On-line extensible bin packing with unequal bin sizes

Abstract : In the extensible bin packing problem we are asked to pack a set of items into a given number of bins, each with an original size. However, the original bin sizes can be extended if necessary. The goal is to minimize the total size of the bins. We consider the problem with unequal (original) bin sizes and give the complete analysis on a list scheduling algorithm (LS). Namely we present tight bounds of LS for every collection of original bin sizes and every number of bins. We further show better on-line algorithms for the two-bin case and the three-bin case. Interestingly, it is proved that the on-line algorithms have better competitive ratios for unequal bins than for equal bins. Some variants of the problem are also discussed.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2009, 11 (1), pp.141--152
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00988178
Contributeur : Service Ist Inria Sophia Antipolis-Méditerranée / I3s <>
Soumis le : mercredi 7 mai 2014 - 15:36:39
Dernière modification le : mercredi 29 novembre 2017 - 10:26:24
Document(s) archivé(s) le : jeudi 7 août 2014 - 11:31:12

Fichier

623-4158-1-PB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00988178, version 1

Collections

Citation

Deshi Ye, Guochuan Zhang. On-line extensible bin packing with unequal bin sizes. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2009, 11 (1), pp.141--152. 〈hal-00988178〉

Partager

Métriques

Consultations de la notice

279

Téléchargements de fichiers

131