For G, S ⊆ QG, the R-Verifier V = (QV , qV
init

, Σo, δV ,DK
OP

, ΓV)
built from the K-delay trajectory estimator D = (MD,mD

init
, Σo, δD) of G where

QV = MD, qV
init

= mD
init

, δV = δD, and ΓV : QV → DK
OP

defined by:

– ΓV(m) = noleak if ∃((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m↓, ∀i ∈ [0,K]: qi /∈ S ∧
∀i ∈ [0,K − 1] : bi = true

18 Yliès Falcone, Hervé Marchand

q0 q1 q2

q3 q4

τ

a

τ

a

bb

(a) System Gp

m0

m1 m2

m3

a

b

b

b

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

m0

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

m1

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

m2

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

m3

(b) 2-delay trajectory estimator of Gp

Fig. 5 The trajectories in statesm1 andm2 of theK-delay estimator need to be “projected”

– ΓV(m) = leakl otherwise, with

l = min
{

l′ ∈ [0,K] | ∀((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m ↓,

∃i ≤ l′ :
(

l′ 6= 0 ⇒ (qK−i ∈ S ∨ bK−i = false) ∧ l′ = 0 ⇒ qK ∈ S
)

}

is sound and complete w.r.t. G, PΣo
, S and K-step strong opacity.

For K-strong opacity and an observation trace µ, an R-Verifier produces ver-
dicts as follows. In each state of the state estimator, trajectories are filtered
if redundant. The R-Verifier produces the verdict noleak if there exists a tra-
jectory of the system, compatible with µ, s.t. during the last K observations,
the system has not visited any secret state. It produces the verdict leakl if
l is the minimum number of observation steps for which the secret has oc-
curred for sure, i.e., l is the minimum number of observations in the past after
which all trajectories recorded in the estimator either ended in a secret state or
went through a secret state. That is, l = min{l′ ∈ [0,K] | µ ∈ leak(G, PΣo

, S,
OPS

K
, l′)}. The proof of this proposition is given in Appendix A.2.4.

Example 8 (R-Verifiers) We present some R-Verifiers: for the 1-step opac-
ity (weak and strong) of G1 in Fig. 6a, and for the 2-step strong opacity of G5

in Fig. 6b. These R-Verifiers give us the runtime information about opacity
leakage on their respective systems. For instance, for the R-Verifier of G5, if
G5 produces the observation trace a · b · a, this R-Verifier gives the informa-
tion about the opacity in a lock-step manner with the execution produced by
G5. When the system produces a and then a subsequent b, these sequences do
not reveal the opacity, the R-Verifier produces noleak. Then, when G5 produces
another a, the sequence a · b · a reveals the strong opacity of the secret 2 steps
in the past, which is indicated by the R-Verifier producing leak2.

5.3 Model-checking the previous notions of opacity

While presented for the runtime verification of opacity, the mechanism of R-
Verifier can be used to model-check the opacity of the system. In that case,
one has just to build the appropriate K-delay trajectory estimator and R-
Verifier, and check the reachability of states indicating an opacity leakage

Enforcement and Validation (at runtime) of Various Notions of Opacity 19

m0

noleak

m1

noleak

m2

noleak

m3

leak0

m4

leak1

m5

leak1

m6

noleak

m7

noleak

m8

noleak

m9

noleak

m10

noleak

m11

noleak

a

b

b

a

b

a

b

a, b

a, b

a, b

a, b

bb

a

a, b

a
ba

(a) For the 1-step weak and strong opac-
ity of G1

m0

noleak

m1

noleak

m2

leak1

m3

noleak

m4

leak1

m5

leak2

m6

leak2

m7

noleak

m8

noleak

m9

noleak

m10

leak1

m11

noleak

m12

noleak

m13

leak0

m16

leak2

m14

leak0

m15

leak1

a

b

b
a

a

b

a

b

a

b
b

a

b

a

b

b

b

a

a

b

a

a

b

a

a

b

a

b

a

b

a

b

b

a

(b) For 2-strong opacity of G5

Fig. 6 R-Verifiers for K-step opacity

in the R-Verifier. Counter examples are just paths in the R-Verifier leading
to leaking states. Moreover, if one wants to generate counter examples for a
precise opacity leakage leakl, one just has to compute the language accepted
by R-Verifiers seen as LTSs for which marked states are those in which the
output function produces leakl.

Example 9 (Model-checking) Using the R-Verifier of 1-step opacity (weak
and strong) of G1, we can see that the secret of G1 is not 1-step weak nor strong
opaque. The observable language of all counter examples is b∗ ·a · b · (a+ b+ ǫ).
The language of counter examples that leak the opacity of the secret exactly 1
step ago is b∗ · a · b · (a+ b).

5.4 Summary and discussion

In this section, we have studied how we can verify at runtime, using the no-
tion of R-Verifier, the previously introduced notions of opacity. To do so, we
have introduced the mechanism of K-delay trajectory estimators from which
R-Verifiers are directly generated. Depending on the notion of opacity of inter-
est, we use the information about traversed states and secrecy of trajectories
recorded in the states of K-delay trajectory estimators.

In this section, we have presented the runtime verification of opacity in
which runtime verifiers are generated a priori and then combined with the

20 Yliès Falcone, Hervé Marchand

system at runtime. This technique has the advantage of minimizing the run-
time computation (thus reducing the overhead on the original system). It is
also possible to generate R-Verifiers on-the-fly. Indeed, while being in any state
of the R-Verifier, the sole information that is needed to compute the verdict
corresponding to a trace continuation with a new event is already present in
the current state. On-the-fly generation of R-Verifiers has the advantage to
minimize the space needed to perform runtime verification. In that case, it is
needed to memorize only the current state. This is the usual trade-off between
time and space consumptions. The proposed approach is compatible with both
strategies.

Complexity issues for a mechanism similar to our K-delay trajectory es-
timators were studied in Saboori and Hadjicostis (2011). The complexity of
the mechanisms proposed in this section follows from the complexity given
in Saboori and Hadjicostis (2011). Indeed, our K-delay trajectory estimators
just record a supplementary Boolean information. The complexity of com-
puting this information representing whether or not a partial trace is free of
secret states amounts to a reachability analysis in the initial system which
is linear. Indeed, from an implementation point of view, the computation of
this Boolean information is achieved first by considering the set of states of
the system minus the secret states and second by performing a reachability
check on this new state space. Moreover, R-Verifiers are naturally of the same
complexity of the K-delay trajectory estimators they are generated from.

The verification of opacity is just concerned in detecting bad behaviors on
a system. While verification might be a sufficient assurance, for some kinds of
systems, opacity violation might be unacceptable. A further step in opacity
validation is to automatically prevent opacity leakage. This is the problem
addressed in the next section.

6 Enforcement of opacity at runtime

In this section, we consider a system G, and we aim to build runtime enforcers
for the previously introduced notions of opacity. Moreover, an underlying hy-
pothesis is that the system is live, i.e., not deadlocked and always produces
events, e.g., a reactive system

6.1 Informal principle and problem statement

Roughly speaking, the purpose of a runtime enforcer is to read some (unsafe)
execution sequence produced by G (input to the enforcer) and to transform it
into an output sequence that is safe regarding opacity (see Fig. 7).

A runtime enforcer acts as a delayer on an input sequence µ, using its
internal memory to memorize some of the events produced by G. The runtime
enforcer releases a prefix o of µ containing some stored events, when the system
has produced enough events so that the opacity is ensured. In other words,

Enforcement and Validation (at runtime) of Various Notions of Opacity 21

observable observable
eventsevents

memory

Proj.
Map

Enforcer
Runtime

new system

Attacker

µ opaque?
(o � µ)

µ ∈ Σ∗

o

o opaque

o ∈ Σ∗

o

PΣo

OP (G,PΣo
, S)GΣ(S)

Fig. 7 Opacity enforcement at runtime

when the enforcer releases an output o (the only sequence seen by the attacker),
then either this sequence does not reveal the opacity of the secret or if it
does reveal it, the system has already produced a sequence µ � o, making the
knowledge of o obsolete to the attacker. For instance, for aK-step based notion
of opacity, if the enforcer releases a sequence o leaking the secret at k ≤ K
steps, it has already received a sequence µ from the system s.t. |µ|−|o| > K−k.

Let us illustrate informally how we expect to enforce opacity on an example.

Example 10 (Principle of enforcing opacity) Let us go back on the sys-
tem G2 introduced in Example 2. As we have seen previously, the secret is
simply opaque but not (G2, PΣo

, 2)-weakly opaque. Indeed, after the observa-
tion of a · b ·a, the only compatible trajectory corresponding to this observation
is τ · a · b · a. Then, the attacker can deduce that, the system was actually in
state q2 two steps ago.

q0 q1 q2

q4 q5 q3

τ

a

a
bb

b a

Sequence of G2 Observable sequence Memory Output
τ ǫ ǫ ǫ

τ · a a ǫ a

τ · a · b a · b ǫ a · b

τ · a · b · a a · b · a a a · b

τ · a · b · a · a a · b · a · a ǫ a · b · a · a

τ · a · b · a+ a · b · a+ ǫ a · b · a+

Fig. 8 Enforcement of opacity on a trace of G2

With a runtime enforcer, we will delay this sequence in such a way that,
when the attacker determines that the system was in a secret secret, it is always
more than K = 2 steps ago on the real system. That is, some of the events
produced by the system will be retained inside the enforcer memory. Intuitively,
for the aforementioned sequence, the expected behavior of a runtime enforcer is
as follows (see Fig. 8). When the system produces the sequence τ ·a, the enforcer
should not modify the observation trace a which is safe regarding opacity. When
the system produces the sequence τ · a · b, the enforcer observes a · b and lets
the system execute normally (we expect the system execution to be minimally
modified). Then, when the system produces a new a, the enforcer memorizes
this event (the attacker still sees a ·b). Next, when the system produces another
a, the system was in a secret state 3 steps ago. Thus, the enforcer can release
the first stored a. Indeed, when the attacker observes a · b · a, the system has
produced a · b · a · a, and was in the secret state q2 three steps ago: (G2, PΣo

, 2)-

22 Yliès Falcone, Hervé Marchand

weak opacity of S is thus preserved. At last, the last received a and subsequent
ones can be freely output by the enforcer since they will not lead to a 2-weak
opacity leakage.

Following this principle, the runtime enforcer for the 2-weak opacity of G2 is
informally described in the following example.

Example 11 (Runtime enforcer) The runtime enforcer for the 2-weak opac-
ity of G2 is given in Fig. 9. Informally, the runtime enforcer is a finite-state
machine that reads observable events from the system and execute an enforce-
ment operation upon receiving each event. On receiving a · b it lets the system
execute normally by executing twice the dump operation that releases directly
the events in output. Then, when receiving an a event, it executes the store1
operation to memorize the event in its internal memory for one unit of time.
The off operation is executed when the runtime enforcer is not needed anymore.
Similarly to the dump operation, it releases events in output

m0

dump

m1

dump

m2

dump

m3

store–1

m4

off

m5

off

m6

off

a

b

a

b b

b

a
a

Fig. 9 Runtime enforcer for the 2-weak opacity of G2

6.2 Defining Runtime Enforcers

We formally define a notion of runtime enforcers which are special finite-state
machines. By reading events, they produce enforcement operations that delay
the input trace or release some already stored events so as to ensure the desired
opacity. The introduced notion of enforcers is generic. In Section 6.4, we will
specialize runtime enforcers for opacity but they can be similarly specialized
for other notions of opacity or for regular properties (as seen for instance
in Falcone et al (2011)).

Definition 8 (Enforcement operations Ops and memory) The memory
of runtime enforcers is a list whose elements are pairs consisting of an observ-
able event and an integer. The set of possible configurations of the memory is
thus M(T) =

⋃T

i=0(Σo × N)i. When an element (σ, d) ∈ Σo × N is inside the
memory, it means that the event σ has to be retained d units of time before
being released by the enforcer to preserve opacity. Enforcement operations take
as inputs an observable event and a memory content (i.e., a special sequence
of events, detailed later) to produce in output an observable sequence and a
new memory content: Ops ⊆ 2(Σo×M(T))→(Σ∗

o×M(T)).

Enforcement and Validation (at runtime) of Various Notions of Opacity 23

As seen in Example 11, enforcement operations consist of e.g., memorizing in-
put events for some time units or halting the underlying system. In Section 6.4,
we will formally define suitable enforcement operations for opacity.

Definition 9 (Generic R-Enforcer (R-Enforcer(Ops))) An R-Enforcer
E is a 6-tuple (QE , qE

init
, Σo, δE ,Ops, Γ E ,M(T)) defined relatively to a set of

observable events Σo and parameterized by a set of enforcement operations
Ops. The finite set QE denotes the control states, qE

init
∈ QE is the initial state.

δE : QE × Σo → QE is the transition function. The function Γ E : QE → Ops
associates an enforcement operation to each state of the enforcer.

Informally an R-Enforcer performs a transition by reading an event produced
by the system. The arriving state of the transition is associated to an en-
forcement operation which is applied to the current event and the memory
content.

The notion of run is naturally transposed from its definition for LTSs: for a
trace µ = σ0 · · ·σn−1 of length n run(µ, E) = (q0, σ0/α0, q1) ·(q1, σ1/α1, q2) · · ·
(qn−1, σn−1/ αn−1, qn), with ∀i ∈ [0, n− 1] : Γ E(qi+1) = αi. In the remainder
of this section, E = (QE , qE

init
, Σo, δE ,Ops, Γ E ,M(T)) designates an R-Enforcer

with a set of enforcement operations Ops, and µ ∈ Σ∗
o designates the current

observation trace of the system input to the R-Enforcer.
We formalize how R-Enforcers(Ops) react to input traces provided by a

target system through the standard notions of configuration and derivation.

Definition 10 (Semantics of R-Enforcer(Ops)) A configuration is a 3-
tuple (q, µ, c) ∈ QE ×Σ∗

o ×M(T) where q denotes the current control state, µ
the remaining trace to read, and c the current memory configuration.

– A configuration (q′, µ′, c′) is derivable in one step from the configuration

(q, µ, c) and produces the output8 o ∈ Σ∗
o , and we note (q, µ, c)

o
→֒ (q′, µ′, c′)

if and only if µ = σ · µ′ ∧ q
σ

−→E q′ ∧ Γ E(q′) = α ∧ α(σ, c) = (o, c′).
– A configuration C ′ is derivable in several steps from a configuration C and
produces the output o ∈ Σ∗

o , and we note C
o

=⇒E C ′, if and only if

∃k ≥ 0, ∃C0, C1, . . . , Ck : C = C0 ∧ C ′ = Ck

∧ ∀i ∈ [0, k[, ∃oi ∈ Σ∗
o : Ci

oi
→֒ Ci+1

∧ o = o0 · · · ok−1.

We define the transformation performed by an R-Enforcer, with a set of en-
forcement operations Ops.

Definition 11 (Trace transformation) E transforms µ into the output
trace o � µ as defined by the relation ⇓E⊆ Σ∗

o ×Σ∗
o , where ǫ refers to ǫΣo

:

– ǫ ⇓E ǫ,
– µ ⇓E o if ∃q ∈ QE , ∃c ∈ M(T) : (qE

init
, µ, ǫM)

o
=⇒E (q, ǫ, c).

8 Here note that o can be ǫ if the enforcer chooses to not produce an output.

24 Yliès Falcone, Hervé Marchand

The empty sequence ǫ is not modified by E (i.e., when the system does not
produce any event). The observation trace µ ∈ Σ∗

o is transformed by E into
the trace o ∈ Σ∗

o , when the trace is transformed from the initial state of E ,
starting with an empty memory. Note that the resulting memory configuration
c depends on the sequence µ \ o of events read by the R-Enforcer but not
produced in output yet as we shall see in the remainder of this section.

Remark 4 The proposed semantics is generic. Indeed, in addition of being
used with enforcement operations for opacity, the semantics can be used with
similar enforcement operations in order to enforce other notions of opacity or
even regular temporal properties. To enforce regular safety properties (stating
that “nothing bad should ever happen”) one can use enforcement operations
such as the dump and halt operations to obtain enforcement monitors as pro-
posed in Schneider (2000). As far as the concatenation of the new received
event and the already dumped sequence satisfies the safety property, the event
is immediately dumped. Otherwise, the event is removed and the system feed-
ing the enforcer is halted. To enforce regular co-safety properties (stating that
“something good will happen within a finite amount of time”), one can use a
store (with an unbounded delay) and dump operations to obtain enforcement
monitors as proposed in Ligatti et al (2005). The store operation is used to
memorize events while the input sequence does not satisfy (yet) the property,
while the the dump operation releases all events in the memory as soon as
the property is satisfied. To enforce any regular property such as a response
property (liveness properties), one can combine the previously mentioned op-
erations to obtain enforcement monitors as proposed in Falcone et al (2012).

6.3 Enforcing the opacity at runtime

Before defining this enforcement notion more formally, we first formalize, for
a given trace of G, which of its prefixes can be safely output.

Definition 12 (Prefixes that are safe to output)

– For simple opacity OP0, a trace µ ∈ TΣo
(G), we say that it is safe to output

µ′ � µ, noted safeOP0
(µ, µ′), if

(

µ = µ′∧µ′ /∈ leak(G, PΣo
, S,OP0)

)

∨µ′ ≺ µ.
– For a K-step based notion of opacity OPK ∈ {OPK

W
,OPK

S
}, a trace µ ∈

TΣo
(G), we say that it is safe to output µ′ � µ, noted safeOPK

(µ, µ′), if

µ′ /∈ leak(G, PΣo
, S,OPK)

∨ (∃k ≤ K : µ′ ∈ leak(G, PΣo
, S,OPK, k) ∧ |µ| − |µ′| > K − k).

That is, it is safe to produce µ′ � µ if

– for simple opacity, either µ′ does not reveal the opacity or that it reveals the
opacity but it was produced on the system at least one step ago;

– for K-step based opacity, either µ′ does not reveal the opacity or it reveals
the opacity at k steps but it was produced on the system more than k steps
ago.

Enforcement and Validation (at runtime) of Various Notions of Opacity 25

Note that when it is safe to produce a given trace, then all its prefixes are safe
to produce. That is, for OP ∈ {OP0,OP

K

W
,OPK

S
}:

∀µ, µ′ ∈ TΣo
(G) : safeOP(µ, µ

′) ⇒ ∀µ′′ ≺ µ′ : safeOP(µ, µ
′′).

Furthermore, by convention, we will only consider systems for which it is safe
to produce ǫΣo

, i.e., when some sequences of [[ǫ]]Σo
are not secret. Under the

assumption that the system is alive, for a given trace, there always exists one
of its extension traces which is safe to output, i.e.,

∀µ ∈ TΣo
(G), ∃µ′ ∈ TΣo

(G) : µ � µ′ ∧ safeOP(µ
′, µ)

e.g., any µ′ s.t. |µ′ − µ| > K. Moreover, the set of traces that lead a given
sequence to be safe is extension-closed, i.e.,

∀µ′ ∈ TΣo
(G) : (∃µ ∈ TΣo

(G) : µ′ � µ ∧ safeOP(µ, µ
′))

⇒ (∀µ′′ ∈ TΣo
(G) : µ � µ′′ ⇒ safeOP(µ

′′, µ′)).

Remark 5 The previous properties have interesting practical consequences for
runtime enforcers. First, since the set {safeOP(µ, µ

′) | µ′ ∈ TΣo
(G)} is prefix-

closed for any µ ∈ TΣo
(G), it means that, by outputting events, enforcers do not

reduce the set of sequences that could be released in the future. Second, since
the set {safeOP(µ

′, µ) | µ′ ∈ TΣo
(G)} is extension-closed for any µ ∈ TΣo

(G), it
means that, after releasing events in output, there is no possible future events
that could be released and question the previously sequence of output events.

Expected properties for runtime enforcers. We now explain what we mean ex-
actly by opacity enforcement, and what are the consequences of this definition
on the systems, secrets, and projections we shall consider. The following con-
straints are expected to hold for the enforcers we aim to synthesize.

soundness: the output trace should preserve the opacity of the system;
transparency : the input trace should be modified in a minimal way, namely

if it already preserves opacity it should remain unchanged, otherwise its
longest prefix preserving opacity should be issued.

On Example 10, soundness entails a runtime enforcer to e.g., output a · b
(instead of a ·b ·a) when G2 produces τ ·a ·b ·a. Transparency entails a runtime
enforcer to e.g., output a · b · a · a (instead of any prefix) when G2 produces
τ · a · b · a · a.

Remark 6 There always exists a trivial, sound but generally non transparent,
enforcer delaying every event by K units of time for K-step based opacity.

The formal definition of opacity-enforcement by an R-Enforcer(Ops) relates
the input sequence produced by the program fed to the R-Enforcer(Ops) and
the output sequence allowed by the R-Enforcer(Ops) so that the R-Enforcer
is sound and transparent.

26 Yliès Falcone, Hervé Marchand

Definition 13 (Enforcement of opacity by an enforcer) The R-Enforcer
E enforces the opacity OP ∈ {OP0,OP

K

W
,OPK

S
} of S w.r.t. PΣo

on a system G
if ∀µ ∈ TΣo

(G), ∃o � µ : µ ⇓E o ⇒

µ /∈ leak(G, PΣo
, S,OP) ⇒ o = µ (5)

µ ∈ leak(G, PΣo
, S,OP) ⇒ o = max

�
{µ′ � µ | safeOP(µ, µ

′)} (6)

A sound and transparent R-Enforcer always produces maximal safe sequences:

Property 1 Given a sound and transparent runtime enforcer E:

∀µ ∈ TΣo
(G), ∀o � µ : µ ⇓E o ⇒

(

safeOP(µ, o) ∧ ∀o ≺ o′ � µ : ¬ safeOP(µ, o
′)
)

,

for OP ∈ {OP0,OP
W

K
,OPS

K
}.

Most of the previous approaches (e.g., Ligatti et al (2005); Falcone et al
(2009b)) on property enforcement used enforcement mechanisms with a finite
but unbounded memory under the soundness and transparency constraints.
Since we are setting our approach in a general security context, we go one step
further on the practical constraints expected for a desired enforcement mecha-
nism dedicated to opacity. Here we consider that the memory allocated to the
enforcer has a given allocated size9. Besides the soundness and transparency
constraints, we add the following one:

do-not-overflow : to enforce opacity, the size of the partial trace memorized
by the enforcer does not exceed the allocated memory size.

When is the opacity of a secret enforceable on a system? After stating the
constraints on runtime enforcement for opacity, we need to delineate the sys-
tems, interfaces and secrets s.t. opacity is enforceable using runtime enforcers.
The existence of sound and transparent R-Enforcers with unbounded memory
for opacity relies first on the provided characterization of opacity preservation
on the observable behavior as finitary properties (Section 4) and second on
existing results in enforcement monitoring of finitary properties (see e.g., Lig-
atti et al (2005); Falcone et al (2009b)). Now, the existence of an R-Enforcer
for K-step based opacity10 relies only on the do-not-overflow constraint of a
memory of size T , which is satisfied iff

max
µ∈TΣo (G)

{

min{|µr o| | o � µ ∧ safeOPK
(µ, o)}

}

≤ T.

The previous enforcement criterion is not usable in practice and is not com-
putable generally. Thus, we will give a more practical and decidable enforce-
ment criterion using K-delay trajectory estimators. To each state of the K-
delay trajectory estimator, we have seen that it is possible to determine the
opacity leakage. Intuitively, the reasoning is as follows. If we are considering a

9 Besides memory size limitation, this constraint can represent the desired quality of
service, e.g., maximal allowed delay.
10 The existence of an R-Enforcer for simple opacity relies on the trivial condition T ≥ 1.

Enforcement and Validation (at runtime) of Various Notions of Opacity 27

K-step based notion of opacity and we reach a state in the K-delay trajectory
estimator s.t. it reveals the opacity of the secret 2 steps ago (e.g., the attacker
knows that the system was in a secret state 2 steps ago). Then for K ≥ 2, the
enforcer has to delay the last event produced by the system by K − 1 units of
time. Indeed, after that, the attacker will know that the system was in a secret
state K + 1 steps ago. This knowledge is safe w.r.t. K-step based opacity.

The criterion on K-delay trajectory estimators uses the following lemma,
which is a direct consequence of Lemmas 1 and 2.

Lemma 3 (States of K-delay trajectory estimators and opacity leak-
age) Given a system G, a K-step based notion of opacity OPK ∈ {OPW

K
,OPS

K
}

w.r.t. a projection map PΣo
and a secret S, the states of the K-delay trajectory

estimator D = (MD, qD
init

, Σo, δD) are s.t.:

∀µ1, µ2 ∈ TΣo
(G) : δD(mD

init
, µ1) = δD(mD

init
, µ2)

⇒ ∃k ∈ [0,K] : µ1, µ2 ∈ leak(G, PΣo
, S,OPK, k)

∨µ1, µ2 /∈ leak(G, PΣo
, S,OPK).

For a given state in the trajectory estimator, all traces ending in this state
reveal or preserve opacity in the same way. Thus, in a K-delay trajectory
estimator D = (MD,mD

init
, Σo, δD), to each state m ∈ MD, we can associate

the delay to hold (i.e., after which it is safe to “release”) the last received event
of the trace leading to this state in order to preserve OPK ∈ {OPW

K
,OPS

K
}:

∀m ∈ MD : holdOPK
(m)

def

=

{

K + 1− k when (7)
0 otherwise (i.e., when (8))

with:

∃k ∈ [0,K] : ∀µ ∈ TΣo
(G) : δD(mD

init
, µ) = m ⇒ µ ∈ leak(G, PΣo

, S,OPK, k) (7)

∀µ ∈ TΣo
(G) : δD(mD

init
, µ) = m ⇒ µ /∈ leak(G, PΣo

, S,OPK) (8)

Equivalently, using an R-Verifier for OPK, V = (QV , qV
init

, Σo, δV ,DK
OP

, ΓV) for G
and K-step based opacity, and synthesized from D (thus MD = QV and qD

init
=

qV
init

), ∀µ ∈ TΣo
(G) : holdOPK

(δD(mD
init

, µ)) = K+1−k when ΓV(δV(q
V
init

, µ)) =
leakk. Thus, synthesis of R-Enforcers will rely on the synthesis of R-Verifiers.

Proposition 6 (Enforcement criterion using K-delay trajectory es-
timators) Let D = (MD,mD

init
, Σo, δD) be the K-delay trajectory estimator

associated to G. The K-step based opacity OPK of the secret S is enforceable
by an R-Enforcer with a memory of size T iff:

max{holdOPK
(m) | m ∈ MD} ≤ T (9)

The proof of this proposition is given in Appendix A.3.1. Consequently, en-
forcement of aK-step based opacity with a memory of a given size is decidable.

28 Yliès Falcone, Hervé Marchand

6.4 Synthesis of runtime enforcers

We now address the synthesis of runtime enforcers for opacity. We first start
by defining the enforcement primitives endowed to the enforcers we consider.

Enforcement operations. We define enforcement operations specifically used
by our R-Enforcers dedicated to opacity. First, we need to define some aux-
iliary operations. In the following, we will use the following notations for
the R-Enforcers’ memory. For two memory configurations c and c′ s.t. c =
(σ1, d1) · · · (σt, dt), c

′ = (σ1, d
′
1) · · · (σt′ , d

′
t′) with t′ ≤ t:

– c↓Σo

def

= σ1 · · ·σt,
– (c \ c′)↓Σo

is ǫΣo
if c = c′ and the sequence of events σt′+1 · · ·σt otherwise.

Definition 14 (Auxiliary operations) For a memory M of size T , given
t ≤ T and c = (σ1, d1) · · · (σt, dt) ∈ M(T), free and delay (M(T) → M(T))
are defined as follows:

– delay(c)
def

= (σ1, d1 − 1) · · · (σt, dt − 1), with t ≤ T ;

– free(c)
def

= (σi, di) · · · (σt, dt), with 1 ≤ i ≤ t and

∀j ∈ [1, i− 1] : dj ≤ 0 ∧ di > 0.

The operation delay consists in decrementing the delay of each element inside
the memory. Intuitively, this operation is used when one step has been per-
formed on the system, and thus the stored events revealing the opacity have to
be retained for one unit of time less. The operation free consists in outputting
the events that currently do not leak opacity, i.e., the events with a negative
or null delay, starting from the first event in memory and until the first event
with a positive delay.

The following operations are those actually used by the runtime enforcers.

Definition 15 (Enforcement Operations) The actual enforcement opera-
tions are defined as follows where σ ∈ Σo, c = (σ1, d1) · · · (σt, dt) ∈ M(T).

– stored(σ, c)
def

= (o, c′ · (σ, d)), with c′ = free ◦ delay(c), o = (c \ c′)↓Σo
;

– dump(σ, c)
def

= (o, c′′) with

– c′
def

= free ◦ delay(c),

– o
def

= c↓Σo
· σ if c′ = ǫM and (c \ c′)↓Σo

otherwise,

– c′′
def

= c′ · (σ, 0) if c′ 6= ǫM and ǫM otherwise;

– off(σ, c)
def

= dump(σ, c);

– halt(σ, c)
def

= (ǫΣo
, ǫM).

For d ∈ [1,K], the stored operation is issued when the event submitted to
the R-Enforcer should be delayed by d unit(s) of time in order to preserve
opacity. This operation consists in first releasing the events preserving the
opacity (using free ◦ delay) and appending the event with the needed delay to
the memory. The dump operation is issued when the submitted event does

Enforcement and Validation (at runtime) of Various Notions of Opacity 29

not reveal the opacity. The event is submitted but not necessarily produced in
output. The R-Enforcer first releases the events preserving the opacity. After
this step, if the memory is empty, then the event is appended to the output
sequence. Otherwise, the event is appended in the memory with delay 0 so as
to first be released in the future and preserve the order of the input trace. The
off operation is issued by an R-Enforcer when the opacity will not be revealed
whatever are the future observable events produced by the system. Thus, the
R-Enforcer can be switched off. Though the off has the same definition as the
dump operation, such an enforcement operation is useful in practice since it
reduces the overhead induced by the R-Enforcer. The halt operation is issued
when the considered notion of opacity is irremediably revealed. This operation
consists in ignoring the submitted event, erasing the memory, and stopping the
underlying system.

Synthesis of R-Enforcers. We propose now to address the synthesis of R-
Enforcers relying on K-delay trajectory estimators.

For simple opacity the synthesis is achieved by the construction proposed
in Proposition 7. In the states of the underlying 1-delay trajectory estimator,
only the information about traversed states is considered for the simplicity of
notations by forgetting the Boolean information.

Proposition 7 (Synthesis of R-Enforcers for simple opacity) Given G,
S, and Σo ⊆ Σ, the R-Enforcer E = (QE , qE

init
, Σo, δE , {store1, dump, off}, Γ E ,

M(T)) built from the 1-delay trajectory estimator D = (MD,mD
init

, Σo, δD)
of G where:

– QE = MD, qE
init

= mD
init

, δE = δD,
– Γ E : QE → {store1, dump, off} defined by

– Γ E(m) = store1 if m(0) ∈ 2S ,
– Γ E(m) = off if m(0) /∈ 2S ∧ ∀m′ ∈ ∆D({m}, Σ∗

o) : m
′(0) /∈ 2S ,

– Γ E(m) = dump if m(0) /∈ 2S ∧ ∃m′ ∈ ∆D({m}, Σ∗
o) : m

′(0) ∈ 2S ,

enforces the simple opacity of S w.r.t. PΣo
on G.

This proposition is proven correct in Appendix A.3.2. An R-Enforcer built
following this construction processes an observation trace of the underlying
system and enforces the simple opacity of the secret. It switches off when the
current read observation trace and all its possible continuations on the system
do not leak the simple opacity of the current secret. It dumps the event of
the last observed trace when this trace does not leak the opacity but there is
a possibility that the secret may simply leak in the future. It stores the last
event of the observed trace in memory for one unit of time when this trace
leaks the simple opacity of the secret.

Synthesis of R-Enforcers for K-step weak and strong opacity is achieved
using K-delay trajectory estimators and the function holdOPK

to uniformly
address weak and strong versions of opacity.

Proposition 8 (Synthesis of R-Enforcers for K-step opacity) Given G,
S and Σo ⊆ Σ, the R-Enforcer E = (QE , qE

init
, Σo, δE , {halt, stored, dump, off |

30 Yliès Falcone, Hervé Marchand

m0

dump

m1

dump

m2

dump

m3

store–2

m4

store–1

m5

store–1

m6

off

m7

off

m8

off

m9

off

m10

off

m11

off

a

b

b

a

b

a

b

a, b

a, b

a, b

a, b

bba

a, b

a
ba

(a) For the 1-weak opacity of G1

m0

dump

m1

dump

m2

store–2

m3

dump

m4

store–2

m5

store–1

m6

store–1

m7

dump

m8

dump

m9

dump

m10

store–2

m11

dump

m12

dump

m13

store–3

m16

store–1

m14

store–3

m15

store–2

a

b

b a

a

b

a

b

a

b
b

a

b

a

b

b

b

a

a

b

a

a

b

a

a

b

a

b

a

b

a

b

b

a

(b) R-Enforcer of 2-strong opacity of G5

Fig. 10 R-Enforcers for K-step opacity

d ∈ [1, T]}, Γ E , M(T)), built from the K-delay trajectory estimator D =
(MD,mD

init
, Σo, δD) of G where QE = MD, qE

init
= mD

init
, δE = δD, and Γ E :

QE → {off, dump, stored, halt | d ∈ [1, T]} defined by:

– Γ E(m) = off if holdOPK
(m) = 0 ∧ ∀m′ ∈ ∆D({m}, Σ∗

o) : holdOPK
(m′) = 0,

– Γ E(m) = dump if holdOPK
(m) = 0∧∃m′ ∈ ∆D({m}, Σ∗

o) : holdOPK
(m′) 6= 0,

– Γ E(m) = stored if ∃d ∈ [1, T] : holdOPK
(m) = d,

– Γ E(m) = halt if ∃d > T : holdOPK
(m) = d.

enforces the K-step opacity OPK ∈ {OPW

K
,OPS

K
} of S under PΣo

on G.

This proposition is proven correct in Appendix A.3.3. The R-Enforcers built
from this construction enforce the K-step based opacity which is weak or
strong depending on the used function holdOPK

. They operate a dump or an
off enforcement operation relatively to K-step opacity in a similar fashion
to R-Enforcers for simple opacity. They store the last event of the current
observation trace for d unit(s) of time, with d ≤ T , when the current sequence
leads theK-step opacity to be revealedK+1−d step(s) ago (holdOPK

(m) = d).
Consequently, when the attacker will observe this event, this will reveal the
opacity of the secret at stricly more than K steps. When the current sequence
leaks the K opacity of the secret d steps ago with d > T , the R-Enforcer
halts the underlying system since the last event of this sequence cannot be
memorized with the allocated memory of size T .

Example 12 (R-Enforcers of K-step opacity) In Fig. 10a is represented
the R-Enforcer of G1 for 1-step weak and strong opacity. In Fig. 10b is repre-

Enforcement and Validation (at runtime) of Various Notions of Opacity 31

sented the R-Enforcer of K-strong opacity for G5. These R-Enforcers are built
from their K-delay trajectory estimators and with a sufficient memory size,
i.e., in both cases T > K for K-step opacity.

For instance, let us consider the observation trace a · a · b on G5 and the
enforcement of opacity on it. When the R-Enforcer reads a, this trace is safe
regarding the considered opacity. The R-Enforcer goes to state m1 and produces
the operation dump, i.e., the event is directly produced in output and visible
to the attacker. Now, when the system produces the next a, it is read by the
R-Enforcer, which ends in m13 and produces the enforcement operation store3.
That is, the last a will be retained in memory for 3 units of time. Indeed, the
sequence a · a ∈ leak(G5, PΣo

, S,OPS

K
, 0). Then, when the system produces a

subsequent b, this event will be retained in memory for 2 units of time. Note
that at this moment, the previous a has now to be retained for 2 units of time.
These two events will be released from the memory to the attacker at the same
moment and in the order they were produced on the system. For instance,
if the system produces the subsequent partial observation trace b · a, we have
safeOPS

K

(a · a · b · b · a, a · a) and safeOPS

K

(a · a · b · b · a, a · a · b).

Remark 7 (R-Enforcer optimization) In R-Enforcers, we can reduce the
states in which the off operation is produced, into a unique state. This is a
straightforward adaptation of the transformation that is not modifying their
correctness.

Remark 8 (Delaying events and deadlocks) Given some enforceable K-
step opacity notion (i.e., with a with a sufficient memory), no deadlock can be
introduced as we do not consider time. In the worst case scenario an enforce-
ment monitor for K-step opacity delays the sequence by K + 1 time units.

7 Related work

In this section, we propose a comparison with related work.

7.1 Model-checking of K-weak opacity

In Saboori and Hadjicostis (2011), the authors addressed the model-checking of
K-weak opacity, using a mechanism similar to K-delay trajectory estimators.
Expressing the authors’ result in the context of K-delay trajectory estimators
in which the Boolean information is omitted, a system G a secret S ⊆ QG

is (G, PΣo
,K)-weakly opaque if and only if there does not exist a state m

reachable in D, the K-delay trajectory estimator of G, such that ∃k ∈ [0,K] :
m(k) ∈ 2S .

7.2 Using runtime techniques

Validating simple opacity via testing. In Marchand et al (2009), the authors
are interested in testing the simple opacity of a system. In the context of

32 Yliès Falcone, Hervé Marchand

ensuring opacity via access control mechanisms, the authors show how to ex-
tend the classical theory of conformance testing in order to derive tests that
detect violation of the conformance by an access control implementation to
its specification. Thus, the authors study another kind of runtime-based tech-
nique, namely testing, in order to validate opacity. The authors only address
the current opacity of the secret modelled by a finitary language. Validation
of the K-step based opacity (weak and strong) through testing remains to be
studied.

Runtime verification and runtime enforcement for linear-time properties. There
exists a large amount of runtime verification and runtime enforcement frame-
works designed for linear-time properties (see Havelund and Goldberg (2008);
Leucker and Schallhart (2008); Falcone (2010) for short surveys). The ma-
jor part of the research endeavor in runtime verification was done on the
monitoring of safety properties (stating that something bad should not hap-
pen), as seen for example in Havelund and Rosu (2002). Runtime enforcement
was initiated by the work of Schneider (2000) on what has been called secu-
rity automata; i.e., monitors watching the execution and halting the program
whenever it deviates from the desired property. Later, Ligatti et al (2009)
proposed a more powerful enforcement mechanism called edit-automata. This
mechanism featured the idea of “suppressing” (i.e., freezing) and “inserting”
(frozen) actions in the current execution of a system.

To the best of the authors’ knowledge, the only runtime-based approach
to validate opacity was the one proposed in Dubreil et al (2009). The authors
propose a runtime verification (monitoring) approach of simple opacity. Thus,
this article is the first to address runtime verification for K-step based notions
of opacity and to introduce runtime enforcement as a validation technique for
opacity. Note that the notion of runtime enforcer proposed in this paper is
inspired from and extends the variant used in Falcone et al (2008, 2009a) (and
summarized in Falcone et al (2011)) where runtime enforcers were defined in
order to enforce linear temporal properties.

7.3 Comparison with supervisory control

In this particular setting used to ensure opacity at runtime, thanks to the
halt operation, runtime enforcement is similar to supervisory control. Indeed,
blocking the system or letting its execution going through are the only prim-
itives endowed to controllers. The difference between supervisory control and
runtime enforcement is as follows. In supervisory control, the underlying sys-
tem is put in parallel with a controller. When a controlled system tries to
perform an illegal action, this action is disabled by the supervisory controller.
In runtime enforcement, actions of the systems are directly fed to the enforcer,
that delays or suppresses illegal actions. Illegal actions are thus actually exe-
cuted in the system but not produced in output. In some sense, the effect of
illegal actions is not visible from the outside. This illustrates that enforcement

Enforcement and Validation (at runtime) of Various Notions of Opacity 33

monitoring is particularly appropriate to ensure a desired behavior on the sys-
tem outputs, while supervisory control is particularly appropriate to ensure a
desired behavior on the internal behavior of a system. Finally, note that, the
system to be considered in a runtime enforcement approach is the initial sys-
tem along with its runtime enforcer. In supervisory control, it is the product
between the initial system and the controller which is to be considered.

8 Conclusion and future work

Conclusion. In this paper we are interested in the use of runtime techniques
so as to ensure several levels of opacity. Proposed runtime techniques are com-
plementary to supervisory control, which is usually used to validate opacity
on systems. We take into account two existing levels of opacity (simple and
K-weak), and introduce K-strong opacity circumventing some limitations of
the opacity notions proposed so far. With runtime verification, we are able to
detect leakages for the various levels of opacity. With runtime enforcement,
opacity leakages are prevented, and this technique guarantees opacity preser-
vation for the system of interest.

The techniques proposed in this paper have several advantages compared
to existing validation approaches for opacity. With the aim of ensuring the
opacity of system, runtime enforcement is a non intrusive technique that is not
damaging the internal nor the observable behavior of the underlying system.

All results of this paper are implemented in a prototype toolbox, named
TAKOS: a Java Toolbox for the Analysis of K-Opacity of Systems, which is
freely available at the following address:

http://toolboxopacity.gforge.inria.fr.

TAKOS is able to model-check, synthesize R-Verifiers and R-Enforcers for
the notions of opacity considered in this article. A complete description along
with a user manual and usage of TAKOS on various examples are available
in Falcone and Marchand (2010a).

Future work. Other kinds of opacity conditions might be interesting to handle
in this framework like initial opacity (proposed in Saboori and Hadjicostis
(2013)) or infinite-step opacity (proposed in Saboori and Hadjicostis (2009)).
This would necessitate to introduce new kinds of trajectory estimators, as
shown in Saboori and Hadjicostis (2009, 2013) for verification purposes.

As the proposed runtime techniques are complementary to supervisory
control, we plan to study how we can combine those techniques to obtain
the best of both worlds. For instance, when runtime enforcement with a given
memory size is not possible, one may be interested in synthesizing controllers in
order to restrict the system so as to ensure the existence of runtime enforcers.

Another current working direction is to address two practical implementa-
tion issues. The first one is the retrieval of a suitable model of the analyzed
system from either its source or binary code, e.g., an LTS as considered in this

34 Yliès Falcone, Hervé Marchand

article, in order to apply the proposed techniques. The second one, is about
integrating the synthesized high-level description in concrete programs. That
will entail us to design a translation of R-Verifiers and R-Enforcers in the
target programming language.

Acknowledgements The authors would like to gratefully thank the anonymous reviewers
for their helpful remarks.

References

Alur R, Zdancewic S (2006) Preserving secrecy under refinement. In: Proc.
of the 33rd Internat. Colloq. on Automata, Languages and Programming
(ICALP 06), volume 4052 of Lecture Notes in Computer Science, Springer-
Verlag, pp 107–118

Badouel E, Bednarczyk M, Borzyszkowski A, Caillaud B, Darondeau P (2007)
Concurrent secrets. Discrete Event Dynamic Systems 17(4):425–446, DOI
http://dx.doi.org/10.1007/s10626-007-0020-5

Bryans J, Koutny M, Mazaré L, Ryan PYA (2008) Opacity generalised to
transition systems. International Journal of Information Security 7(6):421–
435

Cassandras CG, Lafortune S (2006) Introduction to Discrete Event Systems.
Springer-Verlag, Secaucus, NJ, USA

Cassez F, Dubreil J, Marchand H (2009) Dynamic observers for the synthesis of
opaque systems. In: ATVA’09: 7th International Symposium on Automated
Technology for Verification and Analysis, pp 352–367

Dubreil J (2009) Monitoring and supervisory control for opacity properties.
PhD thesis, Université de Rennes 1

Dubreil J, Jéron T, Marchand H (2009) Monitoring confidentiality by diagnosis
techniques. In: European Control Conference, Budapest, Hungary, pp 2584–
2590

Dubreil J, Darondeau P, Marchand H (2010) Supervisory control for opacity.
IEEE Transactions on Automatic Control 55(5):1089–1100

Falcone Y (2010) You should better enforce than verify. In: Barringer H, Fal-
cone Y, Finkbeiner B, Havelund K, Lee I, Pace GJ, Rosu G, Sokolsky O,
Tillmann N (eds) RV, Springer, Lecture Notes in Computer Science, vol
6418, pp 89–105

Falcone Y, Marchand H (2010a) TAKOS: a Java Toolbox for the Analysis of
K-Opacity of Systems. Available at http://toolboxopacity.gforge.inria.fr

Falcone Y, Marchand H (2010b) Various notions of opacity verified and en-
forced at runtime. Tech. Rep. 7349, INRIA

Falcone Y, Marchand H (2013) Runtime enforcement of k-step opacity. In:
Proceedings of the 52nd Conference on Decision and Control, IEEE

Falcone Y, Fernandez JC, Mounier L (2008) Synthesizing enforcement moni-
tors wrt. the safety-progress classification of properties. In: Sekar R, Pujari

Enforcement and Validation (at runtime) of Various Notions of Opacity 35

AK (eds) ICISS, Springer, Lecture Notes in Computer Science, vol 5352, pp
41–55

Falcone Y, Fernandez JC, Mounier L (2009a) Enforcement monitoring wrt.
the safety-progress classification of properties. In: SAC’09: Proceedings of
the 2009 ACM symposium on Applied Computing, ACM, pp 593–600

Falcone Y, Fernandez JC, Mounier L (2009b) Runtime verification of safety-
progress properties. In: RV’09: Proceedings of the 9th Workshop on Runtime
Verification. Revised selected Papers, pp 40–59

Falcone Y, Mounier L, Fernandez JC, Richier JL (2011) Runtime enforcement
monitors: composition, synthesis, and enforcement abilities. Formal Meth-
ods in System Design 38(3):223–262

Falcone Y, Fernandez JC, Mounier L (2012) What can you verify and enforce
at runtime? STTT 14(3):349–382

Hamlen KW, Morrisett G, Schneider FB (2006) Computability classes for en-
forcement mechanisms. ACM Trans Programming Lang and Syst 28(1):175–
205, DOI http://doi.acm.org/10.1145/1111596.1111601

Havelund K, Goldberg A (2008) Verify your runs. In: VSTTE’05: Verified Soft-
ware: Theories, Tools, Experiments: First IFIP TC 2/WG 2.3 Conference,
Revised Selected Papers and Discussions, pp 374–383

Havelund K, Rosu G (2002) Efficient monitoring of safety properties. Software
Tools and Technology Transfer

Leucker M, Schallhart C (2008) A brief account of runtime verification. Journal
of Logic and Algebraic Programming 78(5):293–303

Ligatti J, Bauer L, Walker D (2005) Enforcing Non-safety Security Policies
with Program Monitors. In: ESORICS, pp 355–373

Ligatti J, Bauer L, Walker D (2009) Run-time enforcement of nonsafety poli-
cies. ACM Transactions on Information and System Security 12(3):1–41,
URL http://doi.acm.org/10.1145/1455526.1455532

Marchand H, Dubreil J, Jéron T (2009) Automatic testing of access control
for security properties. In: TestCom’09, Springer-Verlag, LNCS, vol 5826,
pp 113–128

Pnueli A, Zaks A (2006) PSL model checking and run-time verification via
testers. In: FM’06: Proceedings of Formal Methods, pp 573–586

Saboori A, Hadjicostis CN (2007) Notions of security and opacity in discrete
event systems. In: CDC’07: 46th IEEE Conf. Decision and Control, pp 5056–
5061

Saboori A, Hadjicostis CN (2009) Verification of infinite-step opacity and anal-
ysis of its complexity. In: Dependable Control of Discrete Systems

Saboori A, Hadjicostis CN (2011) Verification of k-step opacity and analysis of
its complexity. IEEE Trans Automation Science and Engineering 8(3):549–
559

Saboori A, Hadjicostis CN (2012) Opacity-enforcing supervisory strategies via
state estimator constructions. IEEE Trans Automat Contr 57(5):1155–1165

Saboori A, Hadjicostis CN (2013) Verification of initial-state opacity in secu-
rity applications of discrete event systems. Inf Sci 246:115–132

36 Yliès Falcone, Hervé Marchand

Schneider FB (2000) Enforceable security policies. ACM Transaction of Infor-
mation System Security 3(1):30–50

Takai S, Kumar R (2009) Verification and synthesis for secrecy in discrete-
event systems. In: ACC’09: Proceedings of the 2009 conference on American
Control Conference, IEEE Press, Piscataway, NJ, USA, pp 4741–4746

Takai S, Oka Y (2008) A formula for the supremal controllable and opaque
sublanguage arising in supervisory control. SICE Journal of Control, Mea-
surement, and System Integration 1(4):307–312

Wu Y, Lafortune S (2012) Enforcement of opacity properties using insertion
functions. In: 51st IEEE Conf. on Decision and Contr., pp 6722–6728

A Proofs

A.1 Proofs of Section 4

Proposition 1 (p. 8). We shall prove that a secret S ⊆ QG is (G, PΣo
,K)-

weakly opaque if and only if

∀µ ∈ TΣo
(G), ∀µ′ � µ : |µ− µ′| ≤ K ⇒ [[µ′/µ]]Σo

6⊆ LS(G).

Proof We prove the equivalence by showing the implication in both ways.
(⇒) Let µ ∈ TΣo

(G), µ′ � µ such that |µ−µ′| ≤ K. Let t ∈ [[µ]]Σo
and t′ � t

such that t′ ∈ [[µ′]]Σo
. Then, we have |t− t′|Σo

≤ K and t′ ∈ [[µ′/µ]]Σo
. If t′ /∈

LS(G), then [[µ′/µ]]Σo
6⊆ LS(G). Otherwise t′ ∈ LS(G) and as S is (G, PΣo

,K)-
weakly opaque, there exist s, s′ ∈ L(G) such that s ≈Σo

t, s′ ≈Σo
t′, and

s′ /∈ LS(G). We thus have that s′ ∈ [[µ′/µ]]Σo
and finally [[µ′/µ]]Σo

6⊆ LS(G).
(⇐) Reciprocally, let t ∈ L(G), t′ � t such that |t − t′|Σo

≤ K and t′ ∈
LS(G). Let µ = PΣo

(t), µ′ = PΣo
(t′). By definition, we have |µ−µ′| ≤ K. Now,

by hypothesis we know that [[µ′/µ]]Σo
6⊆ LS(G). So there exist s ∈ [[µ]], s′ � s,

such that s′ ∈ [[µ′/µ]]Σo
and s′ /∈ LS(G). Finally, we have found s ∈ L(G),

s′ � s such that s ≈Σo
t ∧ s′ ≈Σo

t′ ∧ s′ /∈ LS(G). Thus, S is (G, PΣo
,K)-

weakly opaque. ⊓⊔

Proposition 2 (p. 10). We shall prove that, on G, S ⊆ QG is (G, PΣo
,K)-

strongly opaque if and only if

∀µ ∈ TΣo
(G) : [[µ]]Σo

∩ FreeSK(G) 6= ∅.

Proof We prove the equivalence by showing the implication in both ways.
(⇐) Let t ∈ L(G) and µ = PΣo

(t), by hypothesis we have [[µ]]Σo
∩FreeSK(G)

6= ∅. In particular, there exists s ∈ [[µ]]Σo
(thus s ≈Σo

t) such that ∀s′ �
s : |s − s′|Σo

≤ K ∧ s′ /∈ LS(G), which entails that S is (G, PΣo
,K)-strongly

opaque.
(⇒) Let µ ∈ TΣo

(G) and t ∈ [[µ]]Σo
. As S is (G, PΣo

,K)-strongly opaque,
there exists s ∈ L(G) such that s ≈Σo

t and ∀s′ � s : |s − s′|Σo
≤ K ⇒ s′ /∈

LS(G). Obviously s ∈ FreeSK(G), and, as s ∈ [[µ]]Σo
, [[µ]]Σo

∩FreeSK(G) 6= ∅. ⊓⊔

Enforcement and Validation (at runtime) of Various Notions of Opacity 37

A.2 Proofs of Section 5

In the two following lemmas, let us recall that only the information about
traversed states is considered.

A.2.1 Lemma 1 (p. 14)

Given a system G modeled by an LTS (QG , qG
init

, Σ, δG) and the corresponding
K-delay trajectory estimator D = (MD, qD

init
, Σo, δD), then

• ∀µ ∈ TΣo
(G) s.t. |µ| ≥ K ∧ µ = µ′ · σ1 · · ·σK ,

∀s ∈ [[µ]]Σo
: (s = s′ · s1 · · · sK ∧ ∀i ∈ [1,K] : PΣo

(si) = σi)

∃(q0, . . . , qK) ∈ δD(mD
init

, µ) : q0
s1→G q1 · · · qK−1

sK→G qK ,

• ∀µ ∈ TΣo
(G) s.t. n = |µ| < K ∧ µ = σ1 · · ·σn,

∀s ∈ [[µ]]Σo
: (s = s′ · s1 · · · sn ∧ ∀i ∈ [1, n] : PΣo

(si) = σi),

∃(q0, . . . , qK) ∈ δD(mD
init

, µ) : qK−n
s1→G qK−n+1 · · ·

sn−1

→ G qK−1
sn→G qK ,

∧ qG
init

s′

→G qK−n.

Proof The proof is done by induction on |µ|. We consider only observation
traces µ of length |µ| ≥ 1 since for the empty observation trace, the informa-
tion provided by a K-delay trajectory estimator reduces to the state estimate
reachable with unobservable events from the system. This information is given
in the initial state of the trajectory estimator and is trivially correct by defi-
nition.

– For |µ| = 1, µ = σ1, by definition mD
init

= ⊙K+1∆G({q
G
init

}, [[ǫ]]Σo
). In par-

ticular (q, . . . , q) ∈ mD
init

for every q ∈ ∆G({q
G
init

}, [[ǫ]]Σo
). Let s′ · s1 ∈

[[σ1]]Σo
(with PΣo

(s′) = ǫ and PΣo
(s1) = σ1) such that q

s1→G q1 for
some q ∈ ∆G({q

G
init

}, [[ǫ]]Σo
). By definition (q, q1) ∈ Obs(σ1) and thus

(q, . . . , q, q1) ∈ δD(mD
init

, σ1).
– Assume now that the property holds for any trace of G of length strictly

less than K. Let µ ∈ TΣo
(G) s.t. n = |µ| < K∧µ = σ1 · · ·σn and s ∈ [[µ]]Σo

s.t. s = s′ · s1 · · · sn ∧ ∀i ∈ [1, n] : PΣo
(si) = σi ∧ PΣo

(s′) = ǫ. We have
s′ · s1 · · · sn−1 ∈ [[µ′]]Σo

with µ′ = σ1 · · ·σn−1. By induction hypothe-

sis, ∃(q, q0, . . . , qK−1) ∈ m′ = δD(mD
init

, µ′) : qK−n
s1→G qK−n+1 · · ·

sn−2

→ G

qK−2
sn−1

→ G qK−1. Now, consider m = m′‖Obs(σn). As s ∈ [[µ]]Σo
, we get

that there exists qK ∈ QG such that qK−n
s1→G qK−n+1 · · ·

sn−2

→ G qK−2
sn−1

→ G

qK−1
sn→G qK with PΣo

(sn) = σn. Now by definition of the function Obs,
we have (qK−1, qK) ∈ Obs(σn) and finally by definition of ‖, we have
(q0, . . . , qn) ∈ m.

– The case where |µ| ≥ K follows exactly the same pattern. ⊓⊔

A.2.2 Lemma 2 (p. 15)

Given a system G modelled by an LTS (QG , qG
init

, Σ, δG) and the correspond-
ing K-delay trajectory estimator D = (MD,mD

init
, Σo, δD), then ∀m ∈ MD,

38 Yliès Falcone, Hervé Marchand

∀(q0, . . . , qK) ∈ m, ∀µ ∈ TΣo
(G) : δD(mD

init
, µ) = m,

• |µ| = 0 ⇒ ∀(q, . . . , q) ∈ m = mD
init

, ∃s ∈ [[µ]]Σo
: qG

init

s
−→G q ∧ PΣo

(s) = ǫ,

• n = |µ| < K ∧ µ = σ1 · · ·σn ⇒
∃s′ · s1 · · · sn ∈ [[µ]]Σo

:

qG
init

s′

→G qK−n
s1→G qK−n+1 · · · qK−1

sn→G qK ∧ ∀i ∈ [1, n] : PΣo
(si) = σi

• |µ| ≥ K ∧ µ = µ′ · σ1 · · ·σK ⇒
∃s′ · s1 · · · sK ∈ [[µ]]Σo

:

qG
init

s′

→G q0
s1→G q1 · · ·

sK→G qK ∧ ∀i ∈ [1,K] : PΣo
(si) = σi.

Proof Let us consider m ∈ MD, and µ ∈ TΣo
(G) : δD(mD

init
, µ) = m. The proof

is done by induction on |σ|.

– If |µ| = 0, then µ = ǫΣo
and m = mD

init
= ⊙K+1(∆G({q

G
init

}, [[ǫ]]Σo
)). Then

all state estimates (q, . . . , q) ∈ mD
init

are s.t. q ∈ ∆G({q
G
init

}, [[ǫ]]Σo
). Then,

there exists s ∈ L(G) s.t. qG
init

s
−→G q and PΣo

(s) = ǫ.
– Assume that the property holds for all µ′ ∈ TΣo

(G) such that |µ′| < n and
consider µ ∈ TΣo

(G) such that |µ| = n
– If |µ| = n < K, µ can be written µ = σ1 · · ·σn. Consider now an

element ofm. It is of the form (qK−n, . . . , qK−n, qK−n+1, . . . , qK−1, qK).
There exists m1 ∈ MD s.t. δD(m1, σn) = m = m1‖Obs(σn) such that
(qK−n, . . . , qK−n, qK−n+1, . . . , qK−1) ∈ m1 and (qK−1, qK) ∈ Obs(σn).
Let µ′ = σ1 · · ·σn−1, by induction hypothesis on m1 and µ′, there exists
s′′ = s′ · s1 · · · sn−1 with PΣo

(s′) = ǫ and ∀i ∈ [1, n − 1] : PΣo
(si) = σi

such that qG
init

s′

−→G qK−n
s1−→G qK−n+1

s2−→G · · ·
sn−1

−→G qK−1. Now by
definition of Obs, there exists sn ∈ Σ∗ with PΣo

(sn) = σn such that

qK−1
sn−→G qK . Finally s = s′′ · sn is such that qG

init

s′

−→G qK−n
s1−→G

q1 · · · qK−1
sn−→G qK and s ∈ [[µ]]Σo

.
– If |µ| ≥ K, µ can be written µ = µ′ · σ1 · · ·σK . There exists m1 ∈

MD s.t. δD(m1, σK) = m = m1‖Obs(σK). Furthermore, there ex-
ists q ∈ QG s.t. (q, q0, . . . , qK−1) ∈ m1 and (qK−1, qK) ∈ Obs(σK).
By induction hypothesis applied on (q, q0, . . . , qK−1) ∈ m1, there ex-
ists s” = s′ · s0 · · · sK−1 ∈ [[µ′ · σ0 · · ·σK−1]]Σo

with ∀i ∈ [0,K − 1] :

PΣo
(si) = σi such that q

s0−→G q0
s1−→G · · ·

sK−1

−→ G qK−1. Finally since
(qK−1, qK) ∈ Obs(σK), there exists sK ∈ Σ∗ with PΣo

(sK) = σK

such that qK−1
sK−→G qK . Overall s = s” · sK is such that q0

s1−→G

q1 · · · qK−1
sK−→G qK and s ∈ [[µ]]Σo

. ⊓⊔

A.2.3 Proposition 4 (p. 16)

We shall prove the soundness and completeness of the synthesized R-Verifiers
for K-weak opacity, as exposed in Definition 6. That is, we prove that ∀µ ∈

Enforcement and Validation (at runtime) of Various Notions of Opacity 39

TΣo
(G), ∀l ∈ [0,K] :

ΓV(δV(q
V
init

, µ)) = leakl ⇔ µ ∈ leak(G, PΣo
, S,OPW

K
, l)

∧ ΓV(δV(q
V
init

, µ)) = noleak ⇔ µ /∈ leak(G, PΣo
, S,OPW

K
).

Proof We consider µ ∈ TΣo
(G) s.t. δD(mD

init
, µ) = m.

(⇒)

– If ΓV(δV(q
V
init

, µ)) = noleak, we have ΓV(m) = noleak, that is ∀i ∈ [0,K] :
m(i) /∈ 2S . Using Proposition 3, we have ∀i ∈ [0,min{|µ|,K}] : m(i) =
δG(q

G
init

, [[µ···|µ|−i−1/µ]]Σo
) /∈ 2S . That is, ∀µ′ � µ : |µ − µ′|Σo

≤ K ⇒
[[µ/µ′]]Σo

6⊆ LS(G). According to Equation (1) (p. 9), it means that µ /∈
leak(G, PΣo

, S,OPW

K
).

– If ΓV(δV(q
V
init

, µ)) = leakl, we have ΓD(m) = leakl, that is m(l) ∈ 2S and
∀i < l : m(i) /∈ 2S . Similarly, using Proposition 3 we have [[µ···|µ|−l−1/µ]]Σo

⊆
LS(G) and ∀i < l : [[µ···|µ|−i−1/µ]]Σo

6⊆ LS(G), i.e., according to Equa-
tion (2) (p. 9) µ ∈ leak(G, PΣo

, S,OPW
K , l).

(⇐)

– If µ /∈ leak(G, PΣo
, S,OPW

K
), that is ∀µ′ � µ : |µ − µ′| ≤ K ⇒ [[µ′/µ]]Σo

6⊆
LS(G). Then using Proposition 3, we have ∀i ∈ [0,min{|µ|,K}] : m(i) /∈
2S . Following the definition of R-Verifiers construction, we have ΓV(m) =
noleak.

– If µ ∈ leak(G, PΣo
, S,OPW

K , l), then according to Equation (1), we have
[[µ···|µ|−l−1/µ]]Σo

⊆ LS(G) and ∀i < l : [[µ···|µ|−i−1/µ]]Σo
6⊆ LS(G). Now,

using Proposition 3, ∀i ∈ [0, l[: m(i) /∈ 2S and m(l) ∈ 2S . According to the
definition of the construction of R-Verifiers for K-weak opacity (definitions
of QV and ΓV), we deduce that ΓV(m) = leakl. ⊓⊔

A.2.4 Proposition 5 (p. 17)

We shall prove the soundness and completeness of the synthesized R-Verifiers
for K-strong opacity, as exposed in Definition 6. That is, we prove that ∀µ ∈
TΣo

(G), ∀l ∈ [0,K] :

ΓV(δV(q
V
init

, µ)) = leakl ⇔ µ ∈ leak(G, PΣo
, S,OPS

K
, l)

∧ ΓV(δV(q
V
init

, µ)) = noleak ⇔ µ /∈ leak(G, PΣo
, S,OPS

K
).

Proof We consider µ ∈ TΣo
(G) s.t. δD(mD

init
, µ) = m.

(⇒)

– If ΓV(δV(q
V
init

, µ)) = noleak, i.e., ∃((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m ↓ s.t. ∀i ∈
[0,K] : qi /∈ S, and ∀i ∈ [0,K − 1] : bi = true. Let us consider µ ∈ TΣo

(G),
s.t. δV(q

V
init

, µ) = m. If |µ| ≥ K and µ = µ′ · σ0 · · ·σK−1, then according
to Lemma 2, ∃s = s′ · s0 · · · sK−1 ∈ [[µ]]Σo

with ∀i ≤ K − 1 : PΣo
(si) =

σi ∧ q0
s0→G q1 · · · qK−1

sK−1

→ G qK . Moreover, as ∀i ∈ [0,K − 1] : bi =
true, we can choose s such that ∀i ∈ [0,K − 1] : si ∈ FreeS1 (G(qi−1)).
Consequently s0 · · · sK−1 ∈ FreeSK(G(q0)). Let s

′′ be the smallest prefix of

40 Yliès Falcone, Hervé Marchand

s′ s.t. |s′′|Σo
= |s′|Σo

. Necessarily we have s′ = s′′. Otherwise, because
of the suitability of K-delay trajectory estimators, in m we would have
((q′i)0≤i≤K , (b′i)0≤i≤K−1) where

redundant
(

((qi)0≤i≤K , (bi)0≤i≤K−1), ((q
′
i)0≤i≤K , (b′i)0≤i≤K−1)

)

would hold, which is a contradiction with ((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m ↓.
Overall s ∈ FreeSK(G) and s ∈ [[µ]]Σo

∩ FreeSK(G) which means that µ /∈
leak(G, PΣo

, S,OPS
K) (the case where |µ| < K is similar).

– If ΓV(δV(q
V
init

, µ)) = leakl for some l ∈ [1,K], i.e., l = min{l′ ∈ [1,K] |
∀((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m, ∃i ≤ l′ : qK−i ∈ S ∨ bK−i = false}.
Let us suppose that |µ| ≥ K (the case where |µ| < K is similar), µ =
µ′ · σ0 · · ·σK−1. Now, let us consider s ∈ [[µ]]Σo

, s = s′ · s0 · · · sK−1 with
∀i ≤ K − 1 : PΣo

(si) = σi. By definition, there exists (qi)0≤i≤K s.t.

qG
init

s′

−→G q0
s0−→G q1 · · ·

sK−1

−→ G qK and according to Lemma 1, there exists
(bi)0≤i≤K−1 s.t. ((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m. By hypothesis, there exists
i ≤ l s.t. qK−i ∈ S or bK−i = false.
– If qK−i ∈ S then s′ · s0 · · · sK−i−1 ∈ LS(G). Moreover, we have |s− s′ ·

s0 · · · sK−i−1|Σo
≤ l, which gives us the expected result.

– If bK−i = false, meaning that sK−i /∈ FreeS1 (G(qK−i)), then there exists
a prefix s′K−i of sK−i s.t. s” = s′ · s0 · · · s

′
K−i ∈ LS(G). Moreover, we

have either PΣo
(s′K−i) = σK−i or PΣo

(s′K−i) = ǫ. In both cases, we
have |s− s”|Σo

≤ l, which gives us again the expected result.
Consider now l′ < l, then ∃((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m, ∀i ≤ l′ : qK−i /∈
S ∧ bK−i = true, which entails that all the sequences that match the
elements of m belong to FreeSl′(G) and thus µ ∈ leak(G, PΣo

, S,OPS
K , l).

– If ΓV(δV(q
V
init

, µ)) = leak0, then ∀((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m, qK ∈ S,

which entails that [[µ]]Σo
⊂ LS(G) and thus µ ∈ leak(G, PΣo

, S,OPS
K , 0).

(⇐)

– If µ /∈ leak(G, PΣo
, S,OPS

K). It means that there exists s ∈ [[µ]]Σo
∩FreeSK(G).

Let m = δD(mD
init

, µ). According to Lemma 1, there exist s′, s1, . . . , sK ∈
Σ∗ s.t.:
– s = s′ · s1 · · · sK ,
– ∀i ≤ K : PΣo

(si) = σi,

Each trajectory ((qi)0≤i≤K , (bi)0≤i≤K−1) in δD(mD
init

, µ) are s.t. q0
s1→G

q1 · · · qK−1
sK→G qK . At least one trajectory in δD(mD

init
, µ) is not redun-

dant with the others. We have ((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ δD(mD
init

, µ) ↓.
Let us note ((qi)0≤i≤K , (bi)0≤i≤K−1) this trajectory. Now as s ∈ FreeSK(G),
it is easy to see that ∀i ∈ [0,K − 1] : bi = true. Finally ΓV(δV(q

V
init

, µ)) =
ΓV(m) = noleak.

– If µ ∈ leak(G, PΣo
, S,OPS

K , l) for some l ∈ [1,K]. By hypothesis, we have
[[µ]]Σo

∩FreeSl (G) = ∅ and ∀l′ < l : [[µ]]Σo
∩FreeSl (G) 6= ∅. Let δD(mD

init
, µ) =

m and ((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m. According to Lemma 2, ∃s1, . . . , sK ∈
Σ∗ : s = s′ · s1 · · · sK such that ∀i ≤ K : PΣo

(si) = σi, s ∈ [[µ]]Σo
and

Enforcement and Validation (at runtime) of Various Notions of Opacity 41

q0
s1→G q1 · · · qK−1

sK→G qK . As s /∈ FreeSl (G), there exists i ≤ l such that
either qK−i ∈ S or sK−i /∈ FreeS1 (G(qK−i)), which entails, by construc-
tion that bK−i = false. Now for l′ < l, there exists s ∈ [[µ]]Σo

∩ FreeSl′(G).
To this s, we can associate an element ((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m ↓
(among the non-redundant trajectories of m) s.t. ∀i ∈ [0, l′]: qK−i /∈
S ∧ ∀i ∈ [1, l′] : bK−i = true, which entails that l is the smallest num-
ber s.t. ∀((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m, ∃i ≤ l : qK−i ∈ S or bK−i = false.

– If µ ∈ leak(G, PΣo
, S,OPS

K , 0), then by definition [[µ]]Σo
⊆ LS(G) and thus

∀((qi)0≤i≤K , (bi)0≤i≤K−1) ∈ m : qK ∈ S, which concludes the proof. ⊓⊔

A.3 Proofs of Section 6

A.3.1 Proposition 6 (p. 27)

For a K-delay trajectory estimator D = (MD,mD
init

, Σo, δD) associated to a
system G, we prove that the K-step based opacity OPK ∈ {OPW

K
,OPS

K
} of the

secret S is enforceable by an R-Enforcer with memory size T if and only if (9),
i.e., if and only if

max{holdOPK
(m) | m ∈ MD} ≤ T.

Proof This is a direct consequence of Proposition 3 and the definition of
safeOP(µ, µ

′) (Definition 12). Indeed, (9) ⇔ max{K +1− lm | m ∈ MD} ≤ T ,
with lm s.t. ∀µ ∈ TΣo

(G) : δD(mD
init

, µ) = m ⇒ µ ∈ leak(G, PΣo
, S,OPK, lm).

Furthermore, using Lemma 3, one can notice that the previous proposition is
equivalent to

max
µ∈TΣo (G)

{

K + 1− lm | δD(qD
init

, µ) = m ∧ µ ∈ leak(G, PΣo
, S,OPK, lm)

}

≤ T.

Moreover, from the definition of safe, for a trace µ ∈ leak(G, PΣo
, S,OPK, l),

one can notice that K + 1 − l = min{|µ′| − |µ| | µ � µ′ ∧ safeOPK
(µ′, µ)}

with the convention that l = K + 1 when µ /∈ leak(G, PΣo
, S,OPK). Then

(9) ⇔ maxµ∈TΣo (G)

{

min{|µ′| − |µ| | µ � µ′ ∧ safe(µ′, µ)}
}

≤ T . ⊓⊔

A.3.2 Proposition 7 (p. 29)

Proof We shall prove that: ∀µ ∈ TΣo
(G), ∃o � µ : µ ⇓E o ⇒

µ /∈ leak(G, PΣo
, S,OP0) ⇒ o = µ (5)

µ ∈ leak(G, PΣo
, S,OP0) ⇒ o = max{µ′ ∈ TΣo

(G) | µ′ � µ ∧ safeOP0
(µ, µ′)} (6)

Let us consider µ ∈ TΣo
(G), the proof is conducted by induction on |µ|.

If |µ| = 1, then ∃σ ∈ Σo : µ = σ. The run of µ on E can be expressed
run(µ, E) = (qE

init
, σ/α, q1) with q1 ∈ QE , Γ E(q1) = α. The R-Enforcer’s evo-

lution of configurations is (qE
init

, σ, ǫM)
o
→֒ (q, ǫΣo

,m) with α(σ, ǫM) = (o,m).
Let us distinguish according to whether σ ∈ leak(G, PΣo

, S,OP0) or not.

42 Yliès Falcone, Hervé Marchand

– If σ /∈ leak(G, PΣo
, S,OP0), then we use the correctness of R-Verifiers syn-

thesized from K-delay trajectory estimators (Proposition 4). The state
m1 corresponding to q1 in the corresponding K-delay trajectory estima-
tor is s.t. m1(0) /∈ 2S . Then, using the definition of R-Enforcers synthe-
sis from K-delay trajectory estimators, we have α ∈ {dump, off}. Using
the definition of enforcement operations, we have: free ◦ delay(ǫM) = ǫM,
o = σ · (ǫM)↓Σo

= σ, m = ǫM. Thus, we find (5).
– If σ ∈ leak(G, PΣo

, S,OP0), then, similarly following from the correctness of
R-Verifier synthesized from K-delay trajectory estimators (Proposition 4),
we have α = store1. Similarly, we can find that o = ǫΣo

and m = (σ, 1).
Furthermore, as safeOP0

(σ, ǫΣo
), we have (6).

Let us consider µ ∈ Σ∗
o s.t. |µ| = n s.t. (5) and (6) hold. Let us note µ =

σ0 · · ·σn−1, and consider µ · σ. The run of µ · σ on E can be expressed

run(µ · σ, E) = (qE
init

, σ0/α0, q1) · · · (qn−1, σn−1/αn−1, qn) · (qn, σ/α, qn+1)

with ∀i ∈ [1, n + 1] : qi ∈ QE , α ∈ {store1, dump, off}, and ∀i ∈ [0, n −
1] : αi ∈ {store1, dump, off}. Let us distinguish again according to whether
µ · σ ∈ leak(G, PΣo

, S,OP0) or not.

– If µ·σ /∈ leak(G, PΣo
, S,OP0), then following the reasoning for the induction

basis, we know that α ∈ {off, dump}. Using the induction hypothesis, there
exists o ∈ TΣo

(G) s.t. µ ⇓E o and the constraints (5) and (6) hold.
Now we distinguish two cases according to whether µ ∈ leak(G, PΣo

, S,OP0)
or not.
• If µ /∈ leak(G, PΣo

, S,OP0), from (5), we know that o = µ. Then, µ induces
the following evolution of configurations for E :

(qE
init

, σ0 · · ·σn−1 · σ, ǫM)
o0
→֒ (q1, σ1 · · ·σn−1 · σ,m1)

o1
→֒ · · ·

on−1

→֒ (qn, σ, ǫM)

with o0 · · · on−1 = o = σ0 · · ·σn−1. Since α ∈ {off, dump}, α(σ, ǫM) =
(σ, ǫM). Then, we deduce the following evolution of configurations:

(qE
init

, µ · σ, ǫM) · · ·
on−1

→֒ (qn, σ, ǫM)
σ
→֒ (qn+1, ǫΣo

, ǫM).

Then, we deduce µ · σ ⇓E µ · σ, which gives us (5).
• Else (µ ∈ leak(G, PΣo

, S,OP0)), from (6), we know that o = max{µ′ ∈
TΣo

(G) | µ′ � µ ∧ safeOP0
(µ, µ′)}, i.e., using the definition of safeOP0

,
o = σ0 · · ·σn−2. Then, µ induces the following evolution of configurations
for E :

(qE
init

, µ · σ, ǫM)
o0
→֒ · · ·

on−1

→֒ (qn, σ, (σn−1, 1))

with o0 · · · on−1 = o = σ0 · · ·σn−2, and on−1 = ǫΣo
. Since α ∈ {off, dump},

α(σ, (σn−1, 1)) = (σn−1 ·σ, ǫM). Then, we deduce the following evolution
of configurations:

(qE
init

, µ · σ, ǫM) · · ·
on−1

→֒ (qn, σ, (σn−1, 1))
σn−1·σ
→֒ (qn+1, ǫΣo

, ǫM).

Then, we deduce µ · σ ⇓E µ · σ, i.e., (5).

Enforcement and Validation (at runtime) of Various Notions of Opacity 43

– Else (µ · σ ∈ leak(G, PΣo
, S,OP0)), the same reasoning can be followed: we

distinguish according to whether µ ∈ leak(G, PΣo
, S,OP0) or not, apply the

induction hypothesis, and use the definition of enforcement operations. ⊓⊔

A.3.3 Proposition 8 (p. 29)

Proof We shall prove that, for OPK ∈ {OPW

K
,OPS

K
}:

∀µ ∈ TΣo
(G), ∃o � µ : µ ⇓E o ⇒ (5) ∧ (6), where:

µ /∈ leak(G, PΣo
, S,OPK) ⇒ o = µ (5)

µ ∈ leak(G, PΣo
, S,OPK) ⇒ o = max{µ′ ∈ TΣo

(G) | µ′ � µ ∧ safeOPK
(µ, µ′)}. (6)

Let us consider µ ∈ TΣo
(G), the proof is conducted by induction on |µ|. More-

over, the proof is done for OPK ∈ {OPW

K
,OPS

K
}, a K-step based notion of

opacity (independently from whether it is weak or strong), since we will use
the function holdOPK

() for the state of the underlying trajectory estimator and
the traces of the system.

If |µ| = 1, then ∃σ ∈ Σo : µ = σ. The run of µ on E can be expressed
run(µ, E) = (qE

init
, σ/α, q1) with q1 ∈ QE , Γ E(q1) = α. The R-Enforcer’s evo-

lution of configurations is (qE
init

, σ, ǫM)
o
→֒ (q1, ǫΣo

,m) with α(σ, ǫM) = (o,m).
Let us distinguish two cases according to whether σ ∈ leak(G, PΣo

, S,OPK) or
not.

– If σ /∈ leak(G, PΣo
, S,OPK), then we use the correctness of R-Verifiers syn-

thesized from K-delay trajectory estimators (Proposition 4). Using the
definition and the properties of the function hold (Section 6.3, paragraph
“When is the opacity of a secret enforceable on a system?”), the state
m1 corresponding to q1 in the corresponding K-delay estimator is s.t.
holdOPK

(δD(mD
init

, σ)) = holdOPK
(m1) = 0. Then, using the definition of

R-Enforcers synthesis, we have α ∈ {dump, off}. Using the definition of en-
forcement operations, we have: free ◦ delay(ǫM) = ǫM, o = (ǫM)↓Σo

·σ = σ,
m = ǫM. Thus, we find (5).

– If ∃k ∈ [0,K] : σ ∈ leak(G, PΣo
, S,OPK, k), then necessarily k ∈ {0, 1}.

Similarly, following from the correctness of R-Verifiers synthesized from
K-delay trajectory estimators (Propositions 4 and 5) and the definition
of holdOPK

, we have holdOPK
(δD(mD

init
, σ)) = holdOPK

(m1) = K + 1 − k.
From the definition of R-Enforcer synthesis, it follows that α = stored
with d = K + 1 − k. Similarly, we can find that o = ǫΣo

and m = (σ, d).
Furthermore, as safeOPK

(σ, ǫΣo
), we have (6).

The induction case is performed again by distinguishing according to the opac-
ity leakage of µ · σ. Similarly to the induction basis, we use the links between
holdOPK

applied to the states of the underlying trajectory estimator and the
correctness of R-Verifiers. Then, one can easily show, using the definitions of
enforcement operations, that the synthesized R-Enforcer is sound and trans-
parent. Furthermore, one has to notice that, when an R-Enforcer produces
a halt operation while reading a (partial) trace µ, no extension µ′ of µ s.t.
|µ′| − |µ| ≤ T can lead µ to be safely produced (i.e., µ′ s.t. safeOPK

(µ′, µ)). ⊓⊔

