D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bulletin of the American Mathematical Society, vol.36, issue.04, pp.413-432, 1999.
DOI : 10.1090/S0273-0979-99-00796-X

C. Banderier, M. Bousquet-mélou, A. Denise, P. Flajolet, D. Gardy et al., Generating functions for generating trees, Discrete Mathematics, vol.246, issue.1-3, pp.1-3, 2002.
DOI : 10.1016/S0012-365X(01)00250-3

URL : https://hal.archives-ouvertes.fr/hal-00003258

C. C. Chao and W. Q. Liang, Arranging n distinct numbers on a line or a circle to reach extreme total variations, European Journal of Combinatorics, vol.13, issue.5, pp.325-334, 1992.
DOI : 10.1016/S0195-6698(05)80011-3

G. L. Cohen and E. Tonkes, Dartboard arrangements, Elect, J. Combin, vol.8, issue.2, p.4, 2001.

S. A. Curtis, Darts and hoopla board design, Information Processing Letters, vol.92, issue.1, pp.53-56, 2004.
DOI : 10.1016/j.ipl.2004.06.005

G. Firro and T. Mansour, Restricted k-ary words and functional equations, Discr. Appl. Math, vol.157, pp.4-602, 2009.

P. Flajolet and R. Sedwick, Analytic Combinatorics, web edition; available at http:algo. inria.fr/flajolet/Publications/books.html, p.811, 2008.

Q. Hou and T. Mansour, Kernel method and linear recurrence system, Journal of Computational and Applied Mathematics, vol.216, issue.1, pp.1-227, 2008.
DOI : 10.1016/j.cam.2007.05.001

Y. J. Liao, M. Shieh, and S. C. Tsai, Arranging numbers on circles to reach maximum total variations, Elect. J. Combin, pp.14-47, 2007.

B. F. Logan and L. A. Shepp, A variational problem for random Young tableaux, Advances in Mathematics, vol.26, issue.2, pp.206-222, 1977.
DOI : 10.1016/0001-8708(77)90030-5

T. Mansour, Longest alternating subsequences of k-ary words, Discr, Appl. Math, vol.156, issue.1, pp.119-124, 2008.

. Th and . Rivlin, Chebyshev polynomials. From approximation theory to algebra and number theory, 1990.

N. J. Sloane, The On-Line Encyclopedia of Integer Sequences
DOI : 10.1007/978-3-540-73086-6_12

R. Stanley, Longest alternating subsequences of permutations, arXiv: math.CO, 511419.

A. M. Vershik and K. V. Kerov, Asymptotic behavior of the Plancherel measure ofthe symmetric group andthe limit form of Young tableaux (Russian), Dokl. Akad. Nauk SSSR English translation: Soviet Math. Dokl, vol.223, pp.1024-1027, 1977.