Modal intervals revisited : a mean-value extension to generalized intervals

Abstract : The modal intervals theory deals with quantified propositions in AE-form, i.e. universal quantifiers precede existential ones, where variables are quantified over continuous domains and with equality constraints. It allows to manipulate such quantified propositions computing only with bounds of intervals. A simpler formulation of this theory is presented. Thanks to this new framework, a mean-value extension to generalized intervals (intervals whose bounds are not constrained to be ordered) is defined. Its application to the validation of quantified propo- sitions is illustrated
Type de document :
Communication dans un congrès
In International Workshop on Quantification in Constraint Programming (International Conference on Principles and Practice of Constraint Programming, CP-2005), Oct 2005, Barcelona, Spain. 2005
Liste complète des métadonnées

https://hal.inria.fr/hal-00990048
Contributeur : David Daney <>
Soumis le : mardi 13 mai 2014 - 08:29:42
Dernière modification le : mercredi 24 juin 2015 - 11:01:18

Identifiants

  • HAL Id : hal-00990048, version 1

Collections

Citation

Alexandre Goldsztejn, David Daney, Michel Rueher, Patrick Taillibert. Modal intervals revisited : a mean-value extension to generalized intervals. In International Workshop on Quantification in Constraint Programming (International Conference on Principles and Practice of Constraint Programming, CP-2005), Oct 2005, Barcelona, Spain. 2005. <hal-00990048>

Partager

Métriques

Consultations de la notice

238