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Abstract. In this paper we study some decidability properties in the
context of Tarski’s axiom system for geometry. We removed excluded
middle from our assumptions and studied how our formal proof of the
first thirteen chapters of [SST83] are impacted. We show that decid-
ability of equality is equivalent to the decidability of congruence and
betweenness. We prove that the decidability of the other predicates used
in [SST83] can be derived from decidability of equality except for the
predicate stating the existence of the intersection of two lines. All results
have been proved formally using the Coq proof assistant.

1 Introduction

In this paper we study some decidability properties in the context of Tarski’s ax-
iom system for geometry. In previous work [Nar07,BN12,NBB14] we formalized,
using the Coq proof assistant, the results about 2D geometry of the first thirteen
chapters of [SST83] within classical logic. In this study, we take advantage of our
formal proofs to study how classical logic is used in the proofs of Schwabhaüser,
Szmielew and Tarski. We removed the excluded middle axiom (∀A. A ∨ ¬A)
from our formal development and based on our formal proofs we studied which
instances of the excluded middle axiom are used.

Studying these case distinctions has both a theoretical interest per se and
also a practical interest in the context of automated deduction. Indeed, as noted1

by Michael Beeson while reproducing proof of [SST83] using Otter:

”These arguments by cases caused us a lot of trouble in finding Otter
proofs.”

The excluded middle axiom can be used at every step of the proof search pro-
cess. This can generate a blow-up of the proof tree. Managing and guiding the
automatic theorem prover for using the right case distinctions is essential.

1 http://www.michaelbeeson.com/research/FormalTarski/index.php?include=

archive11
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1.1 Related work

In [DDS00], Christophe Dehlinger, Jean-François Dufourd and Pascal Schreck
have carried a study similar to ours in the framework of Hilbert’s axiom sys-
tem [Hil71]. This first approach was realized in an intuitionist setting, and con-
cluded that the decidability of point equality and collinearity is necessary to
check Hilbert’s proofs. In [MNS11], we proved that in the context of projective
geometry decidability of incidence implies decidability of line and point equal-
ities. Von Plato has proposed an axiom system for projective geometry based
on the apartness predicate[vP95] which has been formalized in Coq by Gilles
Khan [Kah95]. We have formalized the first thirteen chapters of [SST83] in Coq
and shown that these results implies the axioms of Hilbert (except continu-
ity) [Nar07,BN12]. Recently, Michael Beeson has written a note [Bee14c] which
provides the connection between the proofs in [SST83] and Hilbert’s axioms.
This note is more readable than our Coq’s proof. Michael Beeson and Larry Wos
have reproduced the proof that Hilbert’s axioms follows from Tarski’s using Ot-
ter [BW14]. The work closest to ours is the one by Michael Beeson. He recently
proposed a fully constructive variant of Tarski’s axiom system [Bee14a,Bee14b]
and study its properties.

Section 2 describes the Tarski’s axiom system we are working with. Section 3
provides an overview of the occurrences of case distinction in our formal proofs.
In Section 4 we show that all case distinctions can be reduced only to two axioms:
decidability of equality and decidability of intersection. In Section 5, we study
the role of decidability of intersection.

2 Tarski’s axiom system

The axioms can be expressed using first order logic and two predicates.

betweenness The ternary betweenness predicate β AB C informally states that
B lies on the line AC between A and C. The relation holds also if A = B or
B = C.

congruence The quaternary congruence predicate AB ≡ CD informally means
that the distance from A to B is equal to the distance from C to D.

Note that in Tarski’s geometry, only points are primitive objects. In particular,
lines are defined by two distinct points whereas in Hilbert’s axiom system lines
and planes are primitive objects. Figure 1 provides the list of axioms that we
used in our formalization.

2.1 Formalization in Coq

The formalization of this axiom system in Coq is straight-forward. We group our
axioms in a structure. We use the type class mechanism developed by Matthieu
Sozeau[SO08] to save us from the burden of providing the proper structure each



Between Identity β ABA ⇒ A = B

Pseudo-Transitivity AB ≡ CD ∧AB ≡ EF ⇒ CD ≡ EF

Symmetry AB ≡ BA

Cong Identity AB ≡ CC ⇒ A = B

Pasch β AP C ∧ β BQC ⇒ ∃X,β P X B ∧ β QX A

Euclid ∃XY, β ADT ∧ β BDC ∧A 6= D ⇒
β ABX ∧ β AC Y ∧ β X T Y

5 segments
AB ≡ A′B′ ∧BC ≡ B′C′∧
AD ≡ A′D′ ∧BD ≡ B′D′∧
β AB C ∧ β A′ B′ C′ ∧A 6= B ⇒ CD ≡ C′D′

Construction ∃E, β AB E ∧BE ≡ CD

Lower Dimension ∃ABC,¬β AB C ∧ ¬β B C A ∧ ¬β C AB

Upper Dimension AP ≡ AQ ∧BP ≡ BQ ∧ CP ≡ CQ ∧ P 6= Q

⇒ β AB C ∨ β B C A ∨ β C AB

Continuity ∀XY, (∃A, (∀xy, x ∈ X ∧ y ∈ Y ⇒ β Ax y)) ⇒
∃B, (∀xy, x ∈ X ⇒ y ∈ Y ⇒ β xB y).

Fig. 1. Tarski’s axiom system.

time we use a theorem (see Fig. 2). We slightly changed our formalization of the
axiom system we described in [BN12] to separate the results which are valid in
any dimension and in neutral geometry from the results which are valid only in
2D and also only in Euclidean geometry. Moreover, we define separate classes
for decidability of equality (EqDecidability) and decidability of intersection
(InterDecidability).

3 Case distinctions in Tarski’s proofs

In our formalization of the first thirteen chapters of [SST83] there are more than
600 case distinctions. Note that our proof may perform more case distinctions
than necessary. Case distinction is used only on atomic formulae and defined
predicates. Table 1 lists the predicate with the number of occurrences of case
distinction in our development. By far the decidability property which is used
most often is decidability of equality of points. To obtain a self-contained paper,
we recall here the definitions of the predicates which will be used in Sec. 4.

Definition 1 (Col). To assert that three points A, B and C are collinear we

note: Col ABC

Col AB C := β AB C ∨ β AC B ∨ β B AC

Definition 2 (out).

Out P AB := A 6= P ∧B 6= P ∧ (β P AB ∨ β P B A)

Definition 3 (is midpoint).

is midpointM AB := β AM B ∧AM ≡ BM



Class Tarski_neutral_dimensionless := {

Tpoint : Type;

Bet : Tpoint -> Tpoint -> Tpoint -> Prop;

Cong : Tpoint -> Tpoint -> Tpoint -> Tpoint -> Prop;

between_identity : forall A B, Bet A B A -> A=B;

cong_pseudo_reflexivity : forall A B : Tpoint, Cong A B B A;

cong_identity : forall A B C : Tpoint, Cong A B C C -> A = B;

cong_inner_transitivity : forall A B C D E F : Tpoint,

Cong A B C D -> Cong A B E F -> Cong C D E F;

inner_pasch : forall A B C P Q : Tpoint,

Bet A P C -> Bet B Q C ->

exists x, Bet P x B /\ Bet Q x A;

five_segments : forall A A’ B B’ C C’ D D’ : Tpoint,

Cong A B A’ B’ ->

Cong B C B’ C’ ->

Cong A D A’ D’ ->

Cong B D B’ D’ ->

Bet A B C -> Bet A’ B’ C’ -> A <> B -> Cong C D C’ D’;

segment_construction : forall A B C D : Tpoint,

exists E : Tpoint, Bet A B E /\ Cong B E C D;

lower_dim : exists A, exists B, exists C,

~ (Bet A B C \/ Bet B C A \/ Bet C A B)

}

Class Tarski_2D ‘(Tn: Tarski_neutral_dimensionless) := {

upper_dim : forall A B C P Q : Tpoint,

P <> Q -> Cong A P A Q -> Cong B P B Q -> Cong C P C Q ->

(Bet A B C \/ Bet B C A \/ Bet C A B)

}.

Class Tarski_2D_euclidean ‘(T2D:Tarski_2D) := {

euclid : forall A B C D T : Tpoint,

Bet A D T -> Bet B D C -> A<>D ->

exists x, exists y,

Bet A B x /\ Bet A C y /\ Bet x T y

}.

Class EqDecidability U := {

eq_dec_points : forall A B : U, A=B \/ ~ A=B

}.

Class InterDecidability U (Col : U -> U -> U -> Prop) := {

inter_dec : forall A B C D,

(exists I, Col I A B /\ Col I C D) \/

~ (exists I, Col I A B /\ Col I C D)

}.

Fig. 2. Formalization of Tarski’s axioms as a type class in Coq



Predicate Meaning Number
of occ

A = B points A and B are equal. 524
Col A B C points A, B and C are collinear 84
Par A B C D AB ‖ CD (line AB is parallel to line CD) 16
Bet A B C points A, B and C are collinear and B is be-

tween A and C, it can be the case the A = B

or B = C.

15

Cong A B C D the segments AB and CD are congruent 13
two_sides A B P Q P and Q are on opposite sides of the line AB 8
out A B C C belongs to the half line [AB( 7
Per A B C the angle ABC is right angle 6
is_null_anga A B C the angle A B C is null 5
is_midpoint I A B I is the midpoint of segment AB 3
inter A B C D exists I the intersection of line AB and CD 3
Conga A B C D E F the angles ∠ABC and ∠DEF are congruent 2
Perp_in X A B C D AB⊥CD and X is the intersection of AB and

CD

1

is_image_spec P’ P A B P ′ is the symmetric of P wrt line AB 1
lg_null A B the length AB is null 1
same_dir A B C D AB and CD are in the same direction 1

Table 1. Statistics about number of case distinctions.

Definition 4 (Per).

Per AB C := ∃C ′, is midpointB C C ′ ∧AC ≡ AC ′

b
A

b

B

b
C

×
C ′

Definition 5 (Perp in).

Perp inX ABC D := A 6= B ∧ C 6= D ∧ Col X AB ∧ Col X C D ∧

(∀U V,Col U AB ⇒ Col V C D ⇒ Per U X V )



b

A
b
B

b C

b D

b
X

b
U

bV

bV ′

Definition 6 (is image spec).

is image spec P ′ P AB := (∃X, is midpointX P P ′ ∧ Col ABX) ∧

(PerpAB P P ′ ∨ P = P ′)

Definition 7 (conga).

∡ABC ∼= ∡DEF := A 6= B ⇒ B 6= C ⇒ D 6= E ⇒ F 6= F ⇒

∃A′, ∃C ′, ∃D′, ∃F ′























β B AA′ ∧ AA′ ≡ ED ∧
β B C C ′ ∧ CC ′ ≡ EF ∧
β E DD′ ∧ DD′ ≡ BA ∧
β E F F ′ ∧ FF ′ ≡ BC ∧

A′C ′ ≡ D′F ′

b

B

b

C ′

b
A′

b

E
b D′

b

F ′

b

A

b

D

b C

bF

Definition 8 (Perp).

AB ⊥ CD := ∃X,Perp inX AB C D

Definition 9 (opposite sides). Given a line l defined by two distinct points

A and B, two points X and Y not on l, are on opposite sides of l is written:

A X

Y
B

A
X

Y
B := ∃T,Col AB T ∧ β X T Y

bA bB

bX

bY

bT



Definition 10 (same side). Let l be a line defined by two distinct points A

and B. Two points X and Y not on l, are on the same side of l is written:

A
X Y

B

A
X Y

B := ∃Z,A
X

Z
B ∧A

Y

Z
B

bA bB

bX
bY

bZ

Definition 11 (intersection).

inter AB C D := ∃I, Col I AB ∧ Col I C D

Definition 12 (parallelism).

AB ‖ CD := A 6= B ∧ C 6= D ∧ ¬∃X,Col X AB ∧ Col X C D

Definition 13 (Parallelogram strict).

Parallelogram strictAB A′ B′ := A
BB′

A′ ∧ AB ‖ A′B′ ∧ AB ≡ A′B
′

Definition 14 (Parallelogram flat).

Parallelogram flatAB A′ B′ := Col AB A′ ∧ Col AB B′ ∧

AB ≡ A′B
′

∧ AB′ ≡ A′B ∧ (A 6= A′ ∨ B 6= B′)

Definition 15 (Parallelogram).

ParallelogramABA′ B′ := Parallelogram strictAB A′ B′ ∨
Parallelogram flatAB A′ B′

Definition 16 (eqV).

eqV AB C D := ParallelogramABDC ∨ A = B ∧ C = D

Definition 17 (same dir).

same dir AB C D := A = B ∧ C = D ∨ ∃D′, outC DD′ ∧ eqV AB C D

Definition 18 (lg).

lg l := ∃A, ∃B, ∀XY,AB ≡ XY ⇔ l X Y

Definition 19 (lg null).

lg null l := lg l ∧ ∃A, l AA



Definition 20 (in angle).

P in∡ABC := A 6= B ∧ C 6= B ∧ P 6= B ∧

∃X, β AX C ∧ (X = B ∨ outB X P )

Definition 21 (lea).

∡ABC ≤ ∡DEF := ∃P, P in∡DEF ∧ ∡ABC ∼= ∡DEP

Definition 22 (lta).

∡ABC < ∡DEF := ∡ABC ≤ ∡DEF ∧ ¬∡ABC ∼= ∡DEF

Definition 23 (acute).

acuteAB C := ∃A′, ∃B′, ∃C ′, P er A′ B′ C ′ ∧ ∡ABC < ∡A′B′C ′

Definition 24 (anga).

anga a := ∃ABC, acuteAB C ∧ ∀X Y Z,∡ABC ∼= ∡XY Z ⇔ aX Y Z

Definition 25 (is anga null).

is null anga a := anga a ∧ ∀ABC, aAB C ⇒ outB AC

4 Decidability of equality and intersection are sufficient

In this section, we prove that decidability of equality implies decidability of all
other predicates except the intersection predicate. Moreover, we prove that we
could equivalently assume decidability of any of these three predicates (between-
ness, congruence, equality).

First, we give a formal definition of the decidability property and a few
lemmas necessary for the proofs.

Definition 26. We say that a predicate P of arity n is decidable iff:

∀A1, . . . , An, P (A1, . . . , An) ∨ ¬P (A1, . . . , An)

Lemma 3.1 of [SST83] states that:

Lemma 1 (between trivial). ∀AB, β ABB

Using lemma 4.6 of [SST83] we have:

Lemma 2. ∀ABC, β AC B ∧AC ≡ AB ⇒ C = B

Using Lemma 2 and Lemma 5.2 of [SST83] we have:

Lemma 3. ∀ABDE, A 6= B ∧ β ABD ∧ β AB E ∧BD ≡ BE ⇒ D = E



Using the segment construction axiom and Lemma 5.2 of [SST83], we can
prove that we can construct a point on an half-line at a given distance:

Lemma 4. ∀AQBC,A 6= Q ⇒ ∃X, (β QAX ∨ β QX A) ∧QX ≡ BC

Theorem 1 (Decidability of basic relations). In Tarski’s geometry, the fol-

lowing properties are equivalent:

1. decidability of equality

2. decidability of congruence

3. decidability of betweenness

Proof.

1 ⇒ 2 Assume decidability of equality, we prove decidability of congruence:

∀AB,A = B ∨A 6= B ⇒ ∀ABCD,AB ≡ CD ∨ ¬AB ≡ CD.

Let A, B, C and D be four points.
1. Case A = B.

(a) Case C = D. We have AB ≡ CD.
(b) Case C 6= D.

Using axiom cong identity we can conclude that ¬AB ≡ CD.
2. Case A 6= B.

(a) Case C = D.
Using axiom cong identity we can conclude that ¬AB ≡ CD.

(b) Case C 6= D. Using Lemma 4 we construct D′ such that β ABD′ ∨
bTAD′B and AD′ ≡ CD. If B = D′ we have that AB ≡ CD.
Otherwise B 6= D′. Assume that AB ≡ CD, then by transitivity
AB ≡ AD′. By case distinction on β ABD′∨β AD′ B we can show
in both cases that B = D′ using Lemma 2, hence ¬AB ≡ CD.

2 ⇒ 1 Let us assume decidability of congruence, we prove decidability of equal-
ity. Let A and B be two points. By decidability of congruence we have
that AB ≡ AA ∨ ¬AB ≡ AA. If AB ≡ AA, by axiom cong identity
we have A = B. Otherwise ¬AB ≡ AA. Assuming A = B we have
¬AA ≡ AA this contradicts axiom cong symmetry hence A 6= B.

1 ⇒ 3 Assume decidability of equality, we prove decidability of betweenness.
Construct C ′ a point such that β AB C ′ and BC ≡ BC ′. If C = C ′

then β AB C. Otherwise C 6= C ′. If A = B then β AB C by Lemma 1.
Otherwise A 6= B. Assume β AB C using Lemma 3 we obtain that
C = C ′, hence ¬β AB C.

3 ⇒ 1 Let us assume decidability of betweenness, we prove decidability of equal-
ity. Let A, B be two points. By decidability of betweenness we have that
β ABA∨¬β ABA. If β ABA then by between identity axiom we have
A = B. If ¬β ABA, assume A = B then by Lemma 1 we have β AAA,
hence A 6= B.

⊓⊔



For the predicates whose definition does not contain quantifiers and involves
only predicates which have already been shown to be decidable, the decidability
is trivial. This is the case for the predicates: Col, out, is midpoint.

Lemma 5. Col, out, is midpoint are decidable.

Proof. These predicates are conjunctions or disjunctions of decidable predicates.
They are therefore decidable too. ⊓⊔

Lemma 6. Per is decidable.

Proof. Recall that by definition, PerABC ≡ ∃C ′, is midpointBCC ′ ∧ AC ≡
AC ′. We construct C ′ the symmetric of C wrt B. If AC ≡ AC ′ then PerABC.
Otherwise we can show that ¬PerABC using uniqueness of the symmetric point.

⊓⊔

Lemma 7. Perp in is decidable.

Proof. To prove that Perp in is decidable (let us name the points X, A, B, C
and D) we first eliminate the trivial cases where A is equal to B, C is equal to
D, X, A and B are not collinear and X, C and D are not collinear (in all cases
Perp in is trivially false). We then need to know if X is equal to B and/or D

to be able to use decidability of Per since when the first two or the last two
points of this predicate are equal we do not get any information about the angle
formed by the lines AB and CD. So we are left with the 4 cases to handle (since
X cannot be equal to both A and B (or C and D) as this would contradict the
fact that A and B are different). Finally for each case we use decidability of Per

with the correct points (we choose 3 different points : X, one on AB and one on
CD) to complete the proof. ⊓⊔

Lemma 8. is image spec is decidable.

Proof. To obtain a proof that is image spec is decidable (let us name the points
A, B, C and D) we first eliminate the trivial case where A is equal to B and
C equal to D (is image spec is trivially true) and the one where A is not equal
to B and C equal to D (is image spec is trivially false). Then we use existence
of the symmetric of a point wrt a line to construct the point B′ such that
is image specAB′ C D. Finally we use the uniqueness of the symmetric of a
point wrt a line and the decidability of equality of the points B and B′ to
complete this proof. ⊓⊔

Lemma 9. Conga is decidable.

Proof. To prove the decidability of the predicate Conga (let us name the points
A, B, C, D, E and F ) we first eliminate the trivial cases where A is equal to B,
where B is equal to C, where D is equal to E and where E is equal to F (in all
cases Conga is trivially false). We then construct the points A′, C ′, D′ and F ′ of
the definition using the axiom of construction. Finally we use decidability of con-
gruence with A′C ′ and D′F ′. If the congruence is true then CongaAB C DE F



is true by definition. If it is false we prove that CongaAB C DE F is false by
contradiction by proving that the congruence is as well true which is proved
using the construction uniqueness. ⊓⊔

Lemma 10. Perp is decidable.

Proof. In order to prove decidability of the predicate Perp (let us name the
points A, B, C and D) we first use decidability of collinearity with the points
A, B and C. If A, B and C are collinear then PerpAB C D is equivalent to
Perp inC AB C D and we are done as we already proved that Perp in is de-
cidable. If they are not collinear then we construct P the orthogonal projection
of C on the line AB. Now if C is equal to D we can derive a contradiction from
¬ PerpABDD since PerpABDD implies that D is different from D which is
false. Finally when C and D are different we see that PerpAB C D is equivalent
to Col P C D which is decidable. ⊓⊔

Lemma 11. two sides is decidable.

Proof. Let us name the points A, B, C and D. We start by handling the trivial
cases of Col C AB, Col DAB and A = B for which two sides is trivial false.
Now if C is equal to D two sides is false as the only possible intersection point
is D and we know that D, A and B are not collinear. From now on C and D are
then different. Using the decidability of the intersection of two lines we see that
in the case of no intersection two sides (as there is no intersection between AB

and CD it is obviously not between C and D) and in the case of an intersection
we use decidability of betweenness to complete the proof. When the intersection
is between C and D two sides is true by definition and when it isn’t we use
uniqueness of intersection to derive a contradiction and prove that two sides is
false. ⊓⊔

Lemma 12. one side is decidable.

Proof. Let us name the points A, B, C and D. We start by handling the trivial
cases of Col C AB, and Col DAB for which two sides is trivial false. Then
as neither C nor D is collinear to A and B we can prove that we have either
one sideAB C D or two sideAB C D. In the first case it is trivial. In the second
we use the fact two sideAB C D implies ¬one sideAB C D. ⊓⊔

Lemma 13. Par is decidable.

Proof. To prove that Par is decidable (let us name the points A, B, C and D)
we first eliminate the trivial cases where A is equal to B, C is equal to D (in
all cases Par is trivially false). We can then construct the parallel CD′ to AB

passing through C. Finally decidability of Par is equivalent in this context to
decidability of Col which we already proved. ⊓⊔

Lemma 14. same dir is decidable.



Proof. Let us name the points A, B, C and D. We start by handling the trivial
cases of A 6= B and C 6= D, A 6= B and C = D and finally A = B and C 6= D for
which same dir is trivial false. Now when A 6= B and C 6= D we construct the
point E such that ABEC is a parallelogram. Finally using the uniqueness of the
parallelogram construction decidability of same dir is equivalent to decidability
of out applied to C, D and E which is already proven. ⊓⊔

Lemma 15. lg null is decidable.

Proof. In order to prove decidability of the predicate lg null (let us name the
length l) we first name the points representing the length l : A and B. Decid-
ability of lg null is then equivalent to decidability of equality of points applied
with A and B which we already proved so the proof is complete. ⊓⊔

Lemma 16. is null anga is decidable.

Proof. To obtain a proof that is null anga is decidable (let us name the angle
a) we first name the points representing the angle a : A, B and C. Decidability
of is null anga is then equivalent to decidability of out applied with B, A and
C which we already proved so the proof is complete. ⊓⊔

5 About the decidability of intersection

In this section we study the decidability of intersection. We could not manage
to derive the decidability of intersection from decidability of equality. We can
remark that in Tarski’s axioms system minus Euclid axiom and the continuity
axiom, the axioms containing an existential quantifier (Pasch, Lower dimension
and Construction) allow to construct points which are not arbitrary far from
the given points. Each application of an existential axiom can at most double
the maximum distance between already constructed points. Using decidability
of intersection we can construct points which are arbitrary far. Hence, we can
not prove decidability of intersection from these other axioms. Michael Beeson
has recently turned this proof sketch into a formal argument using Herbrand’s
theorem to obtain a new syntactic proof that Euclid’s axiom is independent of
the other axioms [BBN14].

We can show also that if instead of the Euclid axiom given in [SST83] we
assume the existence of the center of the circumscribed circle then we can derive
decidability of equality.

Definition 27. Circumscribed circle axiom

∀ABC,¬ Col AB C ⇒ ∃C ′, AC ′ ≡ BC ′ ∧AC ′ ≡ CC ′

We can now derive a lemma inspired from lemma 7.2 of [Bee14a]. We have a
slightly different axiom system and we are interested in decidability rather than
stability so we provide the proof in our context:



Theorem 2. In the context of Tarski’s Eu-

clidean geometry in 2D, the decidability of in-

tersection is equivalent to the circumscribed

center principle.

bA

bB
bC

bD

bM

b
M1

bM2

bI

b

b

Proof. ⇐ Let A, B, C and D be four points. We want to decide if line AB and
CD have an intersection. Let M be the midpoint of AC. We can assume that
M does not belong to line AB nor CD otherwise it is easy to see that the two
lines intersect. We construct M1 and M2 the symmetric points of M wrt line AB

and CD. If M , M1 and M2 are collinear then AB and CD are perpendicular
to the same line. Hence, by a consequence of Euclid axiom they are parallel.
Otherwise M , M1 and M2 are not collinear, by circumscribe circle axiom we
can then construct I such that IM1 ≡ IM and IM2 ≡ IM . By the definition of
perpendicular lines, we can derive that I belongs to both AB and CD.

⇒ Using decidability of intersection we can prove all the results in the first 12
chapters of [SST83], this includes the existence of the center of the circumscribed
circle. ⊓⊔

6 Conclusion

We have shown in this paper that decidability of equality and decidability of
intersection are sufficient properties to prove other decidability properties in the
context of the geometry of Tarski. It is interesting to note that, in our experience,
even if in theory it is possible, we could not have carried out this study without
the use of a proof assistant. First, because it would have been very difficult to
detect case distinction in an informal proof as often degenerated cases are omit-
ted in the proofs as noted in our previous results [Nar07,BN12]. Second, because
it is easy to enter in a circular argument proving a decidability property by
using some other lemmas which have been proved using this decidability prop-
erty or an indirect consequence of it. During the proving process, we modified
some lemmas to remove unnecessary case distinctions, reordered many lemmas
to obtain results when we need them to prove other results. Before the discovery
of non-euclidean geometries, many incorrect proof of the axiom of Euclid have
been proposed, often the error was due to circular arguments:

Legendre’s investigations of the provability of the parallel postulate ex-
tended over 40 years and appeared mostly in appendixes of successive
editions of the Eléments de géométrie. All his attempts to derive the pos-
tulate from the other Euclidean axioms were deficient in that each one
rested on some hypothesis that was logically equivalent to the desired
statement.
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p572.

In the future, it would be interesting to have automatic tools to study case
distinction in geometric proofs as for a human it is difficult to tell which case
distinctions are necessary and in which order. Compared to Michael Beeson’s
constructive version of Tarski’s axiom system [Bee14a] our study can be seen
as less constructive as decidability of equality is a strong assumption. Michael
Beeson only assumes stability of equality, betweenness and congruence. Still,
we think our study is useful because we obtain results similar to his results
about the connection between decidability of intersection and the existence of
the circumscribed center [Bee14b]. Moreover in some models such as ruler-and-
compass geometry the equality is decidable. A natural extension of this work
consists in verifying using Coq the results of Michael Beeson in order to obtain
a fully constructive formal development about Tarski’s geometry. It would be
interesting also to prove the equivalence with the axiom system of Lombard and
Vesley [LV98].

Availability

The full Coq development is available here: http://dpt-info.u-strasbg.fr/

~narboux/tarski.html
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Paul Rossier.

http://dpt-info.u-strasbg.fr/~narboux/tarski.html
http://dpt-info.u-strasbg.fr/~narboux/tarski.html
http://www.michaelbeeson.com/research/papers/AxiomatizingConstructiveGeometry.pdf
http://www.michaelbeeson.com/research/papers/AxiomatizingConstructiveGeometry.pdf
http://www.michaelbeeson.com/research/papers/ConstructiveGeometryAndTheParallelPostulate.pdf
http://www.michaelbeeson.com/research/papers/ConstructiveGeometryAndTheParallelPostulate.pdf
http://www.michaelbeeson.com/research/papers/TarskiProvesHilbert.pdf
http://www.michaelbeeson.com/research/papers/TarskiProvesHilbert.pdf


Kah95. Gilles Kahn. Constructive Geometry according to Jan von Plato. Coq con-
tribution, 1995. Coq V5.10.

LV98. Melinda Lombard and Richard Vesley. A common axiom set for classi-
cal and intuitionistic plane geometry. Annals of Pure and Applied Logic,
95(1–3):229–255, 1998.

MNS11. Nicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing Projective
Plane Geometry in Coq. In Thomas Sturm, editor, Post-proceedings of Au-
tomated Deduction in Geometry (ADG) 2008, volume 6301 of LNAI, pages
141–162, Shanghai, China, 2011. Thomas Sturm, Springer.

Nar07. Julien Narboux. Mechanical Theorem Proving in Tarski’s geometry. In Fran-
cisco Botana Eugenio Roanes Lozano, editor, Automated Deduction in Ge-
ometry 2006, volume 4869 of LNCS, pages 139–156, Pontevedra, Spain, 2007.
Francisco Botana, Springer.

NBB14. Julien Narboux, Gabriel Braun, and Pierre Boutry. Tarski’s Geom-
etry Formalized in Coq, 2006-2014. http://dpt-info.u-strasbg.fr/ nar-
boux/tarski.html.

SO08. Matthieu Sozeau and Nicolas Oury. First-Class Type Classes. In Otmane Aı̈t
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